Skip to main content
Log in

Medical image retrieval based on complexity analysis

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Texture is one of the most important visual attributes used in image analysis. It is used in many content-based image retrieval systems, where it allows the identification of a larger number of images from distinct origins. This paper presents a novel approach for image analysis and retrieval based on complexity analysis. The approach consists of a texture segmentation step, performed by complexity analysis through BoxCounting fractal dimension, followed by the estimation of complexity of each computed region by multiscale fractal dimension. Experiments have been performed with MRI database in both pattern recognition and image retrieval contexts. Results show the accuracy of the method and also indicate how the performance changes as the texture segmentation process is altered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lange G.D., Marks W.B.: Fractal methods and results in cellular morphology—dimensions, lacunarity and multifractals. J. Neurosci. Methods 69(2), 123–136 (1996)

    Article  Google Scholar 

  2. Backes A.R., Bruno O.M.: Segmentação de texturas por análise de complexidade. INFOCOMP J. Comput. Sci. 5(1), 87–95 (2006)

    Google Scholar 

  3. Backes, A.R.: Implementation and comparison of fractal dimension estimative methods and their use on analysis and image processing. Master’s thesis, Universidade de São Paulo (2006)

  4. Bianconi F., Fernández A.: Evaluation of the effects of gabor filter parameters on texture classification. Pattern Recogn. 40(12), 3325–3335 (2007)

    Article  MATH  Google Scholar 

  5. Bracewell R.N.: The Fourier Transform and Its Applications, 3rd edn. McGraw-Hill, New York (2000)

    Google Scholar 

  6. Brigham E.O.: The Fast Fourier Transform and its applications. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  7. Bruno O.M., Plotze R.O., Falvo M., de Castro M.: Fractal dimension applied to plant identification. Inf. Sci. 178(12), 2722–2733 (2008)

    Article  Google Scholar 

  8. Castleman K.R.: Digital Image Processing. Prentice Hall, Englewood Cliffs (1996)

    Google Scholar 

  9. Chaudhuri B.B., Sarkar N.: Texture segmentation using fractal dimension. IEEE Trans. Pattern Anal. Mach. Intell. 17(1), 72–77 (1995)

    Article  Google Scholar 

  10. da Costa, L.F., Campos, A.G., Manoel, T.M.: An integrated approach to shape analysis: Results and perspectives. In: International conference on quality control by artificial vision, pp. 23–34. Cépaduès-Éditions (2001)

  11. da Costa L.F., Cesar R.M. Jr: Shape Analysis and Classification: Theory and Practice. CRC Press, Boca Raton (2000)

    Google Scholar 

  12. Daugman J., Downing C.: Gabor wavelets for statistical pattern recognition. In: Arbib, M.A.(eds) The Handbook of Brain Theory and Neural Networks, pp. 414–419. MIT Press , Cambridge (1995)

    Google Scholar 

  13. Van den Branden, R.: Introduction to Modern Information Retrieval. 2nd edn. In: Chowdhury, G.G. (ed.) Association for Literary and Linguistic Computing, March 15 (2007)

  14. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, London, 0-471-05669-3 (2001)

  15. Dunn D.F., Higgins W.E.: Optimal gabor filters for texture segmentation. IEEE Trans. Image Process. 4(7), 947–964 (1995)

    Article  Google Scholar 

  16. Ebert D., Musgrave K., Peachey D., Perlin K., : Texturing and Modeling: A Procedural Approach. Acadamic Press, London (1994)

    Google Scholar 

  17. Emerson C.W., Lam N.N., Quattrochi D.A.: Multi-Scale fractal analysis of image texture and patterns. Photogrammetr. Eng. Remote Sens. 65(1), 51–62 (1999)

    Google Scholar 

  18. Everitt B.S., Dunn G.: Applied Multivariate Analysis, 2nd edn. Arnold, London (2001)

    MATH  Google Scholar 

  19. Felipe, J.C., Traina, A.J.M., Traina, C. Jr.: Retrieval by content of medical images using texture for tissue identification. In: CBMS, p. 175. IEEE Comput. Soc. (2003)

  20. Fukunaga K.: Introduction to Statistical Pattern Recognition,2nd edn. Academic Press, London (1990)

    MATH  Google Scholar 

  21. Gagaudakis G., Rosin P.L.: Incorporating shape into histograms for CBIR. Pattern Recogn. 35(1), 81–91 (2002)

    Article  MATH  Google Scholar 

  22. Gonzalez R.C., Woods R.E.: Digital Image Processing, 2nd edn. Prentic-Hall, New Jersey (2002)

    Google Scholar 

  23. Haralick R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  24. Huang P.W., Dai S.K., Lin P.L.: Texture image retrieval and image segmentation using composite sub-band gradient vectors. J. Vis. Commun. Image Represent. 17(5), 947–957 (2006)

    Article  Google Scholar 

  25. Idrissa M., Acheroy M.: Texture classification using gabor filters. Pattern Recogn. Lett. 23(9), 1095–1102 (2002)

    Article  MATH  Google Scholar 

  26. Jain A.K., Farrokhnia F.: Unsupervised texture segmentation using Gabor filters. Pattern Recogn. 24(12), 1167–1186 (1991)

    Article  Google Scholar 

  27. Li, J., Sun, C., Du, Q.: A new box-counting method for estimation of image fractal dimension. In: International conference on image processing, pp. 3029–3032 (2006)

  28. Manjunath B.S., Ma W.-Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)

    Article  Google Scholar 

  29. Markkula M., Tico M., Sepponen B., Nirkkonen K., Sormunen E.: A test collection for the evaluation of content-based image retrieval algorithms—a user and task-based approach. Inf. Retr. 4(3/4), 275–293 (2001)

    Article  MATH  Google Scholar 

  30. Plotze R.O., Falvo M., Pádua J.G., Bernacci L.C., Vieira M.L.C., Oliveira G.C.X., Bruno O.M.: Leaf shape analysis using the multiscale Minkowski fractal dimension, a new morphometric method: a study with passiflora (passifloraceae). Can. J. Bot. 83(3), 287–301 (2005)

    Article  Google Scholar 

  31. Sengür A., Türkoglu I., Ince M.C.: Wavelet packet neural networks for texture classification. Exp. Syst. Appl. 32(2), 527–533 (2007)

    Article  Google Scholar 

  32. Traina, A.J.M., Castañón, C.A.B., Traina, C. Jr.: Multiwavemed: a system for medical image retrieval through wavelets transformations. In: CBMS, pp. 150–155. IEEE Computer Society (2003)

  33. Tricot C.: Curves and Fractal Dimension. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  34. Unser M.: Texture classification and segmentation using wavelet frames. IEEE Trans. Image Process. 4(11), 1549–1560 (1995)

    Article  Google Scholar 

  35. Wang L., Liu J.: Texture classification using multiresolution markov random field models. Pattern Recogn. Lett. 20(2), 171–182 (1999)

    Article  Google Scholar 

  36. Wu C.M., Chen Y.C., Hsieh K.S.: Texture features for classification of ultrasonic liver images. IEEE Trans. Med. Imaging 11, 141–152 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odemir M. Bruno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Backes, A.R., Bruno, O.M. Medical image retrieval based on complexity analysis. Machine Vision and Applications 21, 217–227 (2010). https://doi.org/10.1007/s00138-008-0150-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-008-0150-2

Keywords

Navigation