Skip to main content
Log in

Illumination normalization of facial images by reversing the process of image formation

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Variations in illumination degrade the performance of appearance based face recognition. We present a novel algorithm for the normalization of color facial images using a single image and its co-registered 3D pointcloud (3D image). The algorithm borrows the physically based Phong’s lighting model from computer graphics which is used for rendering computer images and employs it in a reverse mode for the calculation of face albedo from real facial images. Our algorithm estimates the number of the dominant light sources and their directions from the specularities in the facial image and the corresponding 3D points. The intensities of the light sources and the parameters of the Phong’s model are estimated by fitting the Phong’s model onto the facial skin data. Unlike existing approaches, our algorithm takes into account both Lambertian and specular reflections as well as attached and cast shadows. Moreover, our algorithm is invariant to facial pose and expression and can effectively handle the case of multiple extended light sources. The algorithm was tested on the challenging FRGC v2.0 data and satisfactory results were achieved. The mean fitting error was 6.3% of the maximum color value. Performing face recognition using the normalized images increased both identification and verification rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adini Y., Moses Y., Ullman S.: Face recognition: the problem of compensating for changes in illumination direction. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 721–732 (1997)

    Article  Google Scholar 

  2. Lowe, D.G.: Object recognition from local scale-invariant features. In: International conference on computer vision, pp. 1150–1157 (1999)

  3. Chen, H., Belhumuer, P., Jacobs, D.: In search of illumination invariants. In: IEEE conference on computer vision and pattern recognition, pp. 254–261 (2000)

  4. Gao Y., Leung M.: Face recognition using line edge map. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 24(6), 764–779 (2002)

    Article  Google Scholar 

  5. Moghaddam B., Pentland A.: Probabalistic visual learning for object representation. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 19(7), 694–710 (1997)

    Article  Google Scholar 

  6. Weiss, Y.: Deriving intrinsic images from sequences. In: Proc. of Int. Conf. Computer Vision (2001)

  7. Jacobs, D., Belhumeur, P., Basri, R.: Comparing images under variable illumination. In: IEEE computer society conference on computer vision and pattern recognition, pp. 610–617 (1998)

  8. Liu, C., Wechsler, H.: A gabor feature classifier for face recognition. In: Proc. of Int. Conf. Computer Vision (2001)

  9. Duc B., Fischer S., Bigun J.: Face authentication with Gabor information on deformable graphs. IEEE Trans. Image Process. 8(4), 504–516 (1999)

    Article  Google Scholar 

  10. Lyons M., Budynek J., Akamatsu S.: Automatic classification of single facial images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 21(12), 1357–1362 (1999)

    Article  Google Scholar 

  11. Georghiades A., Belhumeur P., Kriegman D.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 23(6), 643–660 (2001)

    Article  Google Scholar 

  12. Belhumeur P., Kriegman D.: What is the set of images of an object under all possible illumination conditions?. Int. J. Comput. Vis. 28(3), 245–260 (1998)

    Article  Google Scholar 

  13. Ramamoorthi R., Hanrahan P.: On the relationship between radiance and irradiance: determining the illumination from images of a convex Lambertian object. J. Optic. Soc. Am. A 18(10), 2448–2459 (2001)

    Article  MathSciNet  Google Scholar 

  14. Basri R., Jacobs D.: Lambertian Reflectance and Linear Subspaces. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 25(2), 218–232 (2003)

    Article  Google Scholar 

  15. Sim, T., Kanade, T.: Combining models and exemplars for face recognition: an illuminating example. In: CVPR Wkshp Models vs Exemplars in Computer Vision (2001)

  16. Kumar, R., Jones, M., Marks, T.K.: Morphable reflectance fields for enhancing face recognition. In: IEEE conference on computer vision and pattern recognition (2010)

  17. Pizer S., Amburn E., Austin J., Cromartie R., Geselowitz A., Greer T., Romeny B., Zimmerman J., Zuiderveld K.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  18. Bovik A.: Handbook of Image and Video Processing. Academic Press, London (2000)

    MATH  Google Scholar 

  19. Shan, S., Gao, W., Cao, B., Zhao, D.: Illumination normalization for robust face recognition against varying lighting conditions. In: IEEE Workshop on AMFG (2003)

  20. Lee, C., Moghaddam, B.: A Practical face relighting method for directional light normalization. AMFG (2005)

  21. Riklin-Raviv T., Shashua A.: The quotient image: class-based re-rendering and recognition with varying illuminations. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 23(2), 129–139 (2001)

    Article  Google Scholar 

  22. Blanz V., Vetter T.: Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 25(9), 1063–1074 (2003)

    Article  Google Scholar 

  23. Zhang L., Samaras D.: Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 28(3), 351–363 (2006)

    Article  Google Scholar 

  24. Phillips P., Flynn P., Scruggs T., Bowyer K., Chang J., Hoffman K., Marques J., Min J., Worek W.: Overview of the face recognition grand challenge. IEEE Comput. Vis. Pattern Recognit. 1, 947–954 (2005)

    Google Scholar 

  25. Bowyer K., Chang K., Flynn P.: A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition. Comput. Vis. Image Understand. 101, 1–15 (2006)

    Article  Google Scholar 

  26. Husken, M., Brauckmann, M., Gehlen, S., Malsburg, C.: Strategies and benefits of fusion of 2D and 3D face recognition. In: IEEE conference on computer vision and pattern recognition (2005)

  27. Shafer S.: Using color to separate reflection components. COLOR Res. Appl. 10(4), 210–218 (1985)

    Article  Google Scholar 

  28. Phong B.: Illumination for computer generated images. Commun. ACM 18(6), 311–317 (1975)

    Article  Google Scholar 

  29. Foley J., Dam A., Feiner S., Hughes J.: Computer Graphics: Principles and Practice. Addison-Wesley, Reading (1990)

    Google Scholar 

  30. Wang, J., Yang, W., Acharya, R.: Color clustering techniques for color-content-based image retrieval from image databases. In: IEEE international conference on multimedia computing and systems, pp. 442–449 (1997)

  31. Sobottka K., Pitas I.: A novel method for automatic face segmentation, facial feature extraction and tracking. Signal Process. Image Commun. 12(3), 263–281 (1998)

    Article  Google Scholar 

  32. Phung S., Bouzerdoum A., Chai D.: Skin segmentation using color pixel classification: analysis and comparison. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 27(1), 148–154 (2005)

    Article  Google Scholar 

  33. Jain A., Murty M., Flynn P.: Data clustering: a review. Comput. Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  34. Mian, A., Bennamoun, M., Owens, R.: Automatic 3D face detection, normalization and recognition 3DPVT (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal R. Al-Osaimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Osaimi, F.R., Bennamoun, M. & Mian, A. Illumination normalization of facial images by reversing the process of image formation. Machine Vision and Applications 22, 899–911 (2011). https://doi.org/10.1007/s00138-010-0309-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-010-0309-5

Keywords

Navigation