Skip to main content
Log in

Cell morphology classification and clutter mitigation in phase-contrast microscopy images using machine learning

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

We propose using machine learning techniques to analyze the shape of living cells in phase-contrast microscopy images. Large scale studies of cell shape are needed to understand the response of cells to their environment. Manual analysis of thousands of microscopy images, however, is time-consuming and error-prone and necessitates automated tools. We show how a combination of shape-based and appearance-based features of fibroblast cells can be used to classify their morphological state, using the Adaboost algorithm. The classification accuracy of our method approaches the agreement between two expert observers. We also address the important issue of clutter mitigation by developing a machine learning approach to distinguish between clutter and cells in time-lapse microscopy image sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Kofahi O., Radke R.J., Goderie S.K., Shen Q., Temple S., Roysam B.: Automated cell lineage construction: a rapid method to analyze clonal development established with murine neural progenitor cells. Cell Cycle 5, 327–335 (2006)

    Article  Google Scholar 

  2. Boland, M., Markey, M., Murphy, R.: Classification of protein localization patterns obtained via fluorescence light microscopy. In: Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2, pp. 594–597 (1997)

  3. Bradhurst, C., Boles, W., Xiao, Y.: Segmentation of bone marrow stromal cells in phase contrast microscopy images. In: Proceedings of the 23rd International Conference Image and Vision Computing (IVCNZ), New Zealand, pp. 1–6 (2008)

  4. Dunn G.A., Brown A.F.: Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation. J. Cell Sci. 83, 313–340 (1986)

    Google Scholar 

  5. Dzyubachyk O., van Cappellen W.A., Essers J., Niessen W., Meijering E.: Advanced level-set based cell tracking in time-lapse fluorescence microscopy. IEEE Trans. Med. Imaging 29(3), 852–867 (2010)

    Article  Google Scholar 

  6. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Proceedings of the Second European Conference on Computational Learning Theory (EuroCOLT ’95), London, UK, pp. 23–37. Springer-Verlag, Berlin (1995)

  7. Halabi Y.S., SA Z., Hamdan F., Yousef K.H.: Modeling adaptive degraded document image binarization and optical character system. Eur. J. Sci. Res. 28(1), 14–32 (2009)

    Google Scholar 

  8. Han, J.W., Breckon, T.P., Randell, D.A., Landini, G.: The application of support vector machine classification to detect cell nuclei. Mach. Vis. Appl. (2010) (Published online)

  9. Horn B.K.P.: Robot Vision. The MIT Press, Cambridge (1986)

    Google Scholar 

  10. House, D., Walker, M.L., Wu, Z., Wong, J.Y., Betke, M.: Tracking of cell populations to understand their spatio-temporal behavior in response to physical stimuli. In: Proceedings of the IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), Miami, FL pp. 186–193 (2009)

  11. Hu M.-K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  12. Huang K., Murphy R.: Boosting accuracy of automated classification of fluorescence microscope images for location proteomics. BMC Bioinform. 5(1), 78 (2004)

    Article  Google Scholar 

  13. Jain, R., Kasturi, R., Schunk, B.: Machine Vision. McGraw Hill, (1995)

  14. Kachouie N.N., Fieguth P.W.: Extended-Hungarian-JPDA: Exact single-frame stem cell tracking. IEEE Trans. Biomed. Eng. 54(11), 2011–2019 (2007)

    Article  Google Scholar 

  15. Li K., Miller E.D., Chen M., Kanade T., Weiss L.E., Campbell P.G.: Cell population tracking and lineage construction with spatiotemporal context. Med. Image Anal. 12(5), 546–566 (2008)

    Article  Google Scholar 

  16. Mukherjee D., Ray N., Acton S.: Level set analysis for leukocyte detection and tracking. IEEE Trans. Image Process. 13(4), 562–572 (2004)

    Article  Google Scholar 

  17. Murphy R.F.: Communicating subcellular distributions. Cytometry Part A 77A(7), 686–692 (2010)

    Article  Google Scholar 

  18. Nanni L., Lumini A., Lin Y.-S., Hsu C.-N., Lin C.-C.: Fusion of systems for automated cell phenotype image classification. Expert Syst. Appl. 37(2), 1556–1562 (2010)

    Article  Google Scholar 

  19. Nath S., Palaniappan K., Bunyak F.: Cell segmentation using coupled level sets and graph-vertex coloring. In: Larsen, R., Nielsen, M., Sporring, J. (eds) Medical Image Computing and Computer-Assisted Intervention MICCAI 2006. Lecture Notes in Computer Science, vol. 4190, pp. 101–108. Springer, Berlin (2006)

    Chapter  Google Scholar 

  20. Olson A.C., Larson N.M., Heckman C.A.: Classification of cultured mammalian cells by shape analysis and pattern recognition. Proc. Nat. Acad. Sci. 77(3), 1516–1520 (1980)

    Article  Google Scholar 

  21. Ray N., Acton S.: Motion gradient vector flow: an external force for tracking rolling leukocytes with shape and size constrained active contours. IEEE Trans. Med. Imaging 23(12), 1466–1478 (2004)

    Article  Google Scholar 

  22. Rodenacker K., Bengtsson E.: A feature set for cytometry on digitized microscopic images. Anal. Cell. Pathol. 25, 1–36 (2003)

    Google Scholar 

  23. Ruusuvuori, P., Seppala, J., Erkkila, T., Lehmussola, A., Puhakka, J., Yli-Harja, O.: Efficient automated method for image-based classification of microbial cells. In: Proceedings of the 19th International Conference on Pattern Recognition 2008 (ICPR 2008), pp. 1–4 (2008)

  24. Viola P., Jones M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004)

    Article  Google Scholar 

  25. Wong J.Y., Leach J.B., Brown X.Q.: Balance of chemistry, topography, and mechanics at the cell-biomaterial interface: Issues and challenges for assessing the role of substrate mechanics on cell response. Surf. Sci. 570, 119–133 (2004)

    Article  Google Scholar 

  26. Yin, Z., Bise, R., Chen, M., Kanade T.: Cell segmentation in microscopy imagery using a bag of local Bayesian classifiers. In: From Nano to Macro: The 2010 IEEE International Symposium on Biomedical Imaging, pp. 125–128 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margrit Betke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theriault, D.H., Walker, M.L., Wong, J.Y. et al. Cell morphology classification and clutter mitigation in phase-contrast microscopy images using machine learning. Machine Vision and Applications 23, 659–673 (2012). https://doi.org/10.1007/s00138-011-0345-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-011-0345-9

Keywords

Navigation