Skip to main content
Log in

An algorithm to estimate the crown patterns of diamonds based on machine vision

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper, we describe an algorithm that estimates the cut quality of the crown patterns of diamonds based on machine vision. To accurately extract the features of the edges of diamonds in complicated diamond images, a strategy based on multi-scale decomposition is employed. Using an enhanced Eigen space method, the orientation of the diamond can be roughly estimated. From the traditional least squares distance method, we derive the conditions of the least squares distance weighted by wavelet transform modulus. Then, the problem of diamond-edge feature extraction is transformed into a virtual control process through building a virtual girder truss model (VGTM) and a virtual attraction field (VAF). Using two stages, rough feature extraction and refined feature extraction, all the desired diamond edges can be accurately located by the virtual beams in the VGTM. Then, the cut quality of the diamond’s crown pattern can be effectively estimated according to the feature extraction results. The algorithm is demonstrated with a real machine vision system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basu M.: Gaussian-based edge-detection methods—a Survey. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 32(3), 252–260 (2002)

    Article  Google Scholar 

  2. Pellegrino F.A., Vanzella W., Torre V.: Edge detection revisited. IEEE Trans. Syst. Man Cybern. Part B: Cybernetics 34(3), 1500–1518 (2004)

    Article  Google Scholar 

  3. Canny J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  4. Llados J., Lopez-Krahe J., Marti E.: A system to understand hand-drawn floor plans using subgraph isomorphism and Hough transform. Mach. Vis. Appl. 10(3), 150–158 (1997)

    Article  Google Scholar 

  5. Mannan M.A., Mian Z., Kassim A.A.: Tool wear monitoring using a fast Hough transform of images of machined surfaces. Mach. Vis. Appl. 15(3), 156–163 (2004)

    Article  Google Scholar 

  6. Illingworth J., Kittler J.: A survey of the Hough transform. Comput. vis. Graph. Image process. 44(1), 87–116 (1988)

    Article  Google Scholar 

  7. Duda R.O., Hart Peter E.: Use of the Hough Transform to detect lines and curves in pictures. Commun. ACM. 15(1), 11–15 (1972)

    Article  Google Scholar 

  8. Palmer P.L., Kittler J., Petrou M.: An Optimizing Line Finder Using a Hough Transform Algorithm. Computer Vision and Image under standing. 67(1), 1–23 (1997)

    Article  Google Scholar 

  9. Niblack W., Petkovic D.: On improving the accuracy of the Hough transform. Mach. Vis. Appl. 3(2), 87–106 (1990)

    Article  Google Scholar 

  10. Prakash, J., Meenavathi, M.B., Rajesh K.: Linear Feature Extraction using combined approach of Hough transform, Eigen values and Raster scan algorithms.In: Intelligent Sensing and Information Processing, ICISIP. pp. 65–70 (2006)

  11. Aggarwal N., Karl W.C.: Line detection in images through regularized hough transform. IEEE Trans. Image Process. 15(3), 582–591 (2006)

    Article  Google Scholar 

  12. Tsai F.C.D.: A probabilistic approach to geometric hashing using line features. Comput. Vis. Image Underst. 63(1), 182–195 (1996)

    Article  Google Scholar 

  13. ISAAC WElSS.: Line fitting in a noisy image. IEEE Trans. Pattern Anal. Mach. Intell. 11(3), 325–329 (1989)

    Article  Google Scholar 

  14. Qjidaa H., Radouane L.: Robust line fitting in a noisy image by the method of moments. IEEE Trans. Pattern Anal. Mach. Intell. 21(11), 1216–1223 (1999)

    Article  Google Scholar 

  15. Woo D.-M., Han S.-S., Park D.-C., Nguyen Q.-D.: Extraction of 3D line segment using digital elevation data. Congr. Image Signal Process. 2(2), 27–30 (2008)

    Google Scholar 

  16. Gruen A.W.: Adaptive least square correlation: a powerful image matching technique. South Afr. J. Photogramm. Remote Sens. 3(14), 175–187 (1985)

    Google Scholar 

  17. Park S. H.: A line feature matching technique based on an Eigenvector approach. Comput. Vis. Image Underst. 77(3), 263–283 (2000)

    Article  Google Scholar 

  18. Zhang Y., Zhang Z., Zhang J.: Automatic measurement of industrial sheetmetal parts with CAD data and non-metric image sequence. Comput. Vis. Image Underst. 102, 52–59 (2006)

    Article  Google Scholar 

  19. Mallat, S.: Multifrequency Channel Decompositions of Images and Wavelet Models. IEEE Trans. Acoust. Speech Signal Process. 37(12) (1989)

  20. Mallat, S., Zhong, S.: Characterization of signals from multiscale edges. IEEE Trans. Pattern Anal. Mach. Intell. 14(7) (1992)

  21. Amano T., Hiura S., Yamaguti A., Inokuchi S.: Eigen space approach for a pose detection with range images. Proc. 13th Int. Conf. Pattern Recogn. 1, 622–626 (1996)

    Article  Google Scholar 

  22. Murase H., Nayar S.K.: Illumination planning for object recognition using parametric eigenspaces. IEEE Trans. Pattern Anal. Mach. Intell. 16(12), 1219–1227 (1994)

    Article  Google Scholar 

  23. Otsu N.: A threshold selection method from Gray-Level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  24. Unser, M., Aldroubi, A., Eden, M.: B-spline Signal processing: Part I-Theory. IEEE Trans. Signal Process. 41(2) (1993)

  25. Unser M., Aldroubi A., Eden M.: B-spline signal processing: Part II-efficient design and application. IEEE Trans. Signal Process. 41(2), 834–848 (1993)

    Article  MATH  Google Scholar 

  26. Wang, A., Zhang, X., Chen, Y., Wu, J.: B spline wavelet and SVM threshold based medical image edge extraction. IEEE Int. Symp. Ind. Electron. 1628–1632 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Z., Liao, J. & Cai, L. An algorithm to estimate the crown patterns of diamonds based on machine vision. Machine Vision and Applications 23, 197–215 (2012). https://doi.org/10.1007/s00138-011-0354-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-011-0354-8

Keywords

Navigation