Skip to main content
Log in

Neighborhood linear embedding for intrinsic structure discovery

  • Short Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper, an unsupervised learning algorithm, neighborhood linear embedding (NLE), is proposed to discover the intrinsic structures such as neighborhood relationships, global distributions and clustering property of a given set of input data. This algorithm eases the process of intrinsic structure discovery by avoiding the trial and error operations for neighbor selection, and at the same time, allows the discovery to adapt to the characteristics of the input data. In addition, it is able to explore different intrinsic structures of data simultaneously, and the discovered structures can be used to compute manipulative embeddings for potential data classification and recognition applications. Experiments for image object segmentation are carried out to demonstrate some potential applications of the NLE algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Roweis S.T., Saul L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  2. Besada J.A., Molina J.M., Garcfa J., Berlanga A., Portillo J.: Aircraft identification integrated into an airport surface surveillance video system. Mach. Vis. Appl. 15, 164–171 (2004)

    Article  Google Scholar 

  3. Yang M.-H., Kriegman D.J., Ahuja N.: Detecting faces in images: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24, 34–58 (2001)

    Article  Google Scholar 

  4. Zhang C.S., Wang J., Zhao N.Y., Zhang D.: Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction. Pattern Recognit. 37, 325–336 (2004)

    Article  MATH  Google Scholar 

  5. Gu H.S., Ji Q.: Information extraction from image sequences of real-world facial expressions. Mach. Vis. Appl. 16, 105–115 (2005)

    Article  Google Scholar 

  6. Charif H.N., McKenna S.J.: Tracking the activity of participants in a meeting. Mach. Vis. Appl. 17, 83–93 (2006)

    Article  Google Scholar 

  7. Ge, S.S., Guan, F., Loh, A.P., Fua, C.H.: Feature representation based on intrinsic structure discovery in high dimensional space. In: The 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, pp. 3399–3404, 15–19 May (2006)

  8. Ge S.S., Fua C.H.: Queues and artificial potential trenches for multi-robot formations. IEEE Trans. Robot. 21, 646–656 (2005)

    Article  Google Scholar 

  9. Ge S.S., Lai X.C., Mamun A.A.: Boundary following and globally convergent path planning using instant goals. IEEE Trans. Systems Man Cybern. B Cybern. 35, 240–254 (2005)

    Article  Google Scholar 

  10. Jolliffe I.T.: Principal Component Analysis, 2nd edn. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  11. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Monographs on Statistics and Applied Probability, vol. 88, 2nd edn. CRC Press (2000)

  12. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A gloabal geometric framework for nonlinear dimensionality reduction, Science 290,2319–2323, December 2000 http://isomap.stanford.edu/datasets.html

  13. Belkin M., Niyogi P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  14. Seung H.S., Lee D.D.: The manifold ways of perception. Science 290, 2268–2269 (2000)

    Article  Google Scholar 

  15. Balasubramanian M., Schwartz E.L.: The isomap algorithm and topological stability. Science 295, 7a (2002)

    Article  Google Scholar 

  16. Horn R.A., Johnson C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  17. Zhang, Y.G., Zhang, C.S., Wang, S.J.: Clustering in knowledge embedded space. In: Title: The 14th European Conference on Machine Learning (ECML-2003), Cavtat, Croatia, Proceedings, September 2003. Lecture Notes in Computer Science, vol. 2837, pp. 480-491 (2003)

  18. Zhang Y.G., Zhang C.S., Zhang D.: Distance metric learning by knowledge embedding. Pattern Recognit 37, 161–163 (2004)

    Article  Google Scholar 

  19. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems (NIPS), vol. 14 (2002)

  20. Bach, F.R., Jordan, M.I.: Learning spectral clustering. In: Advances in Neural Information Processing Systems (NIPS) 16, (2004)

  21. Shi J., Malik J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuzhi Sam Ge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, S.S., Guan, F., Pan, Y. et al. Neighborhood linear embedding for intrinsic structure discovery. Machine Vision and Applications 21, 391–401 (2010). https://doi.org/10.1007/s00138-008-0169-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-008-0169-4

Keywords

Navigation