Skip to main content
Log in

Object matching in disjoint cameras using a color transfer approach

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Object appearance models are a consequence of illumination, viewing direction, camera intrinsics, and other conditions that are specific to a particular camera. As a result, a model acquired in one view is often inappropriate for use in other viewpoints. In this work we treat this appearance model distortion between two non-overlapping cameras as one in which some unknown color transfer function warps a known appearance model from one view to another. We demonstrate how to recover this function in the case where the distortion function is approximated as general affine and object appearance is represented as a mixture of Gaussians. Appearance models are brought into correspondence by searching for a bijection function that best minimizes an entropic metric for model dissimilarity. These correspondences lead to a solution for the transfer function that brings the parameters of the models into alignment in the UV chromaticity plane. Finally, a set of these transfer functions acquired from a collection of object pairs are generalized to a single camera-pair-specific transfer function via robust fitting. We demonstrate the method in the context of a video surveillance network and show that recognition of subjects in disjoint views can be significantly improved using the new color transfer approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basri R. and Jacobs D.W. (2003). Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intel. 25(2): 218–233

    Article  Google Scholar 

  2. Orwell, J., Remagnino, P., Jones, G.A.: Multi-camera color tracking. In: Proc. the Second IEEE Workshop on Visual Surveillance (1999)

  3. Mittal, A., Davis, L.: Unified multi-camera detection and tracking using region-matching. Proc. IEEE Workshop on Multi-Object Tracking (2001)

  4. Rahimi, A., Dunagan, B., Darrell, T.: Simultaneous calibration and tracking with a network of non-overlapping sensors. Proc. Comput. Vis. Pattern Recog. vol. 1, I–187–I–194 (2004)

  5. Kang, J., Cohen, I., Medioni, G.: Persistent objects tracking across multiple non overlapping cameras. In: Proc. IEEE Wacv-motion 2005. Vol. 2, No. 2 (2005)

  6. Shan Y., Sawhney H.S. and Kumar R.T. (2005). Unsupervised learning of discriminative edge measures for vehicle matching between non-overlapping cameras. cvpr 1: 894–901

    Google Scholar 

  7. Shan Y., Sawhney H.S. and Kumar R. (2005). Vehicle identification between non-overlapping cameras without direct feature matching. iccv 1: 378–385

    Google Scholar 

  8. Porikli, F.M., Divakaran, A.: Multi-camera calibration, object tracking and query generation. In: Proc. IEEE International Conference on Multimedia and Expo (ICME). Vol. 1, pp. 653–656 (2003)

  9. Javed, O., Shafique, K., Shah, M.: Appearance modeling for tracking in multiple non-overlapping cameras. In: Proc. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR). pp. 20–26 (2005)

  10. Swain M.J. and Ballard D.H. (1991). Color indexing. Int. J. Comput. Vis. 7: 11–32

    Article  Google Scholar 

  11. Stauffer, C., Eric, W., Grimson, L.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. (2000)

  12. Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.: Background and foreground modeling using nonparametric kernel density for visual surveillance. In: Proc. the IEEE (2002)

  13. Xiong, Q., Jaynes, C.: Multi-resolution background modeling of dynamic scenes using weighted match filters. In: Proc. the ACM 2nd International Workshop on Video Surveillance & Sensor Networks (VSSN ’04), New York, pp. 88–96 ACM Press (2004)

  14. Jeong, K., Jaynes, C.: Moving shadow detection using a combined geometric and color classification approach. In: IEEE MOTION (2005)

  15. Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. (1997)

  16. McKenna, S., Raja, Y., Gong, S.: Tracking colour objects using adaptive mixture models. Image Vis. Comput. 225–231 (1999)

  17. Sanders, N., Jaynes, C.: Class-specific color camera calibration with application to object recognition. In: IEEE WACV (2005)

  18. Bauml K. (1994). Color appearance: effects of illuminant changes under different surface collections. J. Opt. Soc. Am. A 11(2): 531–542

    Google Scholar 

  19. Speigle J.M. and Brainard D.H. (1999). Predicting color from gray: the relationship between achromatic adjustment and asymmetric matching. J. Opt. Soc. Am. A 16(10): 2370–2376

    Article  Google Scholar 

  20. Werner J.S. and Schefrin B.E. (1993). Loci of achromatic points throughtout the life span. J. Opt. Soc. Am. A 10(7): 1509–1516

    Article  Google Scholar 

  21. Grossberg M.D. and Nayar S.K. (2003). Determining the Camera Response from Images: What is Knowable?. IEEE Trans. Pattern Anal. Mach. Intell. 25: 1455–1467

    Article  Google Scholar 

  22. Grossberg M.D. and Nayar S.K. (2004). Modeling the space of camera response functions. IEEE Trans. Pattern Anal. Mach. Intell. 26: 1272–1282

    Article  Google Scholar 

  23. Dempster, A., Laird, N., Rubin, D.: Maximum-likelihood from incomplete data via the em algorithm. J. Royal Statist. Soc. Series B 39 (1977)

  24. Gross, R., Yang, J., Waibel, A.: Growing gaussian mixture models for pose invariant face recognition. In: Proc. the 15th International Conference on Pattern Recognition. vol. 1, pp. 1088–1091 (2000)

  25. Cover T.M. and Thomas J.A. (1991). Elements of Information Theory. Wiley, New York

    MATH  Google Scholar 

  26. Kullback S. and Leibler R.A. (1951). On information and sufficiency. Ann. Math. Statist. 22: 79–86

    Article  MATH  MathSciNet  Google Scholar 

  27. Johnson D.H. and Orsak G. (1993). Relation of signal set choice to the performance of optimal non-gaussian detectors. IEEE Trans. Comm. 41(9): 1319–1328

    Article  MATH  Google Scholar 

  28. Walraven J. and Werner J.S. (1991). The invariance of unique white; a possible implication for normalizing cone action spectra. Vis. Res. 31: 2185–2193

    Article  Google Scholar 

  29. Rousseeuw P.J. and Leroy A.M. (1987). Robust Regression and Outlier Detection. Wiley, New York

    MATH  Google Scholar 

  30. Jaynes, C., Kale, A., Sanders, N., Grossmann, E.: The terrascope dataset: a scripted multi-camera indoor video surveillance dataset with ground-truth. In: Proc. the IEEE Workshop on VS PETS (2005)

  31. Porikli, F.: Inter-camera color calibration using cross-correlation model function. In: Proc. IEEE Int. Conf. on Image Processing (2003)

  32. Drew, M.S., Wei, J., Li, Z.: Illumination-invariant color object recognition via compressed chromaticity histograms of color-channel-normalized images. In: Computer Vision, 1998. Sixth International Conference, pp. 533–540 (1998)

  33. Finlayson, G.D., Schiele, B., Crowley, J.L.: Comprehensive colour image normalization. In: Proc. European Conference on Computer Vision (1998)

  34. Barnard K., Cardei V. and Funt B. (2002). A comparison of color constancy algorithms. part two: experiments with image data. IEEE Trans. Image Process. 11(9): 985–996

    Article  Google Scholar 

  35. Barnard K., Martin L., Coath A. and Funt B. (2002). A comparison of color constancy algorithms. part one: Methodology and experiments with synthesized data. IEEE Trans. Image Process. 11(9): 972–984

    Article  Google Scholar 

  36. Belhumeur N. and Kriegman D. (1998). What is the set of images of an object under all possible illumination conditions?. Int. J. Comput. Vis. 28(3): 245–260

    Article  Google Scholar 

  37. Berwick, D., Lee, S.: A chromaticity space for specularity-, illumination color- and illumination pose-invariant 3-d object recognition. In: ICCV pp. 165–170 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kideog Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, K., Jaynes, C. Object matching in disjoint cameras using a color transfer approach. Machine Vision and Applications 19, 443–455 (2008). https://doi.org/10.1007/s00138-007-0079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-007-0079-x

Keywords

Navigation