Skip to main content

Advertisement

Log in

Micro crack detection with Dijkstra’s shortest path algorithm

  • Short Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

A package based on the free software R is presented which allows the automatic detection of micro cracks and corresponding statistical analysis of crack quantities. It uses a shortest path algorithm to detect micro cracks in situations where the cracks are surrounded by plastic deformations and where a discrimination between cracks and plastic deformations is difficult. In a first step, crack clusters are detected as connected components of pixels with values below a given threshold value. Then the crack paths are determined by Dijkstra’s algorithm as longest shortest paths through the darkest parts of the crack clusters. Linear parts of kinked paths can be identified with this. The new method was applied to over 2,000 images. Some statistical applications and a comparison with another free image tool are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicholson D.W., Ni P., Ahn Y.: Probabilistic theory for mixed mode fatigue crack growth in brittle plazes with random cracks. Eng. Fract. Mech. 66, 305–320 (2000)

    Article  Google Scholar 

  2. Ihara C., Tanaka T.: A stochastic damage accumulation model for crack initiation in high-cycle fatigue. Fatigue Fract. Eng. Mater. Struct. 23, 280–375 (2000)

    Google Scholar 

  3. Meyer S., Brückner-Foit A., Möslang A., Diegele E.: Stochastic simulation of fatigue damage accumulation in a martensitic steel. Mater. Wiss. Werksttech. 33, 275–279 (2002)

    Article  Google Scholar 

  4. Brückner-Foit A., Meyer S., Möslang A.: A stochastic simulation model for microcracks in a martensitic steel. Comp. Mater. Sci. 26, 102–110 (2003)

    Article  Google Scholar 

  5. Heron E.A., Walsh C.D.: A continuous latent spatial model for crack initiation in bone cement. Appl. Stat. 57, 25–42 (2008)

    MathSciNet  Google Scholar 

  6. Chiquet J., Limnios N., Eid M.: Piecewise deterministic Markov processes applied to fatigue crack growth modelling. J. Stat. Plan. Inference 139, 1657–1667 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jain A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, Upper Saddle River, NJ (1989)

    MATH  Google Scholar 

  8. Burger W., Burge M.J.: Digital Image Processing An Algorithmic Introduction Using Java. Springer, New York (2007)

    Google Scholar 

  9. O’Gorman L., Sammon M.J., Seul M.: Practical Algorithms for Image Analysis with CD-ROM. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  10. Iyer S., Sinha S.K.: A robust approach for automatic detection and segmentation of cracks in underground pipeline images. Image Vis. Comput. 23, 921–933 (2005)

    Article  Google Scholar 

  11. Fujita, Y., Mitani, Y., Hamamoto, Y.: A method for crack detection on a concrete structure. In: Proceedings of International Conference on Pattern Recognition, vol. 3, pp. 901–904 (2006)

  12. Purcell D.: Automatic crack detection. Sens. Rev. 3, 130–131 (1983)

    Google Scholar 

  13. Cheu, Y. F.: Automatic crack detection with computer vision and pattern recognition of magnetic particle indications. Mater. Eval. 42, 1506–1510, 1514 (1984)

    Google Scholar 

  14. Buckley M., Yang J.: Shortest-path extraction. Pattern Recogn. Lett. 18, 621–629 (1997)

    Article  Google Scholar 

  15. Fletcher D.I., Franklin F.J., Kapoor A.: Image analysis to reveal crack development using a computer simulation of wear and rolling contact fatigue. Fatigue Fract. Eng. Mater. Struct. 26, 957–967 (2003)

    Article  Google Scholar 

  16. Appleton B., Sun C.: Circular shortest paths by branch and bound. Pattern Recogn. 36, 2513–2520 (2003)

    Article  Google Scholar 

  17. Yamaguchi, T., Hashimoto,S.: Fast crack detection method for large-size concrete surface images using percolation-based image processing. Mach. Vis. Appl. doi:10.1007/s00138-009-0189-8 (2009)

  18. Wilcox, C.D., Dove, S.B., McDavid, W.D., Greer, D.B.: UTHSCSA Image Tool. Department of Dental Diagnostic Science, University of Texas Health Science Center, San Antonio. http://ddsdx.uthscsa.edu/dig/itdesc.html (2010)

  19. Russ J.C.: The Image Processing Handbook. Taylor & Francis Ltd, London (2006)

    Book  Google Scholar 

  20. Omer, I., Werman, M.: The bottleneck geodesic: computing pixel affinity. In: Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1901–1907 (2006)

  21. R Development Core Team: R—a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://cran.r-project.org/ (2010)

  22. Cormen T.H., Leiserson C.E., Rivest R.L., Stein C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  23. Tsai D.M.: A fast thresholding selection procedure for multimodal and unimodal histograms. Pattern Recogn. Lett. 16, 653–666 (1995)

    Article  Google Scholar 

  24. Ridler T.W., Calvard S.: Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man Cybern. SMC-8, 630–632 (1978)

    Google Scholar 

  25. Otsu N.: A threshold selection method from grey-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  26. Rosin PL.: Unimodal thresholding. Pattern Recogn. 34, 2083–2096 (2001)

    Article  MATH  Google Scholar 

  27. Sezgin M., Sankur B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13, 146–165 (2004)

    Article  Google Scholar 

  28. Medina-Carnicer R., Madrid-Cuevas F.J.: Unimodal thresholding for edge detection. Pattern Recogn. 41, 2337–2346 (2008)

    Article  MATH  Google Scholar 

  29. Alt H., Guibas LJ.: Discrete geometric shapes: matching, interpolation, and approximation. In: Sack, J.-R., Urrutia, J. (eds) Handbook of Computational Geometry, pp. 121–153. Elsevier, Amsterdam (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine H. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunkel, C., Stepper, A., Müller, A.C. et al. Micro crack detection with Dijkstra’s shortest path algorithm. Machine Vision and Applications 23, 589–601 (2012). https://doi.org/10.1007/s00138-011-0324-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-011-0324-1

Keywords

Navigation