Skip to main content
Log in

Finding best-fitted rectangle for regions using a bisection method

  • Short Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper, we have presented a new method for computing the best-fitted rectangle for closed regions using their boundary points. The vertices of the best-fitted rectangle are computed using a bisection method starting with the upper-estimated rectangle and the under-estimated rectangle. The vertices of the upper- and under-estimated rectangles are directly computed using closed-form solutions by solving for pairs of straight lines. Starting with these two rectangles, we solve for the best-fitted rectangle iteratively using a bisection method. The algorithm stops when the areas of the fitted rectangles remain unchanged during consecutive iterations. Extensive evaluation of our algorithm demonstrates its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosin P.L.: Measuring shape: ellipticity, rectangularity and triangularity. Mach. Vis. Appl. 14, 172–184 (2003)

    Google Scholar 

  2. Dondis D.: A Primer of Visual Literacy. MIT Press, Cambridge (1973)

    Google Scholar 

  3. Hilderbrandt S., Tromba A.: Mathematics and Optimal Form. Scientific American Library, St. Louis (1985)

    Google Scholar 

  4. Hyde S.T., Andersson S., Blum Z., Lidin S., Larsson K., Landh T., Ninham B.W.: The Language of Shape. Elsevier, Amsterdam (1997)

    Google Scholar 

  5. Gonzalez R.C., Woods R.E.: Digital Image Processing. Pearson Education, Asia (2001)

    Google Scholar 

  6. Sonka M., Hlavac V., Boyle R.: Image Processing, Analysis and Machine Vision, pp. 77–83. International Thomson Publishing Company, New York (1999)

    Google Scholar 

  7. Nakagawa Y., Rosenfeld A.: A note on polygonal and elliptical approximation of mechanical parts. Pattern Recognit. 11, 133–142 (1979)

    Article  Google Scholar 

  8. Sychra J.J., Bartels P.H., Tayler J., Bibbo M., Weld G.L.: Cytoplasmic and nuclear shape analysis for computerized cell recognition. Acta. Cytol. 20, 68–78 (1976)

    Google Scholar 

  9. Ellis, T.J.: Morphometric measurements in biomedical microscopy using boundary analysis, Ph. D. thesis, London University, London (1982)

  10. Chaudhuri D.: A simple least squares method for fitting of ellipse and circles depends on border points of a two-tone image and their 3-D extensions. Pattern Recognit. Lett. 31, 818–829 (2010)

    Article  Google Scholar 

  11. Bookstein F.: Fitting conic sections to scattered data. Comput Graph. Image Process. 9, 56–71 (1979)

    Article  Google Scholar 

  12. Forsyth D. et al.: Invariant descriptors for 3-D object recognition and pose. IEEE Trans. PAMI 13, 971–991 (1991)

    Article  Google Scholar 

  13. Rosin P.L.: A note on least square fitting of ellipses. Pattern Recognit. Lett. 14, 799–808 (1993)

    Article  MATH  Google Scholar 

  14. Werman M., Keren D.: A Bayesian method for fitting parametric and non-parametric models to noisy data. IEEE Trans. PAMI. 23(5), 528–534 (2001)

    Article  Google Scholar 

  15. Alt, H., Hurtado, F.: Packing convex polygons into rectangle boxes, In: Discrete and Computational Geometry—Japanese Conference, JCDCG. 2098, Lecture Notes in Computer Science, pp. 67–80. Springer, Berlin (2001)

  16. Kreveld, M.V., Speckmann, B.: Cutting a country for smallest square fit, In: Bose, P., Morin, P., (Eds.), ISAAC, Lecture Notes in Computer Science, vol. 2518, pp. 91–102. Springer, Berlin (2002)

  17. Suesse, H., Voss, K.: A new efficient algorithm for fitting of rectangles and squares, IEEE, pp. 809–812 (2001). http://Pandora.inf.uni-jena.de/papers/icip_2127.pdf

  18. Chaudhuri D., Samal A.: A simple method for fitting of bounding rectangle to closed regions. Pattern Recognit. 40, 1981–1989 (2007)

    Article  MATH  Google Scholar 

  19. Haralick R.M.: A measure of circularity of digital figures.. IEEE Trans. SMC 4, 394–396 (1974)

    MATH  Google Scholar 

  20. Belson M., Dudley A.W., Ledley R.S.: Automatic computer measurements of neurons. Pattern Recognit. 1, 119–128 (1968)

    Article  Google Scholar 

  21. Proffitt D.: The measurement of circularity and ellipticity on a digital grid. Pattern Recognit. 15(5), 383–387 (1982)

    Article  Google Scholar 

  22. Proffitt D.: Normalization of discrete planar objects. Pattern Recognit. 15, 137–145 (1982)

    Article  Google Scholar 

  23. Chaudhuri D.: Object area-based method for elliptic and circular fit of a two-tone image. Def. Sci. J. 58(6), 710–714 (2008)

    Google Scholar 

  24. Chaudhuri D., Agrawal A.: A new split-and-merge segmentation technique by using bimodality detection approach. Def. Sci. J. 60(3), 290–301 (2010)

    Google Scholar 

  25. Gander W., Golub G.H., Strebel R.: Least squares fitting of circles and ellipses. BIT 34, 558–578 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Watson G.A.: Least squares fitting of parametric surfaces to measured data. ANZIAM J. 42(E), C68–C95 (2000)

    Google Scholar 

  27. Parui S. K., Dutta Majumder D.: A new definition of shape similarity. Pattern Recognit. Lett. 1, 37–42 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Samal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhuri, D., Kushwaha, N.K., Sharif, I. et al. Finding best-fitted rectangle for regions using a bisection method. Machine Vision and Applications 23, 1263–1271 (2012). https://doi.org/10.1007/s00138-011-0348-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-011-0348-6

Keywords

Navigation