Skip to main content
Log in

Combinatorial photometric stereo and its application in 3D modeling of melanoma

  • Short Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This article concerns a new type of photometric stereo algorithm for which outliers such as highlights and shadows, including attached and cast shadow, are mixed with Lambertian data. The underlying motivation behind this algorithm is very simple: an axial symmetrical setup in 6-light photometric stereo can be used to offer advantages. We investigate why an axial symmetrical setup is useful and how it can be used to improve standard photometric stereo. The main result is summarized as a combinatorial photometric stereo algorithm which embeds a non-Lambertian detection procedure. To apply this algorithm, it involves three steps. First, it combines a group of reflectance intensities to make five virtual images, whose equivalence is guaranteed due to the axial symmetrical setup of the 6-source photometric stereo system. Second, comparison between these virtual images generates a five by five skew-symmetric matrix. The Frobenius norm of this matrix is then employed as an index to determine whether there is a non-Lambertian pixel present among the six pixels. Finally, after identification of non-Lambertian pixels, standard photometric stereo is performed to realize 3D modeling. Validation of this algorithm has been conducted with both synthetic and real images. The real images were obtained from a newly designed 3D imaging device, the Skin Analyzer, for clinical inspection of melanoma. Experimental study shows that combinatorial photometric stereo gives promising results in suppressing shadows and highlights, while improving 3D reconstruction results. Furthermore, error analysis illustrates how to determine an appropriate threshold value to enable the algorithm to achieve optimal performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Woodham, R.: Photometric stereo: a reflectance map technique for determining surface orientation from image. In: Proceedings of the SPIE (1978)

  2. Coleman E.N., Jain R.: Obtaining 3-dimensional shape of textured and specular surfaces using four-source photometry. Comput. Graph. Image Underst. 18, 309–328 (1982)

    Article  Google Scholar 

  3. Nayar S.K., Ikeuchi K., Kanade T.: Determining shape and reflectance of hybrid surfaces by photometric sampling. IEEE Trans. Robot. Autom. 6(4), 418–430 (1990)

    Article  Google Scholar 

  4. Belhumeur, P.N., Kriegman, D.J.: What is the set of images of an object under all possible lighting conditions? IEEE Int. Conf. Comput. Vis. Pattern Recognit. (1996)

  5. Belhumeur P.N., Kriegman D.J., Yuille A.: The bas-relief ambiguity. Int. J. Comput. Vis. 35(1), 33–44 (1991)

    Article  Google Scholar 

  6. Mukaigawa Y., Ishii Y., Shakunaga T.: Analysis of photometric factors based on photometric linearization. J. Opt. Soc. Am. A 24(10), 3326–3334 (2007)

    Article  Google Scholar 

  7. Hayakawa H.: Photometric stereo under a light source with arbitrary motion. J. Opt. Soc. Am. A 11(11), 3079–3089 (1994)

    Article  MathSciNet  Google Scholar 

  8. Basri R., Jacobs D. et al.: Photometric stereo with general, unknown lighting. Int. J. Comput. Vis. 72(3), 239–257 (2007)

    Article  Google Scholar 

  9. Basri R., Jacobs D.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25, 218–233 (2003)

    Article  Google Scholar 

  10. Hertzmann A., Seitz S.: Example-based photometric stereo: shape reconstruction with general, varying BRDFs. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1254–1264 (2005)

    Article  Google Scholar 

  11. Zhou Z., Tan P.: Ring-Light Photometric Stereo. In: Daniilidis, K., Maragos, P., Paragios, N. (eds) Computer vision—ECCV 2010, pp. 265–279. Springer, Berlin (2010)

    Chapter  Google Scholar 

  12. Tagare H., deFigueiredo R.: A theory of photometric stereo for a class of diffuse non-Lambertian surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 13(2), 133–152 (1991)

    Article  Google Scholar 

  13. Tan P., Lin S., Quan L.: Subpixel photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1460–1471 (2008)

    Article  Google Scholar 

  14. Zhou S.K., Aggarwal G., Chellappa R., Jacobs D.W.: Appearance Characterization of Linear Lambertian Objects, Generalized Photometric Stereo, and Illumination-Invariant Face Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 230–245 (2007)

    Article  Google Scholar 

  15. Alldrin, N.G., Kriegman D.J.: Toward reconstructing surfaces with arbitrary isotropic reflectance: a stratified photometric stereo approach. In: IEEE 11th International Conference on Computer Vision (2007)

  16. Holroyd M., Holroyd M. et al.: A photometric approach for estimating normals and tangents. ACM Trans. Graph. 27(5), 1–9 (2008)

    Article  Google Scholar 

  17. Park, J.S., Tou, J.T.: Highlight separation and surface orientations for 3-D specular objects. In: Proceedings of 10th International Conference on Pattern Recognition, NJ USA, vol. 1, pp. 331–335 (1990)

  18. Chandraker M.K., Agarwal S., Kriegman D.J.: ShadowCuts: Photometric Stereo with Shadows. CVPR, Minneapolis (2007)

    Google Scholar 

  19. Zhu S.C., Yuille A.: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(9), 884–900 (1996)

    Article  Google Scholar 

  20. Yu Y.H., Chang J.T.: Shadow graphs and 3D texture reconstruction. Int. J. Comput. Vis. 62(1–2), 35–60 (2005)

    Google Scholar 

  21. Barsky S., Petrou M.: The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1239–1252 (2003)

    Article  Google Scholar 

  22. Sun J., Smith M., Smith L., Midha S., Bamber J.: Object Surface recovery using a multi-light photometric stereo technique for non-Lambertian surfaces subject to shadows and specularities. Image Vis. Comput. 25, 1050–1057 (2007)

    Article  Google Scholar 

  23. Miyazaki D., Hara K., Ikeuchi K.: Median Photometric Stereo as Applied to the Segonko Tumulus and Museum objects. Int. J. Comput. Vis. 86(2–3), 229–242 (2010)

    Article  Google Scholar 

  24. Higo, T., Matsushita Y., et al.: Consensus photometric stereo. In: IEEE International Conference on Computer Vision and Pattern Recognition (2010)

  25. Sun J., Smith M., Smith L., Coutts L., Dabis R., Harland C., Bamber J.: Reflectance of human skin using colour photometric stereo: with particular application to pigmented lesion analysis. Skin Res. Technol. 14(2), 173–179 (2007)

    Article  Google Scholar 

  26. Shashua, A.: Geometry and Photometry in 3D Visual Recognition. Massachusetts Institute of Technology, Cambridge (1992)

  27. Fischler M., Bolles R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  28. Frankot R., Chellappa R.: A method for enforcing integrability in shape from shading algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 439–451 (1988)

    Article  MATH  Google Scholar 

  29. Wu, L., Ganesh, A., et al.: Robust photometric stereo via low-rank matrix completion and recovery. In: Proceedings of the ACCV (2010)

  30. Marsden J.E., Tromba A.J.: Vector Calculus (4th edn.). W. H. Freeman and Company, San Francisco (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Smith, M.L., Smith, L. et al. Combinatorial photometric stereo and its application in 3D modeling of melanoma. Machine Vision and Applications 23, 1029–1045 (2012). https://doi.org/10.1007/s00138-011-0356-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-011-0356-6

Keywords

Navigation