Skip to main content
Log in

Low-cost sensor to detect overtaking based on optical flow

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

The automotive industry invests substantial amounts of money in driver-security and driver-assistance systems. We propose an overtaking detection system based on visual motion cues that combines feature extraction, optical flow, solid-objects segmentation and geometry filtering, working with a low-cost compact architecture based on one focal plane and an on-chip embedded processor. The processing is divided into two stages: firstly analog processing on the focal plane processor dedicated to image conditioning and relevant image-structure selection, and secondly, vehicle tracking and warning-signal generation by optical flow, using a simple digital microcontroller. Our model can detect an approaching vehicle (multiple-lane overtaking scenarios) and warn the driver about the risk of changing lanes. Thanks to the use of tightly coupled analog and digital processors, the system is able to perform this complex task in real time with very constrained computing resources. The proposed method has been validated with a sequence of more than 15,000 frames (90 overtaking maneuvers) and is effective under different traffic situations, as well as weather and illumination conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gavrila, D., Kunert M., Lages, U.: A multi-sensor approach for the protection of vulnerable traffic participants—the PROTECTOR project. In: IEEE Instrumentation and Measurement Technology Conference, vol 3, pp. 2044–2048. Budapest, Hungary (2001)

  2. Díaz J., Ros E., Rotter A., Muehlenberg M.: Lane change decision aid system based on motion driven vehicle tracking. IEEE Trans. Veh. Technol. 57(5), 2736–2746 (2008)

    Article  Google Scholar 

  3. Mota S., Ros E., Ortigosa E.M., Pelayo F.J.: Bio-inspired motion detection for blind spot overtaking monitor. Int. J. Robot. Autom. 19(4), 190–196 (2004)

    Google Scholar 

  4. Song, K.T., Chen, H. Y.: Lateral driving assistance using optical flow and scene analysis. In: Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, pp. 624–9 (2007)

  5. Sakurai, K., Kyo, S., Okazaki S.: Implementation of overtaking vehicle detection using the IMAPCAR highly parallel image processor. In: Proc. of ITS Congress (2006)

  6. Alessandretti G., Broggi A., Cerri P.: Vehicle and guard rail detection using radar and vision data fusion. IEEE Trans. Intell. Transp. Syst. 8(1), 95–105 (2007)

    Article  Google Scholar 

  7. Mobileye, N.V.: Blind spot detection and lane change assist (BSD/LCA). http://www.mobileye.com/default.asp?PageID=226. Accessed 23 Jan 2009

  8. Volvo BLIS System http://www.mynrma.com.au/blis.asp. Accessed 23 Jan 2009

  9. Ficosa Digital Blind Spot Detector. http://www.ficosa.com/wps/portal/corporate?WCM_GLOBAL_CONTEXT=WebPublica_ES/Productos/ListadoGrupoProductos/VISIONSystems/ListadoProductosVISIONSystem/Producto2VisionSystemsBSD. Accessed 23 Jan 2009

  10. Liu, W., Wen, X., Duan, B., Yuan, H., Wang, N.: Rear vehicle detection and tracking for lane change assist. In: Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, pp. 252–257 (2007)

  11. Bertozzi, M., Broggi, A.: Real-time lane and obstacle detection on the gold system. In: IEEE Intelligent Vehicle Symposium, pp. 213–218 (1996)

  12. Blanc, N., Steux, B., Hinz, T.: LaRASideCam - a fast and robust vision-based blindspot detection system. In: Proc. IEEE Intelligent Vehicles Symp., pp. 480–485 Istanbul, Turkey, 13–15 Jun (2007)

  13. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. Seventh International Joint Conference on Artificial Intelligence, pp. 674–679. Vancouver, Canada (1981)

  14. Welch, G., Bishop, G.: An introduction to the Kalman filter. Dept. Comput. Sci., Univ. North Carolina Chapel Hill, Chapel Hill, NC, Tech. Rep. TR 95-041 (2002)

  15. Hassenstein, B., Reichardt, W.: Systemtheoretische Analyse der Zeit-Reihenfolgen und Vorzeichenauswertung bei der ewegungsperzeption des Rüsselkäfers Chlorophanus, Zeitschrift für Naturforschung 11b 513–524 (1956)

  16. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of 4th Alvery Vision Conference on Manchester, pp. 189–192 (1988)

  17. Song, K.T., Huang, J. H.: Fast optical flow estimation and its application to real-time obstacle avoidance. In: Proc. Of 2001 IEEE ICRA, pp. 2891–2896. Seoul, Korea (2001)

  18. Broggi, A., Conte, G., Gregoretti, F., Sansoè, C., Reyneri, L. M.: The evolution of the PAPRICA system. Integr. Comput. Aided Eng. J. 4(1) (1996) (special issue on massively parallel computing)

  19. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

  20. Rodríguez-Vázquez, Á., Domínguez-Castro, R., Jiménez-Garrido, F.: The Eye-RIS CMOS vision system, analog circuit design: sensors, actuators and power drivers, pp. 15–32. Springer, Berlin (2008)

  21. Dudek P., Carey S.J.: A general-purpose 128 × 128 SIMD processor array with integrated image sensor. Electron. Lett. 42(12), 678–679 (2006)

    Article  Google Scholar 

  22. Dudek, P., W.Barr, D.R., Lopich, A., Carey, S.J.: Demonstration of real-time image processing on the SCAMP-3 vision system. In: IEEE International Workshop on Cellular Neural Networks and their Applications, CNNA 2006, pp. 13–13. Istanbul, August 2006

  23. Foldesy P., Zarandy A., Rekeczky C.: Configurable 3D-integrated focal-plane cellular sensor-processor array architecture. Int. J. Circuit Theory Appl. 36(5–6), 573–588 (2008)

    Article  Google Scholar 

  24. Zarándy, Á., Rekeczky, C., Földesy, P.: Analysis of 2D operators on topographic and non-topographic processor architectures. CNNA 2008. In: 11th international workshop on cellular neural networks and their applications. Santiago de Compostela, IEEE (2008)

  25. Guzmán, P., Díaz, J., Agís, R., Ros, E.: Optical flow in a smart sensor based on hybrid analog-digital architecture. Sensors 10, 2975–2994 (2010) (special issue on motion sensors)

    Google Scholar 

  26. Davis L.S.: A survey of edge detection techniques. Comput. Graph. Image Process. 4(3), 248–270 (1975)

    Article  Google Scholar 

  27. Liu H., Hong T., Herman M., Camus T., Chellapa R.: Accuracy vs. efficiency trade-off in optical flow algorithms. Comput. Vis. Image Underst. 72, 271–286 (1998)

    Article  Google Scholar 

  28. Gat I., Benady M., Shashua A.: A monocular vision advance warning system for the automotive aftermarket. SAE Trans. 114(7), 403–410 (2005)

    Google Scholar 

  29. de la Escalera, A.: Visión por computador: fundamentos y métodos. Prentice Hall, Englewood Cliffs (2001)

  30. Finlay D.J., Dodwell P.C., Caelli T.M.: The wagon-wheel effect. Perception 13, 237–248 (1984)

    Article  Google Scholar 

  31. Green M.: How long does it take to stop? Methodological analysis of driver perception-brake times. Transp. Hum. Factors 2(3), 195–216 (2000)

    Article  Google Scholar 

  32. I-Car: blind spot object detection systems. http://www.i-car.com/pdf/advantage/online/2009/101309.pdf. Accessed 23 Jan 2009

  33. Volvo Club: Volvo S60. Press Information. http://www.volvoclub.org.uk/press/pdf/presskits/S60_MY2005.pdf. Accessed 23 Jan 2009

  34. O’Malley, R., Glavin, M., Jones, E.: Vehicle detection at night based on tail-light detection. In: 1st International Symposium on Vehicular Computing Systems, Trinity College, Dublin, July 2008

  35. Alcantarilla, P.F., Bergasa, L.M., Jimenez, P., Sotelo, M.A., Parra, I., Fernandez, D.: Night time vehicle detection for driving assistance lightBeam controller. In: IEEE Intelligent Vehicles Symposium. Eindhoven, The Netherlands, 4–6 June 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Guzmán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzmán, P., Díaz, J., Ralli, J. et al. Low-cost sensor to detect overtaking based on optical flow. Machine Vision and Applications 25, 699–711 (2014). https://doi.org/10.1007/s00138-011-0392-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-011-0392-2

Keywords

Navigation