Skip to main content
Log in

Coopetitive multi-camera surveillance using model predictive control

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

We present a generic framework for enhanced active multi-sensing. We propose a coopetitive interaction approach, which combines the salient features of cooperation and competition with an aim to optimize the cooperation among sensors to achieve best results at the system level rather than redundantly implementing cooperation at each stage. We also employ model predictive control based forward state estimation method for counter-acting various delays faced in multi-sensor environments. The results obtained for two different visual surveillance adaptations with different number of cameras and different surveillance goals provide clear evidence for the improvements created by adoption of the proposed enhancements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barreto, J.P., Batista, J., Peixoto, P., Araujo, H.: Integrating vision and control to achieve high perfomance active tracking. Tech. rep., TR-BAR-0202, ISR/DEEC, University of Coimbra (2002)

  2. Bowyer, R.S., Bogner, R.: Cooperative behaviour in multi-sensor systems. In: International Conference on Neural Information Processing, pp. 155–160. Perth, Australia (1999)

  3. Castanedo, F., Patricio, M.A., Garca, J., Molina, J.M.: Extending surveillance systems capabilities using BDI cooperative sensor agents. In: ACM International Workshop on Video Surveillance and Sensor Networks pp. 131–138. Santa Barbara, USA (2006)

  4. Collins R., Lipton A., Fujiyoshi H. and Kanade T. (2001). Algorithms for cooperative multisensor surveillance. Proc. IEEE 89(10): 1456–1477

    Article  Google Scholar 

  5. Collins, R., Lipton, A., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O.: A system for video surveillance and monitoring. Tech. rep., CMU-RI-TR-00-12, Robotics Institute, CMU, USA (2000)

  6. Datasets: In: IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. Breckenridge, USA (2005)

  7. Dias, M., Stentz, A.: A market approach to multirobot coordination. Tech. rep., CMU-RI -TR-01-26, Carnegie Mellon University (2001)

  8. Garcia J., Carbo J. and Molina J.M. (2005). Agent-based coordination of cameras. Int. J. Comput. Sci. Appl. 2(1): 33–37

    Google Scholar 

  9. Greiffenhagen, M., Ramesh, V., Comaniciu, D.: Statistical modeling and performance characterization of a real-time dual camera surveillance system. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 2335–2342. Hilton Head Island, USA (2000)

  10. Khadir M. and Ringwood J. (2003). Linear and nonlinear model predictive control design for a milk pasteurization plant. J. Control Intell. Systems 31(1): 37–44

    MATH  Google Scholar 

  11. Lam, K.Y., Chiu, C.K.H.: Adaptive visual object surveillance with continuously moving panning camera. In: ACM International Workshop on Video Surveillance and Sensor Networks, pp. 29–38. New York, USA (2004)

  12. Laurent, D., Mustapha, E., Claude, P., Pascal, V.: A mobile robot localization based on a multisensor cooperation approach. In: IEEE International Conference on Industrial Electronics, Control, and Instrumentation, pp. 155–160. New York, USA (1996)

  13. Liu, Q., Kimber, D., Foote, J., Wilcox, L., Boreczky, J.: FLYSPEC: a multi-user video camera system with hybrid human and automatic control. In: ACM Conference on Multimedia, pp. 484–492. New York, USA (2002)

  14. Marchesotti L., Messina A., Marcenaro L. and Regazzoni C. (2003). A cooperative multisensor system for face detection in video surveillance applications. Acta Autom Sinica Chinese J. Autom. 29: 423–433

    Google Scholar 

  15. Molina J., Garca J., Jimenez F. and Casar J. (2002). Surveillance multisensor management with fuzzy evaluation of sensor task priorities. Eng. Appl. Artif. Intell. 15(6): 511–528

    Article  Google Scholar 

  16. Molina J., Garcia J., Jimenez F. and Casar J. (2003). Cooperative management of a net of intelligent surveillance agent sensors. Int. J. Intell. Systems 1(8): 279–307

    Google Scholar 

  17. Morari M., Lee J.H., Garcia C.E. and Prett D.M. (2003). Model Predictive Control. Prentice Hall, Englewood Cliffs

    Google Scholar 

  18. Papanikolopoulos N., Khosla P. and Kanade T. (1993). Visual tracking of a moving target by a camera mounted on a robot: A combination of control and vision. IEEE Trans. Robot. Autom. 9(1): 14–35

    Article  Google Scholar 

  19. Roy, P.K., Mann, G., Hawlader, B.C., Masek, V., Young, S.O.: Comparative study of model predictive and decoupled PID controller for a multivariable soil heating process. In: IEEE Newfoundland Electrical and Computer Engineering Conference. Newfoundland, Canada (2004)

  20. Saedan, M., Jr, M.H.A.: 3D vision-based control on an industrial robot. In: IASTED International Conference on Robotics and Applications, pp. 152–157. Clearwater, USA (2001)

  21. Sharkey P. and Murray D. (1996). Delays versus performance of visually guided systems. IEE Proc. Control Theory Appl. 143(5): 436–447

    Article  MATH  Google Scholar 

  22. Singh, V.K., Atrey, P.K.: Coopetitive visual surveillance using model predictive control. In: ACM International Workshop on Video Surveillance and Sensor Networks, pp. 149–158. Singapore (2005)

  23. Swarup, S., Oezer, T., Ray, S.R., Anastasio, T.J.: A self-aiming camera based on neurophysical principles. In: The International Joint Conference on Neural Networks, pp. 3201–3206. Portland, USA (2003)

  24. Wang, J., Zhang, C., Shum, H.: Face image resolution versus face recognition performance based on two global methods. In: Asian Conference on Computer Vision. Jeju Island, Korea (2004)

  25. Zhou, X., Collins, R., Kanade, T., Metes, P.: A master-slave system to acquire biometric imagery of humans at distance. In: ACM International Workshop on Video Surveillance, pp. 113–120. Berkley, USA (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek K. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, V.K., Atrey, P.K. & Kankanhalli, M.S. Coopetitive multi-camera surveillance using model predictive control. Machine Vision and Applications 19, 375–393 (2008). https://doi.org/10.1007/s00138-007-0082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-007-0082-2

Keywords

Navigation