Skip to main content
Log in

Fast pattern recognition using normalized grey-scale correlation in a pyramid image representation

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

The ability to quickly locate one or more instances of a model in a grey scale image is of importance to industry. The recognition/localization must be fast and accurate. In this paper we present an algorithm which incorporates normalized correlation into a pyramid image representation structure to perform fast recognition and localization. The algorithm employs an estimate of the gradient of the correlation surface to perform a steepest descent search. Test results are given detailing search time by target size, effect of rotation and scale changes on performance, and accuracy of the subpixel localization algorithm used in the algorithm. Finally, results are given for searches on real images with perspective distortion and the addition of Gaussian noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumberg, A.: Reliable feature matching across widely separated views. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 774–781 (2000)

  2. Burt, P.: Attention mechanisms for vision in a dynamic world. In: Proceedings of the International Conference on Pattern Recognition, pp. 977–987 (1988)

  3. Carneiro, G., Jepson, A.D.: Multi-scale phase-based local features. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 736–743, Madison (2003)

  4. Ennesser F. and Medioni G. (1995). Finding Waldo, or focus of attention using local colour information. IEEE Trans. Pattern Anal. Mach. Intell. 17(8): 805–809

    Article  Google Scholar 

  5. Gonzalez R.C. and Wintz P. (1987). Digital Image Processing, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  6. Goshtasby A. (1985). Template matching in rotated images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-7(3): 338–344

    Article  Google Scholar 

  7. Greenspan M.A. (2002). Geometric probing of dense range data. IEEE Trans. Pattern Anal. Mach. Intell. 24(4): 495–508

    Article  Google Scholar 

  8. Handford, M.: Where’s Waldo? The Wonder Book. Candlewick Press (1997)

  9. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings Fourth Alvey Vision Conference, pp. 147–151, Manchester (1988)

  10. Horn B.K.P. (1986). Robot Vision. The MIT Press, Cambridge

    Google Scholar 

  11. Hu M.K. (1962). Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory IT-8: 179–187

    Google Scholar 

  12. Huang Y.S., Chiang C.C., Shieh J.W. and Grimson E. (2002). Prototype optimization for nearest neighbour classification. Pattern Recogn. 35: 1237–1245

    Article  MATH  Google Scholar 

  13. Jain A.K. and Vailaya A. (1998). Shape-based retrieval: a case study with trademark image databases. Pattern Recogn. 31(9): 1369–1390

    Article  Google Scholar 

  14. Jolion, J.-M., Rosenfeld, A.: A Pyramid Framework for Early Vision. Kluwer, Dordrecht (1994). ISBN: 0-7923-9402-X

  15. Kim, Y.-S., Kim, W.-Y.: Content-based trademark retrieval system using visually salient feature. In: 1997 Conference on Computer Vision and Pattern Recognition, pp. 307–312, Peurto Rico (1997)

  16. Kulkarni A.D. (1994). Artificial Neural Networks for Image Understanding. Van Nostrand Reinhold, New York, ISBN 0-442-00921-6; LofC QA76.87.K84 1993

    MATH  Google Scholar 

  17. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Dordrecht (1994). ISBN: 0-7923-9418-6

  18. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh International Conference on Computer Vision, pp. 1150–1157, Kerkyra (1999)

  19. Lowe D.G. (2004). Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60: 90–110

    Article  Google Scholar 

  20. MacLean, W.J., Tsotsos, J.K.: Fast pattern recognition using gradient-descent search in an image pyramid. In: Proceedings of 15th Annual International Conference on Pattern Recognition, vol. 2, pp. 877–881, Barcelona, Spain (2000)

  21. Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: IEEE International Conference on Computer Vision, pp. 525–531 (2001)

  22. Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: European Conference on Computer Vision, vol. 4, pp. 128–142 (2002)

  23. Mikolajczyk K. and Schmid C. (2004). Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1): 63–86

    Article  Google Scholar 

  24. Mikolajczyk K. and Schmid C. (2005). A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10): 1615–1630

    Article  Google Scholar 

  25. Mikolajczyk K., Tuytelaars T., Schmid C., Zisserman A., Matas J., Schaffalitzky F., Kadir T. and Van Gool L. (2005). A comparison of affine region detectors. Int. J. Comput. Vis. 65(1/2): 43–72

    Article  Google Scholar 

  26. Murase H. and Nayar S.K. (1995). Visual learning and recognition of 3-D objects from appearance. Int. J. Comput. Vis. 14: 5–24

    Article  Google Scholar 

  27. Nastar C., Moghaddam B. and Pentland A. (1997). Flexible images: Matching and recognition using learned deformations. Comput. Vis. Image Understand. 65(2): 179–191

    Article  Google Scholar 

  28. Pentland A., Picard R.W. and Sclaroff S. (1996). Photobook: content based manipulation of image databases. Int. J. Comput. Vis. 18(3): 233–254

    Article  Google Scholar 

  29. Pratt W.K. (1991). Digital Image Processing, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  30. Ramapriyan H.K. (1976). A multilevel approach to sequential detection of pictorial features. IEEE Trans. Comput. 25(1): 66–78

    MATH  MathSciNet  Google Scholar 

  31. Ratan A.L., Eric W., Grimson L. and Wells W.M. (2000). Object detection and localization by dynamic template warping. Int. J. Comput. Vis. 36(2): 131–147

    Article  Google Scholar 

  32. Schiele, B., Pentland, A.: Probabilistic object recognition and localization. In: Proceedings of the Seventh International Conference on Computer Vision, pp. 177–182 (1999)

  33. Sclaroff S., La Cascia M. and Sethi S. (1999). Unifying textual and visual cues for content-based image retrieval on the world wide web. Comput. Vis. Image Understand. 75(1/2): 86–98

    Article  Google Scholar 

  34. Se S., Lowe D. and Little J. (2002). Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks. Int. J. Robot. Res. 21(8): 735–758

    Article  Google Scholar 

  35. Sivic, J., Schaffalitzky, F., Zisserman, A.: Object level grouping for video shots. In: Proceedings of the European Conference on Computer Vision, vol. LNCS 3022, pp. 85–98 (2004)

  36. Stauffer, C., Grimson, E.: Similarity templates for detection and recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, Kauai, Hawaii (2001)

  37. Turk M. and Pentland A. (1991). Eigenfaces for recognition. J. Cogn. Neurosci. 3: 71–86

    Article  Google Scholar 

  38. Burt P. and Wal G. (1992). A VLSI pyramid chip for multiresolution image analysis. Int. J. Comput. Vis. 8: 177–190

    Article  Google Scholar 

  39. Wechsler H. and Zimmerman G.L. (1988). 2-D invariant object recognition using distributed associative memory. IEEE Trans. Pattern Anal. Mach. Intell. 10(6): 811–821

    Article  Google Scholar 

  40. Wechsler H. and Zimmerman G.L. (1989). Distributed associative memory (dam) for bin-picking. IEEE Trans. Pattern Anal. Mach. Intell. 11(8): 814–822

    Article  Google Scholar 

  41. Wu J.K., Lam C.P., Mehtre B.M., Gao Y.J. and Desai Narasimhalu A. (1996). Content-based retrieval for trademark registration. Multimedia Tools Appl. 3(3): 245–267

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. James MacLean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacLean, W.J., Tsotsos, J.K. Fast pattern recognition using normalized grey-scale correlation in a pyramid image representation. Machine Vision and Applications 19, 163–179 (2008). https://doi.org/10.1007/s00138-007-0089-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-007-0089-8

Keywords

Navigation