Skip to main content
Log in

Efficient borehole detection from single scan data

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This work presents a fast and robust method to precisely segment and locate boreholes of 4–50 mm diameter. The task is solved by scanning over the expected borehole location given by CAD data. Since the diameter of the borehole is known, this can be used to obtain a robust and fast algorithm suitable for industrial application. Single scan data is sufficient to segment the bore independent of bore chamfer type using a robust normal vector fit and a classification based on the Gaussian image. A sequential cylinder fit algorithm makes it possible to calculate the bore pose in less than one second. The experiments demonstrate that 120° of the borehole surface are sufficient for robust localization within 0.3 mm and 0.5° even in the presence of ghost points and notches in the boreholes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Attene M., Falcidieno B., Spagnuolo M.: Hierarchical mesh segmentation based on fitting primitives. Springer Vis. Comput. Int. J. Comput. Graph. 22(3), 181–193 (2006)

    Article  Google Scholar 

  2. Barcenas C., Griffin P.: Geometric tolerance verification using superquadrics. Kluwer IIE Trans. 33(12), 1109–1119 (2001)

    Google Scholar 

  3. Biegelbauer, G.: Efficient part feature and object detection by fitting geometric models to range image data. Phd thesis, Vienna University of Technology (2006)

  4. Biegelbauer, G., Vincze, M.: 3D vision-guided bore inspection system. In: Proceedings of the IEEE International Conference on Computer Vision Systems, pp. 22–22 (2006)

  5. Biegelbauer, G., Vincze, M., Nöhmayer, H., Eberst, C.: Sensor based robotics for fully automated inspection of bores at low volume high variant parts. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 5, pp. 4852–4857 (2004)

  6. Blaschke W.: Untersuchungen über die Geometrie der Speere in der Euklidischen Ebene. Monatshefte für Mathematik und Physik 21, 3–60 (1910)

    Article  MATH  MathSciNet  Google Scholar 

  7. do Carmo M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976) ISBN: 0132125897

    MATH  Google Scholar 

  8. Chaperon, T., Goulette, F.: Extracting cylinders in full 3D data using a random sampling method and the Gaussian image. In: Proceedings of the 6th International Fall Workshop: Vision, Modeling, and Visualization, pp. 35–42 (2001)

  9. Chen, N.S., Hartmann, G., Drue, S.: Circle location from intensity and range data using the singular value decomposition. In: 15th International Conference on Pattern Recognition, vol. 3, pp. 774–777 (2000)

  10. Chen Z., Huang J.B.: A vision-based method for the circle pose determination with a direct geometric interpretation. IEEE Trans. Robotics Auto. 15(6), 1135–1140 (1999)

    Article  Google Scholar 

  11. Eberst, C., Nöhmayer, H., Umgeher, G., Takagi, M.: Towards programming robots by gestures, test-case: Programming bore inspection for small lotsizes. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 333–338 (2006)

  12. Faber, P., Fischer, R.: Euclidean fitting revisited. In: Proceedings of the Internatinoal Workshop on Visual Forms, pp. 165–175 (2001)

  13. Fischler M., Bolles R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 26(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  14. Goulette, F.: Automatic CAD modeling of industrial pipes from range images. In: Proceedings of the IEEE International Conference on Recent Advances on 3-D Digital Imaging and Modeling, pp. 229–233 (1997)

  15. Hameiri E., Shimshoni I.: Estimating the principal curvatures and the Darboux frame from real 3-D range data. IEEE Trans. Syst. Man Cyber. 33(4), 626–637 (2003)

    Article  Google Scholar 

  16. Hoover A., Jean-Babtiste G., Jiang X., Flynn P., Bunke H., Goldgof D., Eggert D., Fitzgibbon A., Fisher R.: An experimental comparison of range image segmentation algorithms. IEEE Trans. Pattern Anal. Mach. Intel. 18(7), 1–17 (1996)

    Article  Google Scholar 

  17. Jiang X., Bunke H.: Edge detection in range images based on scan line approximation. Elsevier Comput. Vis. Image Understand. 73(2), 183–199 (1999)

    Article  Google Scholar 

  18. Kim J.S., Gurdjos P., Kweon I.S.: Geometric and algebraic constraints of projected concentric circles and their applications to camera calibration. IEEE Trans. Pattern Anal. Mach. Intel. 27(4), 637–642 (2005)

    Article  Google Scholar 

  19. Krivic J., Solina F.: Part-level object recognition using superquadrics. Elsevier Comput. Vis. Image Understand. 95(1), 105–126 (2004)

    Article  Google Scholar 

  20. Leonardis A., Jaklic A.: Superquadrics for segmenting and modeling range data. IEEE Trans. Pattern Anal. Mach. Intel. 19(11), 1289–1295 (1997)

    Article  Google Scholar 

  21. Marshall D., Lukacs G., Martin R.: Robust segmentation of primitives from range data in the presence of geometric degeneracy. IEEE Trans. Pattern Anal. Mach. Intel. 23(3), 304–314 (2001)

    Article  Google Scholar 

  22. Moré, J.: The Levenberg-Marquardt algorithm: Implementation and theory. Heidelberg: Springer Verlag; Numerical Analysis, Lecture Notes in Mathematics, pp. 105–116 (1995)

  23. Nocedal J., Wright S.: Numerical Optimization. Springer, Heidelberg (1999) ISBN:0-387-98793-2

    Book  MATH  Google Scholar 

  24. Peternell M.: Developable surface fitting to point clouds. Elsevier Comput. Aided Geomet. Design 21, 785–803 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Robertson, C., Fisher, R., Werghi, N., Ashbrook, A.: Fitting of constrained feature models to poor 3D data. In: Springer LNCS, Adaptive Computing Design Manufacture, pp. 149–160 (2000)

  26. Solina F., Bajcsy R.: Recovery of parametric models from range images: the case for superquadrics with global deformations. IEEE Trans. Pattern Anal. Mach. Intel. 12(12), 131–147 (1990)

    Article  Google Scholar 

  27. T. Varady P., Benko G.K.: Reverse engineering regular objects: simple segmentation and surface fitting. World Scient. Int. J. Shape Model. 4, 127–141 (1998)

    Article  Google Scholar 

  28. Taylor, G., Kleeman, L.: Robust range data segmentation using geometric primitives for robotic applications. In: Proceedings of the 9th International Conference on Signal and Image Processing, pp. 467–472 (2003)

  29. Trucco E., Verri A.: Introductory Techniques for 3D Computer Vision. Prentice-Hall, Englewood Cliffs (1998) ISBN: 0-13-261108-2

    Google Scholar 

  30. Yokoya N., Levine M.: Range image segmentation based on differential geometry: a hybrid approach. IEEE Trans. Pattern Anal. Mach. Intel. 11(6), 643–649 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Vincze.

Additional information

This work was supported by the Austrian Science Foundation Grant S09101-N04 and the European project FibreScope.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincze, M., Wohlkinger, W. & Biegelbauer, G. Efficient borehole detection from single scan data. Machine Vision and Applications 21, 825–840 (2010). https://doi.org/10.1007/s00138-009-0204-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-009-0204-0

Keywords

Navigation