
DETECTING BEHAVIORAL ZONES IN LOCAL AND
GLOBAL CAMERA VIEWS

A Thesis

Presented in Partial Fulfillment of the Requirements for

the Degree Master of Science in the

Graduate School of The Ohio State University

By

Matthew Nedrich, B.S.

Graduate Program in Computer Science and Engineering

The Ohio State University

2011

Master’s Examination Committee:

Prof. James W. Davis, Adviser

Prof. Richard Parent

c© Copyright by

Matthew Nedrich

2011

ABSTRACT

We present a complete end-to-end framework to detect and exploit entry and exit re-

gions in video using behavioral models for object trajectories. We first describe how weak

tracking data (short and frequently broken tracks) may be utilized to hypothesize entry and

exit regions by constructing the weak tracks into a more usable set of “entity” tracks. The

entities provide a more reliable set of entry and exit observations which are clustered to

produce a set of potential entry and exit regions within a scene. A behavior-based reliabil-

ity metric is then used to score each potential entry and exit region, and unreliable regions

are removed. Using the detected regions, we then present a method to learn scene occlu-

sions and causal relationships between entry-exit pairs. An extension is also presented that

allows our entry/exit detection algorithm to detect global entry and exit regions with respect

to the viewspace of a pan-tilt-zoom camera. We provide thorough evaluation of our local

and viewspace region discovery approaches, including quantitative experiments, and com-

pare our local method to existing approaches. We also provide experimental results for our

region exploitation methods (occlusion discovery and entry → exit region relationships),

and demonstrate that they may be incorporated to aid in tasks such as tracking and anomaly

detection.

ii

For my parents

iii

ACKNOWLEDGMENTS

Beginning as an undergraduate student, I have had the pleasure of working with my

advisor, James W. Davis. His direction and inspiration have guided me though my graduate

school journey. I will never forget the years spent working under him, constructing my

intellectual foundation, and learning how to become a true computer scientist.

I would like to thank the Center for Surveillance Research (CSR), and the Air Force

Research Lab (AFRL) for their support throughout my time in graduate school.

Additionally, I have had the opportunity of working beside a great group of peers,

without whom I would not have the success that I have today. First and foremost, I would

like to thank Karthik Sankaranarayanan, whose patient mentoring, and sincere friendship

have influenced my intellectual growth by an invaluable amount. I would also like to thank

Kevin Streib for continually challenging me and my work.

Most importantly, I would like to thank my loving family for everything that have done

for me, and my wonderful fiancee Sara, without whose companionship I would not be the

person I am today.

iv

VITA

November 26, 1985 . Born in Seven Hills, OH, USA

March, 2009 . B.S., Computer Science and Engineering
The Ohio State University, Columbus,
OH, USA

PUBLICATIONS

Conference Papers and Books

M. Nedrich and J. Davis, “Learning Scene Entries and Exits using Coherent Motion Re-
gions”, International Symposium on Visual Computing (ISVC), November 2010.

Technical Reports

M. Nedrich, K. Sankaranarayanan, and J. Davis, “Geo-registration and Interactive Con-
trol for Distributed Camera Networks”, OSU Dept. Computer Science and Engineering
Technical Report OSU-CISRC-6/10-TR13, 2010.

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Studies in Artificial Intelligence and Computer Vision: Prof. James W. Davis

v

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iii

Acknowledgments . iv

Vita . v

List of Tables . ix

List of Figures . x

Chapters:

1. Introduction . 1

1.1 Motivation . 1
1.2 Contribution and Significance . 2
1.3 Proposed Approach . 5

1.3.1 Weak Tracking . 5
1.3.2 Entry and Exit Region Detection 7

1.4 Organization . 8

2. Related Work . 9

2.1 Weak Tracking . 9
2.2 Entry and Exit Discovery . 10
2.3 Entry and Exit Exploitation . 11
2.4 Camera Viewspace Entry and Exits . 12

vi

3. System Overview . 14

3.1 Local View Region Detection . 14
3.2 Camera Viewspace Region Detection 15
3.3 Method Applications . 15

4. Entity Detection and Tracking . 19

4.1 Entity Discovery . 19
4.2 Entity Tracking . 21

5. Entry and Exit Region Detection . 23

5.1 Region Shape . 23
5.2 Region Reliability . 26

6. Exploiting Entry and Exit Regions . 31

6.1 Exit→ Exit Occlusion Relationships 31
6.2 Entry→ Exit Non-Pathway Relationships 34

7. Extension To Camera Viewspace . 39

7.1 Camera Geometry . 40
7.2 Viewspace Data Collection . 42
7.3 Viewspace Region Detection . 43
7.4 Using the Viewspace Model in a Local View 48
7.5 Viewspace Region Exploitation . 50

8. Experiments and Results . 53

8.1 Region Detection Experiments . 53
8.2 Ground Truth Evaluation . 61

8.2.1 Region Shape Evaluation . 63
8.3 Region Exploitation Experiments . 68

8.3.1 Occlusion Discovery . 71
8.3.2 Entry-Exit Relationships . 71
8.3.3 Region Exploitation Applications 73

8.4 Camera Viewspace Experiments . 76
8.4.1 Viewspace Region Detection 76
8.4.2 Local vs. Viewspace Approach Comparison 79

8.5 World Space Entry/Exit Regions . 81

vii

8.6 Limitations . 86
8.6.1 Entities . 86
8.6.2 Entry and Exit Region Detection 86
8.6.3 Occlusion Detection and Entry→ Exit Region Relationships . . 87

9. Conclusion and Future Work . 89

9.1 Contributions . 91
9.2 Future Work . 92

9.2.1 Adaptive Clustering . 92
9.2.2 Adaptive Viewspace Sampling 93
9.2.3 Online Update . 93

Bibliography . 95

viii

LIST OF TABLES

Table Page

8.1 Data collection durations in minutes for Scenes 1-7. 55

8.2 Results for Entry 1 Synthetic Ground Truth Experiment. Note, F1, preci-
sion and recall scored are the average over five trials 68

8.3 Results for Entry 2 Synthetic Ground Truth Experiment. Note, F1, preci-
sion and recall scored are the average over five trials. 69

8.4 Results for Entry 3 Synthetic Ground Truth Experiment. Note, F1, preci-
sion and recall scored are the average over five trials. 70

8.5 Results for Entry and Exit 3 Synthetic Ground Truth Experiment, object
count varied. Note, F1, precision and recall scored are the average over ten
trials for object quantities 25-500. The values for 1000 objects represent
the full set of data (which the other object amounts were sampled from). . . 70

8.6 Activity probabilities between entries (rows) and exits (columns) for Scene
5. Region labels shown in Fig. 8.7(a). 75

8.7 Activity probabilities between entries (rows) and exits (columns) for Scene
3. Region labels shown in Fig. 8.7 (b). 75

8.8 Data collection durations for our global region detection approach in min-
utes for cameras 1-3. 77

ix

LIST OF FIGURES

Figure Page

3.1 Local camera view entry/exit detection system overview. 17

3.2 Camera viewspace entry/exit detection system overview. 18

4.1 (a) KLT (weak) tracks and (b) their corresponding entity tracks. [Best
viewed in color] . 21

4.2 (a) Weak tracking start observations, and (b) the corresponding set of entity
entry observations. 22

5.1 Outlier removal example. (a) Convex hull area as points are removed. (b)
Convex hull area change for each point. (c) Original cluster points, and (d)
final cluster points after removing outliers. 25

5.2 Region shapes learned via kernel density estimation using kernel band-
width values of (a) 25, (b) 15, (c) 10, and (d) 5. 26

5.3 Example entry regions displaying (a) good directional consistency, (b) bad
directional consistency, (c) good interaction consistency, and (d) bad inter-
action consistency. 28

5.4 (a) Plausible entry regions, and (b) reliable entry regions with Ψ > 0.75. . . 30

6.1 Series of occlusions. Entry regions are shown in green and exit regions are
shown in red. [Best viewed in color] . 32

6.2 Occluded paths behind the occlusion. [Best viewed in color] 35

6.3 (a) Estimated distance distribution between an occlusion exit region and
corresponding entry region, and (b) estimated distance between and exit
region and entry region not corresponding to an occlusion. 35

x

7.1 (a) Local camera view, and (b) the view highlighted in the camera viewspace. 42

7.2 (a) Camera viewspace, and (b) spherical panorama projection. 43

7.3 Weak tracks (tracklets) from two local camera views displayed on the panorama. 44

7.4 (a) Sphere geometry for central angle, and (b) spherical polygon. 45

7.5 Entity tracks in the camera viewspace. 48

7.6 (a) Camera viewspace potential entry regions, and (b) reliable entry regions
Ψ > 0.75. 49

7.7 (a) Local camera view highlighted on panorama, and (b) camera activity
mask. 51

7.8 (a) Viewspace camera entries and, (b) viewspace exits for a local view with
image border activity shown in blue. 51

8.1 Detected Entry and Exit regions for Scenes 1-4. 58

8.2 Detected Entry and Exit regions for Scenes 5-7. 59

8.3 Entry and exit regions using the method in [15] (cols 1 and 2). Entry and
exit states using the method in [31] (cols 3 and 4). [Best viewed in color] . 60

8.4 Synthetic entry and exit regions. 63

8.5 Detected entry and exit shapes across all eight noise levels. 64

8.6 Occlusion detection results from Scenes 5, 6, 3, and 7 with arrows drawn
from the occlusion exit (red) to the occlusion entry (green). [Best viewed
in color] . 72

8.7 Most probable entry and exit connections for Scenes 5 and 3. [Best viewed
in color] . 72

8.8 Covariance tracking results from Scenes 5 and 6. Dashed lines correspond
tracks on either side of the occlusion. [Best viewed in color] 74

xi

8.9 Track likelihoods for (a) the ten most likely and (b) five least likely tracks.
[Best viewed in color] . 74

8.10 Example frames showing objects moving on the ground through the reflec-
tion in a building window for Camera 3. 79

8.11 Viewspace entry and exit regions for camera 1. 80

8.12 Viewspace entry and exit regions for camera 2. 80

8.13 Viewspace entry and exit regions for camera 3. 81

8.14 Entry and exit regions from a single view learned locally (row 1) and in the
camera viewspace (row 2). 82

8.15 Entry regions for Cameras 1 and 2 plotted on an orthophoto. 84

8.16 Exit regions for Cameras 1 and 2 plotted on an orthophoto. 85

xii

CHAPTER 1: INTRODUCTION

In this thesis we present a novel approach to discover and exploit entry and exit regions

in video. The goal of our work is to automatically detect regions where objects enter into

or leave a scene defined by a camera view. Such regions may correspond to anything

from a doorway or garage opening, to a walkway or street that intersects the edge of the

camera view (image border). In addition to the detection of such regions, we will also

explore ways in which they may be utilized to learn more about the scene structure and

higher level semantic activity. We will also present a novel extension that allows such

regions to be learned in the viewspace of an pan-tilt-zoom camera (camera that can move),

rather than a local camera view. In this chapter, we begin by motivating the problem, and

discuss our contributions. We then describe our approach and outline the organization of

the subsequent chapters.

1.1 Motivation

An important step when attempting to understand a scene is to identify regions where

activity enters and exits. Such regions can be useful in many visual surveillance applica-

tions. For mid-level tasks such as object tracking, entry regions allow for more efficient

tracker initialization. If an object being tracked disappears but is not near a known exit,

it is likely due to tracker failure. Understanding entry and exit locations may also help to

attach semantic meaning to tracking events. If an object enters through a commonly used

entry region and leaves through a popular exit the object is probably behaving normally.

1

However, if uncommon regions are used, or objects enter or exit through areas that do not

correspond to entry/exit locations, then such an event may indicate anomalous activity.

Entry and exit regions may also be useful for higher level scene analysis. It may be

desirable to learn about the scene “pulse” as pedestrians, cars, and cyclists come and go

throughout the day. Knowing where objects typically enter and exit provides insight as to

where the scene’s “pulse” should be taken. Such higher level analysis may be useful to un-

derstanding how the traffic ebbs and flows over time. If semantic meaning can be attached

to each entry or exit (e.g., building doorway), monitoring traffic at these regions can help

indicate how populated buildings, or other semantically meaningful areas are. At a region

level, monitoring pulses between entry and exit zones can help learn relationships between

such regions. As we will demonstrate, depending on the direction of such relationships

(e.g., entry → exit vs exit → entry), they can aid in understanding the dynamics of the

scene activity as well as reasoning about occluded paths in the scene.

1.2 Contribution and Significance

Thus far, most existing scene modeling work has focused on learning pathways in the

scene. There has, however, been a smaller body of work that focuses on detecting entry

and exit locations. We contribute to the existing work by proposing novel approaches to

detect and exploit such regions. We also show that our approach may be extended to detect

regions within the viewspace of a pan-tilt-zoom camera, rather than just focusing on a local

camera view.

First, we introduce a behavior model for object trajectories, and show that utilizing the

behavior of a scene is paramount to understanding it. We define scene behavior as the

spatio-temporal motion (and interaction) of objects in a scene. In most previous work, the

2

problem of detecting entry and exit regions is approached by tracking objects and cluster-

ing the trajectory endpoints. Dense clusters are kept and sparse clusters regarded as noise.

These previous approaches fail to utilize the scene behavior, which we show is very pow-

erful tool, and allows us to adopt a inexpensive tracking approach that is applicable to very

busy and crowded environments.

We also show that once such regions are discovered, they may be exploited to learn

about the scene structure and behavior. Previous work that explores relationships between

entry/exit regions attempts to learn relationships between exit and entry regions across dis-

joint camera views to track objects between cameras. We show that learning relationships

between regions in a single camera view can 1) help explain how objects move through the

scene (e.g., objects that enter via entry ‘A’ typically leave through exit ‘B’), and 2) uncover

occluded pathways in the scene.

In addition to our contributions to discovering regions in a static camera views, we also

introduce a novel extension to allow entry/exit regions to be learned with respect to the

viewspace of a pan-tilt-zoom camera. This allows global entry/exit regions to be learned

and then applied in any local camera view.

For each of our proposed methods we provide experimental results for numerous scenes

and cameras. In addition to these qualitative results we also present an approach to quantify

the accuracy of our region detection process, and discuss the challenges of determining

ground truth. This is significant as previous approaches consistently ignore the question

of ground truth and generally only provide qualitative results. To summarize, the main

contributions of our work include the following.

• Entity tracking: Our approach constructs “entities” using underlying weak tracking

data (tracklets). Entities are important as they represent “coherent motion regions”

3

in the scene where the objects moving through the scene are uninterrupted. Previous

approaches attempt trajectory clustering techniques on tracklets, though such ap-

proaches are expensive and require extensive parameter optimization. Our approach

is a frugal, yet very useful alternative to extract useful swatches of motion in the

scene. We use these “swatches” to accumulate entry and exit observations, though

they may also be useful for other applications as well (e.g., person counting).

• Behavior-based entry and exit detection algorithm: Previous approaches ignore

scene behavior when detecting entry and exit regions. They typically approach the

problem as a spatial clustering problem and cluster trajectory endpoints to detect

possible entry and exit regions. We show that the inclusion of a behavior model

greatly improves region detection capability. Our approach works by analyzing the

behavior around each potential entry and exit region and scoring it’s consistency.

• Quantitative analysis for region detection: Ground truth is generally ignored when

attempting to model or discover any type of high level scene aspect (e.g., entry, exit,

pathways, and other semantic regions). We provide experimental results that quantify

the accuracy our region detection approach.

• Method to discover relationships between detected regions: Very limited explo-

ration has been done in the area of entry and exit region applications. We provide a

novel approach to aid in object tracking and anomaly detection using a learned set of

entry/exit regions.

• Extension to detect entry/exit regions in a camera viewspace: All previous work

in detecting entry and exit regions (and most other semantic regions) has only focused

4

on a single camera view. We present a method that works on the entire viewspace of

a pan-tilt-zoom camera.

1.3 Proposed Approach

Most scene modeling techniques require some form of object tracking as input. Many

existing methods [15], [28], [33], [14] rely on stronger tracking data which consists of a

set of reliable and long duration object trajectories. When an object enters the scene, it

is detected and tracked until it leaves, producing a single trajectory capturing the motion

of the object. While such tracks are very useful, many approaches (stronger trackers) to

collect them tend to be unreliable in busy urban environments - especially when the scene

is crowded. In addition, such trackers are usually only able to track a small subset of the

objects in real-time. This may be problematic as the produced set of object tracks may be

unrepresentative of the true scene activity (e.g., activities that occur with low frequency

may not be detected, and the balance of activity may be skewed).

1.3.1 Weak Tracking

To compensate for these shortcomings we present an approach that uses weak tracking

data. We believe that any set of object tracks (or trajectories) exist on a spectrum between

strong and weak, depending on the characteristics they exhibit. Stronger tracks exhibit

qualities that more closely approximate the ground truth activity that one wishes to capture

in the scene. If person tracking is the goal, the ground truth would consist of one track per

person that remains on the same location of the person as they move through the scene until

they exit. There are many ways to evaluate object tracks [1], [27], [3]. We define stronger

tracks as having the following qualities:

5

• Persistence: Strong tracks will continuously follow the motion of an object through

the scene for all portions of the scene where the object is visible, and will not frag-

ment.

• Track Uniqueness: Each object should have no more than one track representing its

movement at any time instant (related to tracker “configuration” in [27]).

• Label Uniqueness: Each track should only represent the motion of one underlying

object. Thus, tracks should not switch objects (related to tracker “identification” and

“purity” in [27]).

• Stability: Each strong track observation should correspond to the same location on

the object being tracked (e.g., if a person is being tracked, the track should not jump

from the person’s foot to head).

Any deviation from the list above will cause a set of tracks to become “weaker”. Thus,

tracks may be labeled as weak for any combination of qualities that stray from the speci-

fications listed above. As an example, weak tracks may exhibit qualities such as multiple

tracks per target, fragmented tracks, tracks that jump between objects in the scene, etc. The

importance of each of these qualities depends on their application, so it is not necessarily

possible to produce an absolute rank ordering of importance for these characteristics. Our

input consists of multiple and frequently fragmented tracks per target. Thus, each object

is usually tracked by multiple tracks that tend to fragment and break (“tracklets”) as the

object moves through the scene (shown in Fig. 4.1 (a)). For our work in this thesis we use

a modified version of the Kanade Lucas Tomasi (KLT) tracker [24], presented in [31].

6

1.3.2 Entry and Exit Region Detection

Weak trackers are capable of tracking many objects simultaneously in real-time, and

can function well in busy scenes. Given such tracking data, we learn “entities” in each

frame by clustering similar weak tracking observations. We define an entity to be a cluster

of weak track observations moving in a coherent manner. Thus, an entity may correspond

to a person, group of people, bicycle, car, etc. The entities are tracked loosely over time by

associating them from frame-to-frame. As they move, we allow them to split, merge, etc.,

with other entities in the scene. This allows us to simplify the weak tracking data into a

set of entities where each entity’s motion is defined by an uninterrupted “coherent motion

region” (shown in Fig. 4.1).

We then cluster the resultant entity entry and exit observations to produce a set of po-

tential scene entry and exit zones. Each zone is scored using a behavior-based reliability

metric that analyzes the manner which the entity trajectories leave, enter, and interact with

each potential entry/exit region. We define a reliable entry region as one with tracks em-

anating out of it in a semi-directional manner (e.g., tracks should not fan out greater than

180◦), and a reliable exit region as one where tracks flow into it in a semi-directional man-

ner. Further, other tracks in the scene should not intersect a reliable entry/exit region in the

same emanating direction. For a potential entry region, such an action would indicate that

another entry region exists behind the current one. Examples of these scenarios are pre-

sented in Fig 5.3. After scoring each region, unreliable zones are removed, leaving the final

set of entry and exit regions. We then show how the set of learned entry/exit regions may

be exploited to learn relationships between entry and exit regions, and also learn occluded

paths in the scene. Doing so allows for different applications such as anomaly detection,

and aids on object tracking.

7

We also present an extension which allows our local entry/exit discovery technique to

be applied to the entire camera viewspace. We explain how each process used in the local

approach may be extended to work in the new global space, and how the discovered global

regions may be shared across cameras.

1.4 Organization

We begin with a review of related work in Chapter 2, and provide a general system

overview in Chapter 3. The entity learning process which simplifies weak tracking input

to a more usable set of entities is described in detail in Chapter 4. In Chapter 5 we explain

how we cluster entity entry and exit observations to obtain a set of potential entry and exit

regions, and how each region is scored by analyzing scene behavior.

Once a set of entry and exit regions is discovered, Chapter 6 details how we use these

regions to discover scene occlusions and learn causal relationships between them. This is

accomplished by monitoring the “pulses” between each of the learned regions.

In Chapter 7 we describe how our region learning approach may be extended to learn

entry and exit regions with respect to the viewspace of a pan-tilt-zoom camera, rather than

focusing on a local camera views.

Our work is evaluated in Chapter 8 where we provide experimental results for our local

and camera viewspace region detection methods, our region exploitation methods, and dis-

cuss what ground truth means for our problem and how quantitative metrics may be used

to gauge success.

8

CHAPTER 2: RELATED WORK

In this chapter we provide an overview of related work. We start with a discussion on

using weak tracking as input. We then elaborate on previous entry/exit detection and ex-

ploitations work and describe the novel aspects of our approach. Additionally, we provide a

discussion on previous multi-camera scene modeling and camera viewspace related work.

2.1 Weak Tracking

Our entity learning process allows us to use weak tracking data as input. This relaxes

the requirement of accurately tracking each object as it moves through the scene (as strong

trackers attempt to do). When a scene is very busy or crowded such a task is very difficult.

Moreover, the task of simultaneously tracking many objects is expensive. Weak trackers

attempt to track salient features (e.g., corners or areas of high texture) as they move through

the scene. Such trackers perform well even in crowded environments as they are not tasked

with sorting out each object from the crowd. Our only requirement is that there be at least

one weak track on each target at every time instance as the target moves through the scene.

We define a target as an underlying semantically important entity in the scene (e.g., person,

group, cyclist, car). Provided this is the case, we will be able to track each target (entity)

as it moves through the scene using our entity detection and tracking method described in

Chapter 4.

The idea of using a weak tracker in busy and crowded environments, and then using

the weak tracks to derive higher level meaning of the scene has been employed in the past

9

for different tasks. Rabaud and Belongie [20] use weak tracks to count pedestrians in busy

scenes. Work by Cheriyadat et. al. [5] attempts to leverage the idea of a “coherent mo-

tion region” to learn distinct objects using weak tracks (as we do with our entity learning).

However, their motion regions are constructed using a user-defined bounding box repre-

senting the size of a person. Motion regions are also learned in [6], though they are learned

via trajectory clustering ignoring the time that the trajectories were generated, thus two tra-

jectories that cluster together may have been generated at different times and belong to two

different people. Our approach is unique in the nature that we construct our entities. When

a new entity (set of weak tracks) enters the scene, we track it and allow it to “flow” through

the scene (perhaps merging and splitting with other entities) until it leaves, though we still

differentiate its entrance and exit from its interactions while it is in the scene. Being able

to separate an entity’s initiation and termination from its interactions (e.g., split, merge)

provides us with a powerful set of entry and exit observations which we use to estimate

entry and exit regions (approximating the set of entry and exit observations that would be

produced by a strong tracker).

2.2 Entry and Exit Discovery

While scene modeling has become a very active area of research, particularly in the

area of visual surveillance, much of the scene modeling work attempts to model pathways

and motion in the scene. In addition to this work, there has been a smaller body of work in

relation to entry-exit zone identification. Makris and Ellis [15] and Stauffer [28] assumed

that trajectory endpoints are entry and exit observations, which are then clustered to learn

the regions. In the approach from Makris and Ellis [15], a density threshold is used to

remove noise clusters. However, such approaches require strong tracking data and will

10

not work on weak tracks. Further, both approaches fail to leverage the scene behavior

to learn accurate regions. Wang et. al. [33] described a framework to model semantic

regions via trajectory clustering. When learning entry and exit locations they only consider

trajectory endpoints that exist near the borders of semantic regions. Streib and Davis [31]

presented a grid-based approach where the ratio of tracks through each state (grid cell and

direction) vs. tracks that originate in (entries) or terminate in (exits) each state is leveraged

to learn entry/exit states. None of these methods attempt to identify regions that result due

to occlusions in the scene, and only [31] is able to function using weak tracking data.

2.3 Entry and Exit Exploitation

Fusing occlusion learning directly into scene modeling is one novelty of the proposed

method. Often handling occlusions involves detecting and modeling the occluding objects

directly. Existing occlusion detection work such as the approach from Guan et. al. [10],

attempts to fully model occlusions in 3D. In other works, Guan et. al. [11] attempts to

model occlusions directly in image space. Approaches similar to the one by Kaucic et.

al [12] use trajectory matching to track objects through occlusions, and attempt to learn

plausible occluding structures through image segmentation (requiring manual labeling).

Our approach is different in that we do not aim to model the occluding structure in the

scene. Rather, we model the regions where objects enter and exit the occluded areas by

studying correlated scene activity. For applications such as tracking, our approach can

be used to produce a useful predictor for reacquiring an object track. Makris, Ellis, and

Black [16] proposed a method to learn relationships between exit and entry regions between

disjoint camera views. They use a cross-correlation based approach to associate activity

between such regions. However, the goal of their approach is to automatically learn camera

11

network topology by determining how activity is connected between camera views. They

do not attempt to learn connections that result from occluded paths, and do not model

forward (entry to exit) relationships as we do. Further, their cross-correlation approach is

based on time-lagged activity co-occurrences between regions. That is, they only look at

the time differences between observations in each pair of regions. Our approach learns

relationships between regions by attempting to estimate the path traveled between them (if

any exists). Thus, is it robust to different object classes that may travel at different speeds

(e.g., pedestrian, cyclist, cars). As a result, we do not only learn connections between

regions but the actual path distance traveled between them.

2.4 Camera Viewspace Entry and Exits

We provide an extension of our local camera view entry and exit detection approach to

discover entry/exit regions in the viewspace of a pan-tilt-zoom (PTZ) camera. Outside of

approaches that attempt to model a single camera view, there has been some scene modeling

effort that utilizes multiple cameras to detect semantic regions. In work by Wang et. al [34],

multiple local (static) camera views are used to track objects and learn semantic activities

(pathways) that persist across camera regions. Their approach, however, does not require

the cameras to be calibrated to utilize data across cameras. Other approaches such as the

one by Stauffer et. al. [29] or Lee et. al. [13] use tracking data across multiple camera

views to calibrate the views. Such works usually attempt to calibrate camera views using

data collected (e.g., tracking data), from different cameras, or to learn semantic regions that

span between cameras. None of these works employ pan-tilt-zoom cameras.

Sankaranarayanan and Davis [21], and Sinha and Pollefeys [25] present methods to

create panoramic mosaics using pan-tilt-zoom cameras. However, in [25] they do not model

12

the entire viewspace. Instead, they only focus on stitching a few local images together.

In [21] they do model the entire space, though they only apply their camera viewspace

panorama and model for active object tracking. In [32] Wada and Matsuyama describe

a method to learn a background model for a pan-tilt-zoom camera, however they focus

on indoor scenes and do not attempt to extract any additional semantic meaning from the

camera viewspace. To the best of our knowledge our extension for learning entry and

exit regions in the viewspace of a pan-tilt-zoom camera has not been attempted before. As

described, most previous work has mainly focused on learning such regions in local camera

views, or across multiple static cameras.

13

CHAPTER 3: SYSTEM OVERVIEW

In this section we provide an overview of our local and camera viewspace entry and exit

region detection processes. Our local approach involves tracking objects in a single camera

view, simplifying the collected set of weak tracks into entity tracks, clustering the entity

entry and exit observations and then analyzing the behavior in each cluster. The camera

viewspace approach uses the same data collection, weak tracking, and entity detection

approach as our local approach, however, this process is repeated for many overlapping

views that span the camera viewspace. The entity tracks learned in each local view are then

pushed to a common space (camera viewspace) where they can be combined. We then use

an analog process to our local region detection in the global camera viewspace to detect

entry/exit regions.

3.1 Local View Region Detection

Our process for detecting local entry and exit regions is summarized in Fig. 3.1. Given a

local camera view, we observe and track objects in the view using a weak tracker. From the

collected weak object tracks (tracklets), we learn a set of entity tracks (described in Chap-

ter 4). The entity track entry and exit observations are then used to hypothesize a potential

set of scene entry and exit regions. This is accomplished by clustering each set of entry

and exit observations independently, removing outlier observations from each cluster (if

any exist), and obtaining a region shape. Each potential entry and exit region is then scored

using a behavioral-based reliability metric which captures the behavioral consistency of

14

each region (e.g., ensures entry and exit regions behave as they should). Regions with low

reliability score are removed, and regions with high scores are kept, producing a final set

of entry and exit regions. The region scoring process is described in detail in Chapter 5.

3.2 Camera Viewspace Region Detection

Our process for detecting entry and exit regions within the viewspace of a pan-tilt-zoom

camera is summarized in Fig. 3.2. We collect weak tracking data from a set of overlapping

local camera views that collectively span the camera viewspace. Using the set of weak

tracks in each local view, we obtain a set of entity tracks (the green input box in Fig. 3.2 is

a repetition of the input box in the local approach (Fig. 3.1)). The entity tracks from each

view are then projected to a common space (camera viewspace). Using the same processes

for our local region approach (but adapted for the camera viewspace) we cluster entity track

entry and exit observations, remove outliers, and generate a set of potential entry and exit

regions. Then, each region is scored using the same behavior reliability metric as in the

local approach, and regions with high reliability score are kept.

3.3 Method Applications

Each method described above is useful under certain conditions. The local view ap-

proach is applicable for static cameras (cameras that do not move), and PTZ cameras at a

fixed orientation. This approach is desirable if the area of interest is only the local camera

view. However, if the camera is a PTZ camera, and there is need for learning the regions in

the camera viewspace, then the viewspace region learning approach may be applied. This

approach allows the camera to move, but the location of the detected regions to be retained.

15

Thus, for active camera tasks (e.g., active object tracking, where the camera follows the

object), the viewspace approach may be preferable.

16

Local Camera View

Weak Tracker

Entity Tracker

Cluster Entity
Entries

Cluster Entity
Exits

Score Entry
Regions

Final Entry
Regions

Final Exit
Regions

Score Exit
Regions

Weak
Tracks

Entity
Tracks

Input

Figure 3.1: Local camera view entry/exit detection system overview.

17

Transform Local Entity Tracks to Camera Viewspace

Local View 1 Local View 2

…

Local View N

Input Input Input

Cluster Entity
Entries

Cluster Entity
Exits

Score Entry
Regions

Final Entry
Regions

Final Exit
Regions

Score Exit
Regions

Figure 3.2: Camera viewspace entry/exit detection system overview.

18

CHAPTER 4: ENTITY DETECTION AND TRACKING

The weak tracking data we collect is far too noisy to say anything about the entry and

exit locations in a scene. To obtain a more reliable set of entry and exit observations from

the weak tracking data, we simplify the weak tracks into “entities”. In this chapter we

explain how we learn a set of entities from weak tracks. This is accomplished by first

detecting a set of entities in each frame, and then associating the entities across temporally

adjacent frames.

4.1 Entity Discovery

For a given frame, there exists a set of weak track observations (assuming there is object

motion in the frame). We wish to learn a set of entities in each frame that were likely to

have generated the observed weak track observations. To do so, we first cluster the weak

tracking observations in each frame into plausible entities. Entities are represented by a set

of spatially close weak tracking observations moving in a similar direction. Thus, an entity

may correspond to a person, group of people, vehicle, etc. Though we remain agnostic

to what each entity actually corresponds to in the world, we are still able to use them to

accumulate reliable entry and exit observations. The resultant entity tracks differ from

tracks produced using a strong tracker as we only loosely track entities, allowing them to

merge, split, etc. with other entities as they move through the scene.

For a given image frame fi ∈ F , our weak tracker produces a set of trajectory obser-

vations Pi. Our goal is learn a set of entities, Ti, for each frame fi. To do so we employ

19

a modified version of mean-shift clustering [4] to cluster the trajectory observations (Pi),

assigning each weak track observation p = (x, y) ∈ Pi to an entity t ∈ Ti. We modify the

standard mean-shift clustering formulation by introducing a velocity weight to ensure that

observations that cluster must be spatially close and traveling in the same direction. For a

weak tracking observation p = (x, y), it is shifted to pnew until convergence, where pnew is

computed as

pnew =

∑n
i=1 pi · wvel ·K(|pi−p|

h
)∑n

i=1 wvel ·K(|pi−p|
h

)
(4.1)

Here, K is the chosen mean-shift kernel. We use the Gaussian kernel, defined as

K

(
|pi − p|
h

)
=

1√
2πh
· exp

(
−(pi − p)2

2h2

)
(4.2)

The described velocity weight, wvel, is a function of the velocity angle (φ) between pi

and p, and is computed as

wvel =

{
1

1+exp(− cos(φ)
σ

)
if |φ| < π

2

0 otherwise
(4.3)

Here, σ defines the rate of weight transition (we use σ = 0.07 for our experiments). Veloc-

ity is computed using observations in the previous two frames, and is ignored in the first

frame. Thus, only points that are spatially close and traveling in similar directions will seek

to the same mode.

We also introduce a blend parameter to the velocity weight computation. Rather than

using the initial velocity of p for each iteration (as it seeks to the closest mode), we start by

using the initial velocity of p and then slowly blend it with the velocities from surrounding

points (spatially nearby points moving in a similar direction). Doing so ensures tighter

convergence as computing velocities over a short window is subject to noise. To compute

the velocity of p at iteration k, we use dxkp = (1−α)·dxp+α·dxavg and dykp = (1−α)·dyp+

α · dyavg. Here, dxavg and dyavg are weighted averages of the velocities of nearby points.

20

(a) (b)

Figure 4.1: (a) KLT (weak) tracks and (b) their corresponding entity tracks. [Best viewed
in color]

The blend parameter α is a linear function of the mean-shift iteration number (increasing

from 0 to 1). Thus, after clustering each frame fi ∈ F we obtain a set of entities Ti. In

our experiments, we use a kernel bandwidth of 15 when detecting entities for our local

view approach, and a bandwidth of 30 when detecting entities for our camera viewspace

approach.

4.2 Entity Tracking

We next associate entities from frame-to-frame using a graph-based method. Let Ti be

the set of entities in frame i and Tj be the set of entities in the subsequent frame j. We

construct a bipartite graph Ge(Ve, Ee) where Ve is the vertex set (Ve = Ti ∪ Tj) and, Ee is

the edge set. We connect ta ∈ Ti to tb ∈ Tj if the vertices (entities) are connected by at

least one shared trajectory from the underlying weak tracking data. An entity from frame i

not connected to any other entity in subsequent frame j corresponds to an entity exit event.

21

(a) (b)

Figure 4.2: (a) Weak tracking start observations, and (b) the corresponding set of entity
entry observations.

Likewise, an entity in frame j not connected to any other entity in the previous frame i

corresponds to an entity entry event. If an entity shares a trajectory with (is connected

to) multiple entities from a temporally adjacent frame, we consider this to be an entity

interaction (e.g., split, merge, etc.). Figure 4.1 displays a set of weak tracks (a), and their

corresponding entity tracks (b).

Analysis of this graph is used to produce a set of entity tracks whose endpoints corre-

spond to either 1) an entity entry event, 2) an entity exit event, or 3) and entity interaction

event. We leverage the entity tracks containing entry and exit event observations to obtain a

set of possible scene entry observations, and scene exit observations . We then use these ob-

servations to hypothesize a set of potential entry and exit regions. Figure 4.2 displays a set

of weak track start observations (a), and the corresponding set of entity entry observations

(b). As shown, the entities produce a much more reliable set of entry and exit observations

(than using the weak tracking start and stop observations).

22

CHAPTER 5: ENTRY AND EXIT REGION DETECTION

From our entity detection and tracking framework described above, we accumulate a

set of entity entry/exit location observations. We now explain how we detect entry/exit

“regions” from these observations, and how we score each region. This is accomplished

by first clustering each set of entity entry and entity exit observations. We then remove

outlier observations, and extract a region shape from the points within each cluster. Then,

each potential entry and exit region is scored using a behavioral-based reliability metric

that captures the consistency of the behavior defining each region.

5.1 Region Shape

We first perform standard mean-shift clustering on our set of entry locations (and then

exits). The result is a set of entry and exit clusters (we cluster entries and exits indepen-

dently). We choose mean-shift clustering over an Mixture of Gaussians (MoG) approach

(as in [15]) for a few reasons. Mean-shift clustering is able to localize on cluster modes au-

tomatically, without knowledge of the number of clusters, as would be required with a MoG

approach. Model selection techniques such as Bayesian Information Criterion (BIC) [23],

for a MoG approach that attempt to automatically determine the number of clusters may

still sometimes suffer from over fitting (as explained in [7]). Further, the mean-shift clusters

better represent the shape of non-Gaussian regions.

After clustering the data we attempt to remove outliers in each cluster, and localize on

the area of highest density within each cluster. To accomplish this we employ a convex hull

23

area reduction technique. We first compute a convex hull around each cluster of entry/exit

observations. Then, for each cluster, points on the perimeter are removed in order of as-

cending density (the density of each point is computed using kernel density estimation).

After each point is removed we compute a new convex hull and record the area change that

removing the point resulted in. This process is repeated for each point. Doing so results in

a distribution of convex hull area changes. The intuition is that outlier points will result in

large convex hull area changes. We compute the variance of this distribution (assuming a

zero mean), and select observations greater than σr standard deviations away. Of the cluster

points that produced these outlier convex hull area changes, we choose the point was most

recently removed, and discard all cluster points that were removed earlier in time. Thus,

we have a new set of points which better represent the true mass of the cluster. An example

cluster is shown in Fig. 5.1. Here, Fig. 5.1 (a) shows a plot of convex hull area as points are

removed from the cluster shown in 5.1 (c). The red circle on the area change plot denotes

the threshold point (most dense point that resulted in a convex hull area change greater than

1.5 σr). The area change induced by removing each point is shown in 5.1 (b). The area

changes that are > 1.5σr are highlighted in red. The resultant cluster with outlier points

removed is shown in Fig. 5.1 (c).

After removing outlier observations we are left with a final set of entry/exit observations

for each entry/exit cluster. We now wish to fit a shape to each cluster. One approach to do

this is to compute an alpha-shape [8] for the cluster points. For the 2D case, this involves

choosing a circle radius (α) and fitting circles tightly around the cluster point mass. Points

that are touched by the same circle get connected with a line. The collection of such points

make up the perimeter of the shape. One can imagine, depending on the value of α, the

24

(a) (b) (c) (d)

Figure 5.1: Outlier removal example. (a) Convex hull area as points are removed. (b)
Convex hull area change for each point. (c) Original cluster points, and (d) final cluster
points after removing outliers.

estimated shape will vary. Large values of α will produce a convex hull around the shape.

As α is decreased, the shape will become more concave.

Rather than using alpha-shapes, we employ a different approach. We compute a density

surface for the points in each cluster using kernel density estimation (KDE) [18]. We then

select the point from the cluster sitting lowest on the surface (lowest density), and slice the

surface at that density. The perimeter of the slice becomes the final region shape. Depend-

ing on the kernel bandwidth used to generate the KDE surface, the shape will vary. Larger

kernel bandwidths will generalize the shape around the points. Smaller kernel bandwidths

will force the shape to wrap tightly around the point mass. Example region shapes obtained

using kernel density estimation are shown in Fig. 5.2. The black outline represents the re-

gion learned as the kernel bandwidth is varied. Thus, unlike [15], our entry and exit clusters

reflect the true spatial density and distribution of their underlying observations (which may

not be Gaussian).

25

(a) (b) (c) (d)

Figure 5.2: Region shapes learned via kernel density estimation using kernel bandwidth
values of (a) 25, (b) 15, (c) 10, and (d) 5.

5.2 Region Reliability

We now describe how we validate our entry and exit regions to distinguish reliable en-

tries and exits from those that are the result of noise or partial scene occlusions. In [15],

they compute an entry/exit region density and then label regions with density below an arbi-

trary threshold as noise. Such an approach will not work well if scene traffic is imbalanced,

as entries/exits with low popularity (and thus low density), may be regarded as noise. Fur-

ther, if a scene is very noisy, this method may also classify noise as being a good entry/exit

region. We define a good entry region as one with entity tracks emanating out of it, and a

good exit region as one with entity tracks flowing into it. Entry regions whose entry-only

tracks (or exit regions whose exit-only tracks) exhibit bidirectional activity are unreliable

regions, and may be the result of areas with a high rate of tracking failure, partial scene

occlusions, or scene noise (trees or other such movement that the tracker may pick up). An

example of an entry region exhibiting good and poor directional consistency is provided in

Fig. 5.3. Further, for entry regions, other tracks in the scene should not intersect the region

in the same emanating direction that defines the region (i.e., the entry region should not be

a “through” state, as shown in Fig. 5.3 (d)). Such a scenario would indicate that another

26

entry region exists behind the current one. The same idea extends to exit regions. Thus,

we attempt to capture both the consistency of the entry/exit entity tracks that define each

region, as well as the consistency of the interaction between other entity tracks and each

entry/exit region.

Using the entry/exit entity tracks that define each region, we learn the distribution of

directions that these tracks leave (for entries), and enter (for exits), the region by quantizing

the velocity angle at the location that the track intersects the region into one of b bins (we

use b = 8 in our experiments). The velocity angle for an entity at an intersection location

is computed as an average of the velocities of the underlying weak tracking observations

that the entity was constructed from (this makes it more robust to noise). This histogram

is normalized to provide a probabilistic measure for the directions that entry/exit tracks

leave/enter each region. From this distribution q, we compute a directional consistency

function q̂, which accounts for any symmetry of the entity track distribution for each entry

and exit region in the following manner. For a bin i with probability q(θi), every other bin

probability q(θj) is subtracted from q(θi), in a weighted manner such that bin angles that are

directly opposite of i receive high weight (as they correspond to bi-directional behavior),

and bin angles close to i receive lower weight. For a region k,

q̂k(θi) =
max

[
0,
∑b

j=1wij · (qk(θi)− qk(θj))
]

∑b
j=1wij · qk(θi)

· qk(θi) (5.1)

where wij is an angle similarity weight that give more emphasis to angles corresponding to

bidirectional behavior with respect to θi, and is computed as

wij =

{
exp(−|1 + cos(θi − θj)|) if cos(θi − θj) < 0

0 otherwise
(5.2)

27

Good Bad OK Bad

(a) (b) (c) (d)

Figure 5.3: Example entry regions displaying (a) good directional consistency, (b) bad di-
rectional consistency, (c) good interaction consistency, and (d) bad interaction consistency.

Here, θj is ignored if it is within 90 degrees of θi, and most heavily weighted when it is

exactly opposite of θi. Thus, when a region exhibits completely reliable and consistent ac-

tivity,
∑b

i=1 q̂k(θi) = 1. As the activity becomes more unreliable,
∑b

i=1 q̂k(θi) approaches

0.

In addition to modeling the consistency of behavior corresponding to each entry and exit

region, we also incorporate the consistency of how each entry and exit region interacts with

other activity in the scene. An entry region that emanates activity in a particular direction

should not be intersected by other tracks also traveling in the same emanating direction (the

same logic extends to exits). For an entry or exit region k, let Dk be the number of entity

tracks that define the region. Let Dk(θi) be the number of entity tracks that leave the region

(for entries) or enter the region (for exits) at angle θi. Further, let Mk be the set of outside

entity tracks that intersect region k, and Mk(θi) be the number that intersect region k at

angle θi. If there are many tracks that intersect region k at the same angle as the tracks that

define the region, the region should be regarded as unreliable.

28

This interaction consistency may be combined with the previously defined directional
consistency to create a single reliably score ψk for region k as

ψk =

(
b∑
i=1

q̂k(θi)

)
·

(
1−min

[
1,

∑b
i=1 q̂k(θi) ·Mk(θi)∑b
i=1 q̂k(θi) ·Dk(θi)

])
(5.3)

Here,
∑b

i=1 q̂k(θi) is the directional consistency term (Eqn. (5.1)) across all angles. This

score will be low (approach 0) if the defining tracks leaving an entry, or entering an exit,

are very symmetric. The interaction consistency score (second term) reflects the manner

in which other tracks in the scene intersect an entry or exit region. As the number of

intersecting tracks that could discredit a region (Mk) approach the number of tracks that

define region k (Dk), the value
∑b
i=1 q̂k(θi)·Mk(θi)∑b
i=1 q̂k(θi)·Dk(θi)

will approach 1. The resultant regional

consistency score is then passed through a sigmoid function, allowing the model to be

smoothly adaptive to various noise levels. The final region score, Ψk is computed as

Ψk =
1

1 + exp(−ψk−µΨ

σΨ
)

(5.4)

where µΨ and σΨ should be determined based on scene noise. Figure 5.4 (a) displays a set

of potential entry regions, and (b) entry regions with a reliability score Ψ > 0.75.

29

(a) (b)

Figure 5.4: (a) Plausible entry regions, and (b) reliable entry regions with Ψ > 0.75.

30

CHAPTER 6: EXPLOITING ENTRY AND EXIT REGIONS

In this chapter we discuss applications of the detected entry and exit regions. Most

previous work dealing with entry and exit regions has not focused on anything outside of

region detection. In these works, the entry/exit regions are typically regarded as part of

the scene model, but more attention is focused on learning pathways between regions than

exploring what is capable if only the entry/exit regions are used. We explore this idea in

detail in this chapter, and show that relationships between regions can be used to model

activity through occlusions, and model common actions (e.g., objects that enter entry “A”,

typically exit . Using these oc and provide tracking and anomaly detection applications

using only the set of discovered entry and exit regions.

6.1 Exit→ Exit Occlusion Relationships

Given the detected set of entry and exit regions, we introduce a method to detect the

location of static scene occlusions. An occlusion may be characterized by a set of exit

regions where activity disappears into an occluded region, and a corresponding set entry

regions where activity reappears in the scene. In the simple case, an occlusion is captured

by one exit region and a corresponding entry region (see Fig. 6.1). Consider a more difficult

scenario where traffic enters an occlusion region and splits (see Fig. 6.2 (a)), reappearing at

two different locations in the scene. Another scenario shown in Fig. 6.2 (b) where activity

enters an occluded region via two different locations, merges together while occluded, and

reappears in the scene at one location, and Fig. 6.2 (c) shows a scenario where activity

31

Figure 6.1: Series of occlusions. Entry regions are shown in green and exit regions are
shown in red. [Best viewed in color]

enters an occluded region from two locations, crosses, and re-enters the scene at two lo-

cations. There are many possible scenarios, and as such we generalize our model to allow

for any number of scene exit regions where activity enters an occlusion and any number of

corresponding scene entry regions where activity reappears from the occluded region.

As described, behavior representing an occluded region can be represented by a con-

nection from a set of exit regions to a set of entry regions. We detect such regions by

constructing a graph, Go, capturing causal relationships between any pair of exit-entry re-

gions in the scene. Let Go(Vo, Eo) be a graph where Vo = R ∪X (the set of entry R, and

exit X regions), and Eo is the set of causal relationships in the scene. For each possible

exit-entry pair (x, r) where x ∈ X and r ∈ R we do the following. For each exit event at

exit region x ∈ X , we look forward in time over a time window of w frames. If an entry

event occurs at time lag wi for scene entry region r, we estimate the distance d̂(x, r) the

entity would have traveled given its velocity and the number of frames between the exit

observation at x and the entry observation at r, computed as d̂(x, r) = tv · wi, where tv is

the average of the exit and re-entry speeds for the entity, and wi is the number of frames

between the entity exit and entry observation. We do this for all entries that occur within

32

w frames of the exit event. This formulation is more robust than using simple time-lagged

event correlation, as entities may travel at different speeds (e.g., consider pedestrian vs.

cyclist). By using estimated distances, we not only can detect whether an occlusion exists,

but we can also learn the distance of the path traveled through the occlusion region without

actually observing the path.

Given a set of distance estimates between an exit and entry region (x, r) from multiple

examples, we determine if there exists a specific distance that is strongly voted for between

the two regions. To accomplish this, we employ an entropy approach based on the idea that

if there is no occlusion region between (x, r), the distribution of distance estimates should

be random. If there is an occlusion region between (x, r), the distribution of distance

estimates should contain a strong mode, represented by a large peak in the distribution

(the true distance traveled through the occluded region). Example distributions from our

experiments are shown in Fig. 6.3. The distribution for the true occlusion displays a strong

peak, corresponding to the distance traveled by entities through the occluded region. We

first smooth the distribution to generalize the data and compute the exit-entry entropy score

H(x, r) as

H(x, r) = −
n∑
i=1

d̂i(x, r) · log
(
d̂i(x, r)

)
(6.1)

where d̂i(x, r) is the normalized count of observations that vote for distance i in the distri-

bution. If H(x, r) is sufficiently small (peaked, e.g., H(x, r) < Hthresh), we add a directed

edge x→ r in Go. We do this for all possible exit-entry pairs.

Consider a scenario where occlusions exist in series, one after the other, as shown in

Fig. 6.1. In such a scenario, exit 1 would match entries 2, 3, and 4 as they are causally

related by traffic that passes through the series of occlusions. Similarly, exit 2 would match

entries 3 and 4. To account for possible scenarios as the one shown in Fig. 6.1, and remove

33

the higher order connections, we observe that traffic going through exit 1 must go through

entry 2 and exit 2 before it reaches entry 3. Thus, if an exit x is connected to an entry region

r, but there also exists a path connecting x to r going through other regions, x → r must

not be a first-order relationship, and thus must not correspond to an occlusion. We define

a first-order relationship, as a relationship that exists between two regions, A and B, such

that there do not exist any alterative paths to get to B from A beside going straight from A

to B.

Using this idea, we examine all entry-exit, exit-entry, exit-exit, and entry-entry regions

to model the region relationships in the scene. We do so using the same approach used to

match exit regions to entry regions. For each case, if a forward-in-time causal relationship

(peaked distribution) exists between any pair of regions, we add a directed edge in Go rep-

resenting the direction of the relation. Detecting the final set of occlusions is then reduced

to searching Go for a unique set of first-order paths between exit-entry pairs. We employ a

depth-first search to find the relationships.

The algorithm for our occlusion detection is presented in Alg. 1. Here we use all po-

tential exit-entry regions (not just the reliable regions found in Chapter. 5). Any occlusion

exit-entry match found is included in the final set of reliable regions for the scene.

6.2 Entry→ Exit Non-Pathway Relationships

As we found the correlated behavior between exits and entries to locate occlusions, we

can use a similar approach to find the relationship between the entry and exit states. For

each non-occlusion entry-exit pair (r, x) we compute a distribution of distance estimates

from entry region r to exit region x. If there exits a common pathway of traffic from r to

x, the resultant distribution will have a strong mode for the distance of the path traveled

34

(a) (b) (c)

Figure 6.2: Occluded paths behind the occlusion. [Best viewed in color]

(a) (b)

Figure 6.3: (a) Estimated distance distribution between an occlusion exit region and corre-
sponding entry region, and (b) estimated distance between and exit region and entry region
not corresponding to an occlusion.

35

Data: Graph Go

Result: Set of occlusion pairs occlusionSet

// Construct Go;
foreach exit-entry pair (xi, rj) do

if H(xi, rj) < Hthresh then
add edge xi → rj to Go

end
end
foreach entry-exit pair (ri, xj) do

if H(ri, xj) < Hthresh then
add edge ri → xj to Go

end
end
foreach exit-exit pair (xi, xj) do

if H(xi, xj) < Hthresh then
add edge xi → xj to Go

end
end
foreach entry-entry pair (ri, rj) do

if H(ri, rj) < Hthresh then
add edge ri → rj to Go

end
end

// Search Go for valid occlusions;
foreach potential occlusion pair (x, r) do

pathCount← number of paths from x to r in Go

if pathCount == 1 then
occlusionSet← occlusionSet ∪ (x, r)

end
end

Algorithm 1: Occlusion detection via graph reduction.

36

between the regions. Given each (r, x) pairing, we estimate the probability of an object

leaving an exit region x ∈ X given that the object entered the scene via entry region r ∈ R

as

p(x|r) = d̂mode(r, x)∑
xc∈X d̂mode(r, xc)

·
[
1− exp

(
−Hmax −H(r, x)

σp

)]
(6.2)

where d̂mode is the raw histogram count for the distance voted for most strongly in the

accumulated distance estimate distribution, and 1− exp
(
−Hmax−H(r,x)

σp

)
captures the reli-

ability of the mode in the distribution. Here, Hmax is the maximum possible entropy score

given the number of bins used to model the distribution, and σp is a normalization param-

eter (we use σp = 0.05). Under this formulation, distributions with stronger modes (more

observations) receive more weight. Thus, for each entry r, we have a likelihood that it will

leave any scene exit x ∈ X .

Such a formulation may be leveraged to compute a likelihood score for an observed

object trajectory (from a strong tracker). When an object enters a scene entry r, Eqn. (6.2)

gives a likelihood of the object leaving through each scene exit x ∈ X . From the estimated

distance distribution constructed for (r, x) we have an expected distance that the object must

travel between r and x. With this, we can score the likelihood of any trajectory entering

entry region r and exiting through exit region x as

p(traj|x, r) = p(x|r) · exp

−
(
d̂mag(r, x)− |traj|

)2

σ2
t

 (6.3)

Here, |traj| is the length of the trajectory (in pixels), d̂mag(r, x) is the expected distance

traveled between r and x (distance value at d̂mode(r, x)), and σt allows for some variance

between the expected distance and the actual trajectory distance. For our experiments and

image size (640x480) we use σt = 50, though it could be learned by observing scene

activity.

37

Such a formulation allows for anomalous tracks to be detected. Such tracks may cor-

respond to an object taking an abnormally long meandering path through the scene, an

object taking an abnormally short path (such as cutting through a restricted area), an object

leaving at an unexpected exit, or a short track not leaving any exit (resulting from a tracker

failure or from leaving at an unknown exit).

38

CHAPTER 7: EXTENSION TO CAMERA VIEWSPACE

Thus far we have only dealt with a single camera view. While many commercial surveil-

lance cameras are static view cameras (meaning they do not move), there are also many ac-

tive pan-tilt-zoom (PTZ) cameras. Such cameras are typically attached to a pan-tilt motor

which gives them two degrees of freedom (pan and tilt) to move around and see different

parts of the world. While learning the entry/exit regions for a specific camera view is use-

ful, when the camera is moved all of the zones learned from that view will not be applicable

to the new view. One possible solution to this problem is to choose a set of fixed pan-tilt-

zoom orientations and learn entry and exit regions for each of those camera views. Such

a solution is still limited as the camera must be moved to an orientation that it has learned

a set of entry/exit regions in and then it must recall the appropriate set of regions for that

view. Any activity that requires the camera to be moving, such as actively tracking an ob-

ject as it moves around by moving the camera as the object moves, will not be able to take

advantage of the learned set of regions. Additionally, learning a different set of regions for

local views is expensive. To account for these issues, we explain how our region detection

approach may be extended to the viewspace of a PTZ camera, rather than just focusing on

a single local view.

To achieve this we track objects in many overlapping local camera views, learn entities

in the local views, and then fuse the local data into a global camera viewspace where it

can be combined. This requires a model to map each local image pixel (x,y) to the global

(pan,tilt) space of the camera. We then cluster the entity entry and exit observations in

39

the global space as we did for the local approach, and then analyze the behavior in this

new space to learn a global set of entry and exit regions. Clustering these observations in

the camera viewspace and analyzing each cluster requires an analog approach to our local

scene analysis as we are now working in a non-Euclidean space. The resulting global entry

and exit regions capture entry and exit behavior with respect to the camera viewspace rather

than a single local camera view.

We first explain how the geometry of our local view Euclidean space extends to the

pan-tilt space of an active camera.

7.1 Camera Geometry

As stated earlier, we require a model to map pixels (x, y) from a local camera view to a

common space where the data from different local camera views may be fused together. To

achieve this we employ the camera model presented in [21]. This model presents a method

to map local (x, y) image coordinates to their corresponding pan-tilt (θ, φ) coordinates in

the cameras pan-tilt viewspace. Suppose the camera is oriented at pan-tilt location (θ, φ).

For an (x, y) coordinate in the local view, the change in pan and tilt to re-orient the camera

to focus at that (x, y) location may be computed using the following two equations.

δθ = tan−1

(
x

y · sinφ+ f · cosφ

)
(7.1)

δφ = tan−1

 y + a

f · cos
(

tan−1(a
b
· x
y+a

)
) − a

f

 (7.2)

Here, f is the focal length of the camera, a = f
tanφ

, and b = a
sinφ

. Thus, the global

coordinate for a local image (x, y) is computed as

θ(x,y) = θ + δθ (7.3)

40

φ(x,y) = φ+ δφ (7.4)

where (θ, φ) represent the camera orientation of the local view, and (δθ, δφ) specify the

change in pan and tilt for any local image coordinate (x, y). This mapping allows us to

combine data collected at different camera orientations.

The pan-tilt space of the camera can be modeled using a hemisphere, as a sphere is a

natural way to model the two degrees of freedom of a PTZ camera and we only require the

bottom half of the sphere (the camera is the sphere center and cannot tilt above the equator).

Using this model, each pan-tilt (θ, φ) camera orientation corresponds to a location on the

viewspace hemisphere. An example is illustrated in Fig. 7.1, where a local camera view

(Fig. 7.1 (a)) is highlighted on the camera viewspace hemisphere (Fig. 7.1 (b)).

One way to visualize the camera viewspace rather than using a hemisphere is through a

spherical panorama. In [21], they present a method to generate spherical panoramas to vi-

sualize the camera viewspace (shown in Fig. 7.2 (b)). Here, the pan of the camera increases

counter-clockwise and the tilt increases radially from the image center. These panoramas

may be thought of as a projection of the camera hemisphere on to the circle that defines

the top of the hemisphere (slices through the middle of the sphere that the hemisphere

comes from). We will use this panorama representation of the camera viewspace when

displaying results throughout this text, however, we remind the reader that this is really a

projection of the viewspace and that our work takes place on the viewspace hemisphere

(not the panorama image).

41

(a) (b)

Figure 7.1: (a) Local camera view, and (b) the view highlighted in the camera viewspace.

7.2 Viewspace Data Collection

Previously, we just collected data for the camera view of interest. However, a single

view from a PTZ camera only captures a small portion of the total camera viewspace (as

illustrated in Fig. 7.1). To extend our approach to the camera viewspace, we first generate

a list of pan-tilt-zoom orientations that overlap and cover the entire camera viewspace.

We then randomly sample a view from the set, move the camera to that orientation, and

track objects via a weak tracker (same as for the local view approach) for a short duration

of time (300 frames, roughly 40 seconds). A different view is then sampled from the

collection and the process repeats until all views are used. We regard this chunk of data

as a “pass” as it is a pass of the entire viewspace composed of local samples, and employ

multiple “passes” for our approach. We choose a random sampling of the space rather than

a sequential one to prevent any bias when observing the scene. There may be durations

of time when the scene is more crowded than others, and sequentially sampling may bias

42

(a) (b)

Figure 7.2: (a) Camera viewspace, and (b) spherical panorama projection.

the range of adjacent views we sample when the scene is crowded to appear as if they are

more frequently traveled. Figure 7.3 shows weak tracks collected from two different local

camera views, and their projection onto a spherical panorama (camera viewspace).

7.3 Viewspace Region Detection

After collecting multiple passes of tracks from a set of local camera views, the tracks

in each view are clustered into entity tracks using the approach described in Chapter. 4 (as

in the local approach). The entity tracks from each local view are then transformed into

the global viewspace using the camera model described in Sect. 7.1. This provides us with

a set of entity entry and entity exit observations in the camera viewspace. As before, we

wish to cluster these entry and exit observations and then score each cluster by analyzing

its behavior. To accomplish this, we must adapt our previous approach to work in the

non-Euclidean pan-tilt space of the camera.

43

Figure 7.3: Weak tracks (tracklets) from two local camera views displayed on the
panorama.

Previously, we clustered entity entries and exits for a local view using mean-shift clus-

tering where the distance between any two points was the 2D Euclidean distance between

them (on the image plane). To extend this approach to the entry and exit observations that

sit on the hemisphere surface, we require a distance metric to compute the distance be-

tween points on a sphere. For this, we employ a geodesic approach and define the distance

between two points as the shortest arc that connects the points on the sphere surface. The

length of this arc may be computed as the great circle distance. The great circle distance

between two points p and q on a sphere surface may be computed as

dsphere = R ·∆σ̂ (7.5)

Here, R is the radius of the sphere, and ∆σ̂ is the central angle (see Fig. 7.4 (a)) between

the two points along the great circle that connects them on the sphere surface. The central

44

p

q

̂ R

A B

C

a

b

c

(a) (b)

Figure 7.4: (a) Sphere geometry for central angle, and (b) spherical polygon.

angle may be computed using the haversine formula [26] as

∆σ̂ = 2 · sin−1

(√
sin2

(
∆φ

2

)
+ cosφp cosφq sin2

(
∆θ

2

))
(7.6)

The θ and φ in the haversine formula usually specify longitude and latitude coordinates,

respectively, though they naturally extend to the pan-tilt coordinates of our camera views-

pace.

This extension allow us to cluster the entry and exit observations in the camera views-

pace as we did previously for a local camera view. After we obtain a set of entry and

exit clusters, we must then remove any outliers in each cluster using the convex hull area-

reduction technique described in Chapter 5. This requires a convex hull be fit to each cluster

and the points on the perimeter of the convex hull be removed iteratively resulting in a dis-

tribution of convex hull area changes which we analyze to determine outlier observations.

45

The convex hull for a cluster of points on a sphere surface is similar to the convex hull for

points on a 2D plane, though the perimeter is made up of great circle arcs rather than line

segments. There are several ways to obtain this convex hull. We employ an approach using

the ideas from [17]. For each entry and exit cluster, we compute a 3D convex hull for the

points in the cluster and the sphere origin point. Points in the cluster that are connected to

the sphere origin produce the set of points for the convex hull on the sphere surface. Other

points that are not connected to the sphere origin are interior points. We then compute the

area of the spherical polygon formed by the set of points that make up the spherical convex

hull. The area of a spherical polygon may be computed as

S = (Θ− (n− 2) · π) ·R2 (7.7)

where Θ is the sum of interior angles in the spherical polygon, n is the number of vertices,

and R is the sphere radius. Each interior angle may be computed using the law of spherical

cosines. For three points on a sphere surface, a, b, and c, let A, B, and C be the angle of

the spherical triangle at each of the three vertices (shown in Fig. 7.4 (b)). Then, any angle

in the triangle (A for example) may be computed as

A = cos−1

(
cos(dbc)− cos(dab) cos(dac)

sin(dab) sin(dac)

)
(7.8)

where dxy, is the great circle distance between points x and y on the sphere.

The last extension required for working on the hemisphere is to be able to determine

if a given point (θ, φ) on the hemisphere is contained in an entry or exit region (spherical

polygon). This is used when determining entity track intersection with entry or exit regions

(each region is a spherical polygon in this space). This can be accomplished similar to the

Euclidean approach where a line from the point in question is drawn to a point known to be

outside of the polygon. If the line intersects an even number of edges of the polygon, the

46

point is not in the polygon. Otherwise the point is inside of the polygon (odd number of

intersections). This approach works for both concave and convex polygons. To test whether

a point in pan-tilt space is within a spherical polygon, intersection with each polygon edge

(arc) must be tested. To test intersection with respect to an arc, we employ the approach

described in [2]. First, the pan value of the point in question can be compared with the pan

values of the arc endpoints. If the pan of the point in question does not sit within the end

points of the arc, then the point is sure to not intersect the arc. Otherwise, if it does sit within

the pan range of the arc, another test must be performed. Here, an arc is constructed from

the North Pole (known to be outside of the spherical polygon) to the point in question. The

next step is to determine if the arc between the North Pole and point in question intersects

the polygon edge arc. To achieve this, an angular comparison can be performed. Let N be

the point at the North Pole, P be the point in question, A be one end of the polygon arc,

and B be the other end. First, ∠NAB is computed. Then ∠NAP is computed. If ∠NAP

is greater than ∠NAB then arc NP must intersect arc AB. This angle comparison takes

advantage of the fact that we can confidently choose the North Pole as a point known to be

outside of the spherical polygon in question, as we only require the southern hemisphere

of the sphere.

Using the above processes to work on the spherical surface, our previously defined

local image approach may be applied at the camera viewspace scale. The entity tracks

used within the camera viewspace (displayed in Fig. 7.5 (a)) originated in many different

overlapping camera views. As such, the edge of each local camera view will create an

artificial entry/exit region due to traffic crossing the view borders. However, our approach

is able to eliminate these regions as tracks from other (overlapping) camera views will

run through these artificial (artifacts of the local view border) regions, driving down their

47

Figure 7.5: Entity tracks in the camera viewspace.

interaction consistency score (e.g., these regions will resemble through states). Thus, by

utilizing the scene behavior we are able to extend our local view approach by intelligently

selecting overlapping local views whose behavior will discredit regions that result from

local view borders. Using this process, we are able to learn the true environmental entry/exit

regions (e.g., building doorways) within each camera viewspace, as well as regions at the

border of the camera viewspace. Thus, regardless of where the camera is oriented within

its viewspace, a check may be performed to see if any global entries or exits exist within

the local camera views.

7.4 Using the Viewspace Model in a Local View

We have shown how viewspace entry and exit regions may be detected (with respect

to the viewspace of a camera). The global regions are useful as they help distinguish

48

(a) (b)

Figure 7.6: (a) Camera viewspace potential entry regions, and (b) reliable entry regions
Ψ > 0.75.

an environmental entry or exit from one that results from the edge of the image in any

local camera view. Regardless of how the camera is oriented, we now have the ability to

determine if any global entry or exit regions exists within the local camera view (previously

we could only learn regions for a specific view). Depending on ones application, however,

the local view regions that correspond to the edge of the image may still be useful. To

supplement the learned global set of regions, we introduce a method to detect areas of

activity near the edge of any local camera view. Thus, for any local view, any learned

global regions that exist in that view may be utilized, but the user can also have an idea of

the image border activity as well.

We achieve this by constructing an activity mask for each camera, and then intersecting

the current local camera view with the viewspace activity mask. The camera viewspace is

first gridded (using pan by tilt grid). The entity tracks for that camera (learned in a set of

49

local camera views) are then mapped to a set of bins in the viewspace grid. This creates

a histogram of activity at each pan-tilt (θ, φ) grid cell. A threshold is then applied to keep

bins with some activity. This mask is then projected to a panorama image where image

processing techniques may be applied more easily to determine the final activity mask.

First, a median filter is used to remove salt and pepper noise in the mask. The mask is then

dilated to generalize its shape and a connected components algorithm is employed to learn

the segments in the mask. Segments with sufficient area are kept to create the final activity

mask. An example activity mask is shown is Fig. 7.7 (b) for the viewspace represented by

the panorama in Fig. 7.7 (a).

For any local camera view, the intersection of the view border with the activity mask

may be used to determine areas of image border activity. These regions may be combined

with any global entry or exit regions that exist in the local view to create a more extensive

summarization of activity occurring in the view (example shown in Fig. 7.8 for the view

highlighted in Fig. 7.7).

7.5 Viewspace Region Exploitation

Being able to detect entry/exit regions in a camera’s viewspace can be very useful.

Defining such regions in the viewspace allows the camera to be moved anywhere while still

retaining the entry/exit location information. Thus, as described in the previous section, for

any local camera view, a test may be performed to determine if any viewspace entry or

exit regions exist in the view. This relaxes the limitation of only learning regions in a local

camera view (as they are bound to that view). However, learning regions in the viewspace

does place certain limitations on which region exploitation applications can be applied to

the viewspace model.

50

(a) (b)

Figure 7.7: (a) Local camera view highlighted on panorama, and (b) camera activity mask.

(a) (b)

Figure 7.8: (a) Viewspace camera entries and, (b) viewspace exits for a local view with
image border activity shown in blue.

51

Previously we relied on detecting relationships between regions to discover occlusion

activity and region relationships in a static scene (e.g., entry → exit and exit → entry).

With our viewspace approach, we can still perform these relationship tests, though only

for region pairs that are visible in a local camera view. Thus, we can still detect occlusion

activity. Though we can also theoretically recover entry→ exit relationships as well (pro-

vided the entry and exit can be seen in a local view), such a model will not be as useful

unless all entry and exit regions are used, which will typically not be the case due to entry

and exit regions being spread far across the viewspace. Thus, we will only focus on occlu-

sion discovery as it is very likely for occlusion activity to be captured by a single camera

view, though we acknowledge that there may be longer occlusions that cannot be captured

by a single view.

For any exit and entry pair from the set of regions detected in the viewspace, the method

described in Chapter 6 may be applied to determine if a causal relationship exists between

the region pair. This can be accomplished using the data used to detect the viewspace

regions, or from new data collected after the regions are learned. Collecting new data after

the regions are detected may allow for a test to be performed for regions that are visible in

a single camera view, though happened to not be visible in any camera view used to detect

the regions. Using the causal relationships that are learned from this process, occlusion

activity may be detected in the same manner as the local camera view approach.

52

CHAPTER 8: EXPERIMENTS AND RESULTS

In this chapter we provide experimental results for our entry and exit region discovery

methods. We detect entry and exit regions for seven local scenes of varying difficulty, and

compare our local region detection method to two existing approaches. We also provide a

discussion on ground truth and offer a quantitative analysis of our region shape detection

method. Additionally, we evaluate our, occlusion detection, and entry→ exit non-pathway

relationship methods, and evaluate our viewspace region detection method on three dif-

ferent pan-tilt-zoom cameras. We also compare our local and viewspace approaches, and

explain how our viewspace regions may be aggregated in world space.

8.1 Region Detection Experiments

We ran our single view entry and exit region detection method on seven scenes of

varying difficulty. We collected data using actual surveillance cameras located on four

and eight story buildings. All seven scenes were captured at a resolution of 640x480, and

were recorded for durations listed in Table 8.1. We learned entry and exit regions for

each scene, and kept regions with a reliability score Ψ > 0.75 and with at least 10 tracks

leaving/entering each region. The results we show used a kernel bandwidth of 10 to cluster

entry and exit observations for Scenes 2-4 and 7, and a kernel bandwidth of 15 for Scenes

1, 5 and 6 (as they show a more zoomed in view). Additionally, when performing our

convex hull area-reduction technique to remove outliers we chose a threshold of σr = 1.5.

This value should be determined by the reliability of the tracking data (e.g., how likely are

53

noisy entry and exit observations). For computing the final region score, Ψ, for each entry

and exit region we used parameter values µΨ = 0.04 and σΨ = 0.10. For each Scene we also

display an arrow corresponding to the most popular direction of motion out of (entries) or

into (exits) each detected region. Results for Scenes 1-4 can be seen in Fig. 8.1, and results

for Scenes 5-7 can be seen in Fig. 8.2. A discussion of results for each scene is given below.

In Scene 1 we were able to detect all three expected entry and exit regions correspond-

ing to activity moving across the sidewalk.

In Scene 2 we were able to learn all of the expected entries and most of the expected

exits. For the entry regions, we split up a few of the regions alone the bottom of the image

which should probably be merged semantically. For the exits, we fail to learn the region in

the top left. This is due to the tracking in that part of the scene being more unreliable due

to both camera perspective and shadows. We also fail to learn a region corresponding to

motion exiting into the parking garage.

In Scene 3 we were able to learn all of the expected entry and exit regions. We learn

three regions entering into the building, and three regions exiting (corresponding to three

doors). We also detect an entry and exit region in the top left of the scene corresponding

to a walkway even though it is infrequently traveled with respect to the other regions in the

scene.

We also do a good job detecting regions in Scene 4, and even learn activity coming

and going from the parking garage on the left of the scene. The one region we do have

problems with is the top left walkway of the scene. We learn an incorrect exit region and

two incorrect entry regions. This can be attributed to a shadow on the sidewalk that our

weak tracker does not perform well with.

54

Scene Duration (minutes)
1 120
2 180
3 180
4 60
5 60
6 120
7 120

Table 8.1: Data collection durations in minutes for Scenes 1-7.

In Scenes 5 and 6 we also learn all of the expected regions. Both regions exhibit an

occlusion (bridge walkway in 5, and tree in 6) and we learn entry and exit regions at loca-

tions where objects walk behind and re-appear from these occluding structures. The other

interesting aspect to these scenes is how the regions tend to adhere to the right side of the

walkways, demonstrating the manner that pedestrians typically travel.

Lastly, we again do a good job detecting regions in Scene 7. We learn entry and exit

regions corresponding to activity on sidewalks that intersects the edge of the view, as well

as activity coming and going from the building in the top right of the Scene.

We compared our results to the methods described in [15] and [31] for Scenes 1-4

(results shown in Fig. 8.3). In [15] they use an EM-based Mixture of Gaussians (MoG)

approach to cluster trajectory start and end points to obtain a set of potential entry and

exit regions (described by Gaussian ellipses). They then use a density metric to determine

which clusters to keep, defined as W/E where W is the percentage of points belonging to

the cluster and E is the area of the Gaussian ellipse. Here, the area is computed as

E = π · I1 · I2 (8.1)

55

where I1 and I2 are the eigenvalues of the covariance matrix. When comparing to this

approach we used our entity entry and exit observations, as it provides for a fairer com-

parison. Using the weak tracking start and stop observations would be too noisy as this

approach expects strong tracking trajectory endpoints. When clustering each entry and exit

set we chose a large number of clusters (25) for each scene (as they do). We also experi-

mented with using Bayesian Information Criterion (BIC) [23], to automatically determine

the number of clusters. However, for our experiments we chose not to use BIC as it often

overfit the data (as BIC may do [7]), producing worse results. We kept clusters with weight

W/E > 2e−5 (produced the best results). Those clusters are plotted as yellow ellipses in

Fig. 8.3.

In [31] they partition the scene into a grid of states, where each state is defined by a

grid cell location and motion direction. They also use a binary activity mask for force

entry/exit states to be on the border of the scene activity, though we do not employ this

technique to allow for a fair comparison (neither our method nor the method in [15] have

such constraints). They map each weak track to a set of states, and compute an entry and

exit weight score for each state si. The entry and exit weight (WE and WX) are computed

as

WE = Cstart ·max
(

0, 1−
(

Cin
Cstart

))
(8.2)

WX = Cstop ·max
(

0, 1−
(
Cout
Cstop

))
(8.3)

Here, Cstart is the number of weak tracks that start in state si, Cstop is the number of weak

tracks that stop in state si, Cin is the number of weak tracks that transition into state si, and

Cout is the number of weak tracks that transition out of state si. Entry and exit states with

low weight scores are removed to obtain a final set of entry and exit states. We chose to

56

keep states with at least 0.75 of the max entry/exit weight for each scene. Those states are

denoted by arrows on the gridded scene in Fig. 8.3.

The approach from [15] had difficulty distinguishing reliable entry/exit regions from

ones that resulted in tracking noise in many of the scenes. In Scene 1 their approach failed

to detect any of the expected entry regions and only detected one of the three expected exits.

Most of the regions it detected resulted from noise due to bushes blowing in the wind. We

were able to distinguish such regions as being unreliable by analyzing the consistency of

the scene behavior with respect to each region. In Scene 2, the approach from [15] over-

clustered the entry/exit region near the top middle of the scene. Though they do detect

many of the expected regions they fail to detect activity coming and going from the parking

garage. They also miss the region in the top left (we detected it as an entry but not an exit).

The method from [15] was able to detect many of the expected entry and exit regions in

Scene 3, though it failed to learn the middle doorway of the building, and the walkway in

the top left of the scene. Additionally, it detected motion around the streetlight as an entry

and exit region (due to tracking failures occurring around this location).

In Scene 4 the approach from [15] was able to detect most of the expected regions.

Though they fail to detect the region corresponding to activity coming and going from

the parking garage and the entry region corresponding to the building doorway (which we

detect), they are able to detect an exit region on the top left of the scene which we miss due

to tracking inconsistency in this part of the scene.

In general, choosing a robust means to distinguish reliable regions from unreliable ones

for the approach in [15] was difficult. As desribed, we ended up choosing a threshold of

W/E > 2e−5. However, changing this threshold can drastically change the results, and it

57

1

2

3

4

Scene Entries Exits

Figure 8.1: Detected Entry and Exit regions for Scenes 1-4.

58

5

6

7

Scene Entries Exits

Figure 8.2: Detected Entry and Exit regions for Scenes 5-7.

59

1

2

3

4

Entries from [15] Exits from [15] Entry states [31] Exit states [31]

Figure 8.3: Entry and exit regions using the method in [15] (cols 1 and 2). Entry and exit
states using the method in [31] (cols 3 and 4). [Best viewed in color]

60

is also unclear how robust such a threshold is as it had difficulty generalizing across all four

scenes (it performed very poorly for Scene 1).

The approach from [31] failed to detect most of the entry activity in Scene 1, though

was able to detect most of the exit activity (though they detect multiple states per region).

In Scene 2 they detected states that result from the streetlight occlusion, and learn noisy

states in the middle of the scene.

The results produced for Scene 3 are very reasonable, though noisy states are detected

around the streetlight occlusion, and the entry/exit near the top left of the scene and the

entry/exit corresponding to the middle doorway of the building is not detected.

In Scene 4 they fail to detect most of the entry activity on the left half of the scene.

Though they are able to detect a fair amount of valid exit states, they also miss the parking

garage entry/exit and the building doorway entry/exit.

In general, the approach from [31] tended to detect a lot of unexpected regions (resulting

from noise). It is also unclear how each group of states should be group after they are

detected to represent a “holistic” entry/exit region. Overall, our approach produced the

best results across all of the scenes.

8.2 Ground Truth Evaluation

Ground truth is an important topic to discuss when doing any type of high-level scene

analysis. As discussed in Chapter 2, there is a significant amount of research that attempts

to learn or model sematic qualities of a scene. These works typically avoid the question of

ground truth. Rather, they usually support their work by showing that the models they learn

are useful in certain applications (e.g., anomaly detection, tracking). This can be attributed

to the difficulty quantifying such work. For example, if modeling pathways is the goal,

61

one could certainly show that a model is able detect anomalous paths that do not adhere

to normal pathways, but proving that the learned pathway model is correct is a much more

difficult task.

Other works that attempt to detect high level concepts such as groups of people, face

a similar problem. In [9], they attempt to detect groups of people in video, and offer a

quantitative analysis by comparing their results to the average of nine peoples manually

labeled results. This approach of “ground truth through consensus” is common in many

similar problems. It is not clear, however, that obtaining ground truth in this manner is

desirable. There may be disagreements among manual labels. If this is the case, accepting

that the idea of ground truth may be ambiguous for certain problems does not seem correct.

Rather, the problem may need to be better redefined to remove ambiguity. Even so, using

manual labels for ground truth is still probably preferable to nothing.

When it comes to detecting entry and exit regions, we face similar challenges. Previous

approaches to learn such regions tend to ignore the ground truth question. We could esti-

mate ground truth by asking subjects to manually mark the entry and exit zones for a camera

view (or even for a camera viewspace). A subject who is given an image of a scene and

asked to mark the entry/exit locations could surely produce something reasonable. They

would probably mark doorways, pathway entrances, etc. However, in this scenario they

would be concentrating solely on the scene structure and ignoring the behavior. They may

mark a doorway that is never used, or miss an entrance that results from a shortcut traveled

by pedestrians. Additionally, they may mark a sidewalk that intersects the image border

as and exit while in reality the exit really does not span the entire width of the sidewalk

(due to people only walking on the right side of the sidewalk). Such subtleties can only be

realized when the behavior of the scene is carefully analyzed. The authors from [28] share

62

Figure 8.4: Synthetic entry and exit regions.

our view and state that while some entry/exit locations are more obvious, there are others

that cannot be manually labeled without analyzing tracking data for a scene, however, they

fail to comment any further on ground truth evaluation. We offer a quantitative evaluation

of our method to learn region shapes, as well as an analysis of the amount of data required

to detect regions shapes reliably.

8.2.1 Region Shape Evaluation

We designed an experiment to test the shape of the regions that we learn with respect

to scene noise. To do so, we defined three entry-exit region pairs (shown in Figure 8.4),

and generated synthetic weak tracks between each pair. This was achieved by generating

synthetic “entities” that moved from each entry to exit for each pair of regions.

63

Ground 1 2 3 4 5 6 7 8
Truth

Figure 8.5: Detected entry and exit shapes across all eight noise levels.

64

The motion of each underlying “entity” was generated in the following manner. We

first created a base track by randomly sampling a starting location within an entry shape,

and an ending location in its corresponding exit shape. Using a pre-defined entity size,

represented as a circle around the base start and end locations, we randomly generated 1-3

more weak tracks for the entity. These additional tracks were generated with constraints

similar to those of our KLT tracker (e.g., weak tracks cannot be too close to each other).

We repeated this process 1000 times for each entry→ exit pair to simulate 1000 entities.

We then fragmented the weak tracks for eight different noise levels (1-8) by adding gaps to

the synthetic tracks. Here, the noise level corresponds to the average number of gaps per

weak track for each entity (e.g., for noise level 3 each weak track contains on average 3

gaps). When adding each gap, a random location and track was chosen. If the gap could

not be added at that location, a new random location was sampled. If after 50 attempts the

gap was still unable to be added, we did not add the gap (meaning the tracks were already

very fragmented). Additionally, we ensured that at least one weak track still captured the

underlying “entity” entry and exit location (we did not delete all of the ends from the

weak tracks). From this process we obtained eight different weak track sets (one for each

noise level) for each of the three entry-exit pairs. We then ran our entry-exit detection

method using the synthetic weak tracks. From this we learned entities, learned potential

entry/exit regions, scored the regions, and kept regions with a reliability score Ψ > 0.75.

We then compared the learned entry and exit regions with the ground truth regions that

the weak tracks were sampled from. For our method we used a kernel bandwidth of 25

to cluster entity entry/exit observation (10 when constructing the KDE surface to learn the

region shape), a threshold of σr > 2.5 to remove outlier observations, and µΨ = 0.4 and

σΨ = 0.10 when computing each region score. Results for each entry→ exit pair can be

65

seen in Tables 8.2, 8.3, and 8.4. For each entry/exit pair we display the F1 score, precision,

and recall (averaged over five trials) capturing how our detected regions compared to the

ground truth regions. We also display a signal to noise ratio (SNR), computed as the ratio of

the number of ground truth entry/exit observations to total entry/exit observations (averaged

over five trials). As we add more gaps to the tracks (noise increases), the number of noise-

induced entry/exit observations increases. Thus, the SNR is lower for higher noise levels.

A progression of how the region shapes we learned changed with respect to noise is also

shown in Fig. 8.5.

Our method was able to learn the correct number of entries and exits for each trial. As

the number of gaps per track was increased from 1-8 (the noise increased), our method

performed worse. Though our precision scores were high even as the noise increased,

the recall score were negatively impacted by noise. This can be attributed to the noise

starting to approximate the ground truth entry/exit observations as the amount of noise

increased. When removing outlier observations in each cluster, our method attempts to

analyze changes in convex hull area as perimeter points are removed. As the noise becomes

more dense, the change in convex hull area becomes smaller and it becomes increasingly

more difficult to differentiate outlier observations from valid entry/exit observations. Our

scores are noticeably worse for exit 2 than the rest of the regions. This can be attributed to

our method being unable to perform well when a region has a concavity filled with sparse

noise, as we rely on our convex hull approach which has difficulty with concavities. Such a

problem could be corrected by replacing the convex hull in our convex hull area reduction

approach with a representation that could accommodate concave shapes - such as alpha

shapes. Additional techniques to analyze the consistency of each cluster could also be

applied, such as the method presented in [30] by Streib and Davis. However, we do not feel

66

this is a huge shortcoming as such concave shapes to not occur frequently in practice (from

our observations).

We did not include results for noise level 0, as it is a degenerate case for our algorithm.

Our convex hull area-reduction attempts to remove noise from each cluster. For scenarios

where there is not any noise, and the data is uniformly distributed (as in our synthetic

experiment), our method will perform very poorly (as expected). There will be natural

variation in the area changes induced by each point (due to the nature of the uniformly

distributed data) which our algorithm will incorrectly perceive as noise. For real-world

data, which is not exactly uniform and will always consist of noise, our algorithm will

perform well.

We next varied the number of objects to determine how the number of “entities” impacts

the ability of our algorithm to detect the region shape. We first chose a fixed noise level (3),

and a set of synthetic weak tracks for that noise level (from the previous experiment). We

defined five object quantities (25, 50, 100, 250, and 500) and randomly sampled objects of

each amount for ten trials. We then ran our entry/exit region detection method for each set

of objects. Results for entry/exit pair 3 can be seen in Table 8.5.

As the number of tracks was increased from 25 to 1000, we were able to recover the un-

derlying entry and exit shape with greater accuracy (F1 score) and reliability (less variance

between trials). The set of 1000 objects represents the entire set from which each other

amount was sampled from (thus it could only be ran one time and has no variance). The

exit shape (the ‘L’) was a more difficult shape for our method to learn than the polygon-

shaped entry region. The recall score was generally high for all object amounts. This can

mostly be attributed to the entities being uniformly sampled within each region. Without

67

Noise Level F1 Score / St. Dev. Precision Recall SNR
1 0.975 / 0.010 0.983 0.968 39.683
2 0.975 / 0.010 0.976 0.975 6.188
3 0.947 / 0.030 0.934 0.966 2.357
4 0.900 / 0.046 0.990 0.829 1.253
5 0.841 / 0.038 0.985 0.737 0.755
6 0.621 / 0.309 0.965 0.514 0.501
7 0.402 / 0.174 0.978 0.269 0.370
8 0.300 / 0.183 0.981 0.192 0.304

Noise Level F1 Score / St. Dev. Precision Recall SNR
1 0.948 / 0.008 0.911 0.987 39.683
2 0.926 / 0.029 0.882 0.978 6.188
3 0.893 / 0.068 0.827 0.981 2.357
4 0.894 / 0.026 0.861 0.935 1.252
5 0.856 / 0.057 0.932 0.805 0.755
6 0.784 / 0.076 0.960 0.669 0.501
7 0.697 / 0.068 0.977 0.546 0.370
8 0.714 / 0.028 0.942 0.578 0.304

Table 8.2: Results for Entry 1 Synthetic Ground Truth Experiment. Note, F1, precision and
recall scored are the average over five trials

many samples, however, it is more difficult to determine the object border. This is reflected

by the (generally) poorer precision score for lower object counts.

8.3 Region Exploitation Experiments

After evaluating our entry and exit region detection method, and generating the above

quantitative results, we ran our occlusion detection algorithm, and learned forward entry

→ exit non-pathway region relationships. Additionally, using the detected occlusions and

region relationships we demonstrate how they may aid in object tracking and anomaly

detection.

68

Noise Level F1 Score / St. Dev. Precision Recall SNR
1 0.962 / 0.036 0.948 0.980 43.478
2 0.945 / 0.042 0.902 0.996 6.702
3 0.960 / 0.023 0.936 0.987 2.550
4 0.941 / 0.049 0.905 0.984 1.286
5 0.939 / 0.019 0.960 0.924 0.795
6 0.911 / 0.022 0.925 0.905 0.534
7 0.815 / 0.045 0.957 0.714 0.393
8 0.777 / 0.076 0.919 0.696 0.316

Noise Level F1 Score / St. Dev. Precision Recall SNR
1 0.759 / 0.157 0.637 0.995 43.478
2 0.750 / 0.106 0.617 0.992 6.702
3 0.666 / 0.065 0.619 0.881 2.550
4 0.570 / 0.104 0.966 0.413 1.286
5 0.543 / 0.091 0.949 0.386 0.795
6 0.438 / 0.092 0.940 0.291 0.534
7 0.390 / 0.121 0.927 0.255 0.393
8 0.306 / 0.067 0.890 0.187 0.316

Table 8.3: Results for Entry 2 Synthetic Ground Truth Experiment. Note, F1, precision and
recall scored are the average over five trials.

69

Noise Level F1 Score / St. Dev. Precision Recall SNR
1 0.955 / 0.011 0.931 0.980 37.594
2 0.957 / 0.011 0.949 0.965 6.676
3 0.945 / 0.014 0.954 0.940 2.447
4 0.923 / 0.028 0.913 0.942 1.298
5 0.850 / 0.055 0.930 0.810 0.771
6 0.845 / 0.070 0.948 0.774 0.518
7 0.790 / 0.071 0.908 0.722 0.386
8 0.567 / 0.114 0.957 0.416 0.309

Noise Level F1 Score / St. Dev. Precision Recall SNR
1 0.951 / 0.005 0.908 0.998 37.594
2 0.947 / 0.008 0.907 0.991 6.676
3 0.921 / 0.018 0.934 0.910 2.447
4 0.868 / 0.019 0.879 0.874 1.298
5 0.828 / 0.033 0.938 0.747 0.771
6 0.706 / 0.064 0.961 0.563 0.518
7 0.688 / 0.064 0.932 0.555 0.386
8 0.603 / 0.017 0.932 0.446 0.309

Table 8.4: Results for Entry 3 Synthetic Ground Truth Experiment. Note, F1, precision and
recall scored are the average over five trials.

Objects F1 Score / St. Dev. Precision Recall
25 0.798 / 0.179 0.838 0.839
50 0.816 / 0.142 0.780 0.920

100 0.844 / 0.077 0.760 0.969
250 0.896 / 0.034 0.830 0.978
500 0.910 / 0.027 0.868 0.962
1000 0.940 0.99 0.89

Objects F1 Score / St. Dev. Precision Recall
25 0.692 / 0.200 0.612 0.852
50 0.736 / 0.105 0.620 0.942

100 0.755 / 0.120 0.632 0.974
250 0.791 / 0.088 0.681 0.968
500 0.821 / 0.012 0.757 0.902
1000 0.90 0.940 0.866

Table 8.5: Results for Entry and Exit 3 Synthetic Ground Truth Experiment, object count
varied. Note, F1, precision and recall scored are the average over ten trials for object
quantities 25-500. The values for 1000 objects represent the full set of data (which the
other object amounts were sampled from).

70

8.3.1 Occlusion Discovery

We tested the proposed occlusion detection method, and display results for Scenes 3,

5, 6, and 7 (as they contain occlusions). We used an entropy threshold of 0.98 · Hmax for

all four scenes where Hmax is the maximum possible entropy score for the distribution.

Results are presented in Fig. 8.6.

In Scene 5 we successfully learned the bridge occlusion region. In Scene 6 we success-

fully learned the tree occlusion region on the sidewalk, and learned the tree occlusion in the

street in the direction of the one-way street traffic. In Scene 7 we learned the tree occlusion

in both directions on the near sidewalk, and in one direction in the street (as it is one-way).

No natural occlusions existed in Scene 3 so we created a set of eight synthetic occlusions

and added them to the scene (shown in black). Some were arranged in series along the

bottom and top walkways. The last exit region in the middle of the scene along the bottom

actually is associated with two entry regions due to traffic splitting under the occlusion.

8.3.2 Entry-Exit Relationships

For each scene we also found the relationships between non-occlusion-entry and non-

occlusion-exit regions. For each scene entry region r, we obtain the likelihood that an

object entering the scene at r will leave the scene via each scene exit region x ∈ X using

Eqn. (6.2). Entry-exit relationship results for Scenes 3 and 5 are shown in Fig. 8.7 where

we display an arrow from each entry region to the most likely exit region. In Scene 3, we

learned the entry-exit relationships corresponding to the sidewalk traffic. In Scene 5 it can

be seen that the two entry regions learned at the bottom right of the scene are semantically

meaningful, as traffic entering the left region has a strong relationship with the walkway

exit on the left of the scene, and the right region has a strong relationship with the nearest

71

Figure 8.6: Occlusion detection results from Scenes 5, 6, 3, and 7 with arrows drawn from
the occlusion exit (red) to the occlusion entry (green). [Best viewed in color]

(a) (b)

Figure 8.7: Most probable entry and exit connections for Scenes 5 and 3. [Best viewed in
color]

72

door exit to the building. More in depth results can be seen in Table 8.6 and Table 8.7,

where individual entry-exit pair probabilities are provided.

8.3.3 Region Exploitation Applications

Next, we applied our learned occlusion and entry-exit relationship models to tracking

and anomaly detection applications.

Tracking

We ran a covariance tracker [19] (stronger tracker) along with the learned occlusion

model to demonstrate how the model may be used to aid in tracking. We used the feature set

fk = [x, y, R,G,B, Ix, Iy] to build a covariance descriptor for the tracker. The tracker was

set up to automatically initialize on motion occurring in the learned scene entry regions,

providing that the motion was moving in the same direction as the expected activity for

leaving the region. If the tracker is able to initialize, it attempts to track the object until

it either 1) leaves the Scene or 2) loses the object. If the object enters an occlusion exit,

an expected wait time is estimated from the learned occlusion distance and object speed,

and then the tracker attempts to re-acquire the target at the learned entry location(s) for

the occlusion. It searches the expected occlusion re-entry area until it finds a match within

2σ from the learned covariance model. Some results are presented in Fig. 8.8 (a) and

(b). As shown, the tracker was able to track objects despite the occluded region, and was

able to reacquire the object at the occlusion entry via cues derived from our learned model

(expected wait time). The results are especially significant for Scene 6, as the tree covering

the sidewalk is large and would be difficult for traditional tracking methods to track through

such an occlusion.

73

(a) (b)

Figure 8.8: Covariance tracking results from Scenes 5 and 6. Dashed lines correspond
tracks on either side of the occlusion. [Best viewed in color]

(a) (b)

Figure 8.9: Track likelihoods for (a) the ten most likely and (b) five least likely tracks.
[Best viewed in color]

74

1 2 3 4 5 6
A 0 0.84 0.08 0.06 0.01 0
B 0.87 0 0.08 0.03 0.02 0
C 0.09 0.08 0 0.83 0 0
D 0.08 0.15 0.74 0 0.03 0
E 0 0 0 0 0 1
F 0.06 0.08 0.05 0 0.81 0

Table 8.6: Activity probabilities between entries (rows) and exits (columns) for Scene 5.
Region labels shown in Fig. 8.7(a).

1 2 3 4 5 6 7 8
A 0 0.07 0.06 0.17 0.04 0.35 0.13 0.18
B 0.18 0 0.19 0.19 0 0.22 0.07 0.16
C 0.17 0.07 0 0.25 0.05 0.32 0.05 0.09
D 0.13 0 0.48 0 0 0.20 0.08 0.11
E 0.24 0 0.23 0.20 0 0.16 0 0.17
F 0.20 0.05 0.14 0.04 0.03 0 0.37 0.17
G 0.12 0.05 0.06 0.20 0.03 0.41 0 0.14
H 0.46 0.04 0.04 0.15 0.03 0.21 0.08 0
I 0.13 0.05 0.54 0 0.06 0.06 0.05 0.10
J 0.18 0 0.30 0.13 0 0.19 0.09 0.11

Table 8.7: Activity probabilities between entries (rows) and exits (columns) for Scene 3.
Region labels shown in Fig. 8.7 (b).

75

Anomaly Detection

We also used the covariance tracker to track multiple people in Scene 3 and rank their

trajectory likelihood. We smoothed the trajectories and then obtained a likelihood score for

each trajectory using Eqn. (6.3). We display the ten most likely trajectories in Fig. 8.9 (a),

and the five least likely trajectories in Fig. 8.9 (b). The least likely trajectories in Fig. 8.9

(b) correspond to an object taking a long meandering path between regions (red), exiting

the scene at a location not corresponding to an exit region (blue), taking a path between

regions that is infrequently traveled (magenta, cyan) and a short trajectory resulting from

tracker failure (green). Our model is able to detect such anomalous behavior as we not only

learn activity relationships between entry-exit pairs, but also the distance of the path taken

between them. If desired, a threshold could be learned/employed to automatically detect

rare events.

8.4 Camera Viewspace Experiments

We ran various experiments to test the extension of our region detection method to

work on a camera viewspace. We present entry and exit detection results for three different

pan-tilt-zoom cameras, and a comparative result of a local scene learned on the camera

viewspace. We also display a projection of our learned viewspace regions from multiple

cameras to an orthographic ground plane for two cameras.

8.4.1 Viewspace Region Detection

We tested our global entry/exit region detection algorithm on three pan-tilt-zoom cam-

eras each located on 4, 4, and 8 story buildings respectively. We first collected data for

76

Camera Pass Count Duration (minutes)
1 14 425
2 8 243
3 8 243

Table 8.8: Data collection durations for our global region detection approach in minutes
for cameras 1-3.

each camera by developing a list of overlapping camera orientations that cover the cam-

era viewspace. We used two different lists - one slightly shifted from the first to generate

more overlap among the camera views. Each camera’s viewspace was sampled multiple

times (multiple viewspace passes). The number of passes for each camera along with an

estimated total collection duration is provided in Table 8.8. We used a kernel bandwidth

of 0.02 to cluster entry and exit observations on a unit sphere for Camera’s 1 and 2, and

a kernel bandwidth of 0.01 for Camera 3 (8 story building vs. 4). We used a threshold

of σr = 2.0 to remove outliers from each cluster, and µΨ = 0.4 and σΨ = 0.05 when

computing reliability scores for each potential entry and exit region. We kept regions with

a reliability score Ψ > 0.75 and at least 10 tracks leaving/entering each entry/exit region.

Results are shown in Figures 8.11, 8.12, and 8.13.

For Camera 1 we learn most of the expected entry and exit regions. We are able to learn

regions corresponding to activity entering and exiting two of the building, as well as activity

entering and exiting the camera viewspace. The regions on the periphery of the camera

viewspace correspond to the furthest areas away from the camera that we can track reliably

with our weak tracker. Object moving in areas further away (especially moving toward or

away from the camera) are not tracked well due to a minimum displacement constraint for

the weak tracker (features being tracked must move a minimum amount between frames).

77

In addition to the expected regions we are able to learn, we also learn a few regions due

to partial and full scene occlusions (e.g., trees, streetlight), and fail to learn an entry and

exit region corresponding to entry and exit activity of the building in the bottom of the

camera view. This is due to the perspective of objects coming and going from that view

restricting the amount of displacement each object moves between frames, preventing our

weak tracker from reliability tracking such objects.

For Camera 2 we area also able to learn many of the expected entry and exit regions.

We again learn regions corresponding to entry and exit behavior of two of the building in

the camera viewspace. We also learn regions around two tree occlusions which, using our

local occlusion detection approach, could be detected as occlusion regions.

For Camera 3 we learn many expected regions. We are able to detect entry and exit

regions corresponding to the three doorways of the building in the center of the view. Ad-

ditionally, we learn an entry and exit regions corresponding to a tunnel walkway to the

left of the building entrance, and a doorway coming out of the building directly below the

camera. We also learn regions on a window of the building that the camera is mounted on.

This is due to the scene being reflected in the window. Sample frames for the reflection

are shown in Fig. 8.10. Lastly, we also learn some noisy regions on the periphery of the

camera viewspace (e.g., from traffic motion many blocks away).

Overall we do a good job detecting entry and exit regions in all three cameras. Though

we do learn noisy regions occasionally, and fail to learn some expected regions we are able

to learn most of the expected regions in each camera viewspace. We feel that perspective

prevents us from learning reliable regions near the periphery of the camera viewspace,

and may be corrected using 1) tracking paramters that vary with camera tilt, or 2) a zoom

78

Figure 8.10: Example frames showing objects moving on the ground through the reflection
in a building window for Camera 3.

adaptive sampling of the space (we use a constant zoom level). These ideas are discussed

further in chapter 9.

8.4.2 Local vs. Viewspace Approach Comparison

We ran an experiment to compare our local camera view region detection method to

our analog camera viewspace approach using the same local scene data. Using the data

for Scene 3 in our local region detection experiments, we detected entry and exit regions

for Scene 3 using our viewspace approach. To do so, we projected the entity tracks for

Scene 3 to the camera viewspace (Scene 3 was actually collected from a single view of a

pan-tilt-zoom camera), and ran our region detection algorithm in that space. Results can be

seen in Fig. 8.14.

As shown, we were able to learn the same set of regions globally that we learned locally.

While the learned region shapes are slightly different (the local space is an approximation of

the global space), they are significantly similar between the two spaces. The main direction

79

Entries Exits

Figure 8.11: Viewspace entry and exit regions for camera 1.

Entries Exits

Figure 8.12: Viewspace entry and exit regions for camera 2.

80

Entries Exits

Figure 8.13: Viewspace entry and exit regions for camera 3.

of motion in and out of each region is also very accurate between each space. It is also worth

nothing that we increased the angular histogram bin count used to capture the directional

and interaction consistency for each region from 8 to 16 for the viewspace approach to

more accurately compute the main direction of motion in the camera viewspace.

8.5 World Space Entry/Exit Regions

Global entry and exit regions are useful for tasks within the scope of the camera views-

pace. For tasks that may require interaction between cameras (e.g., tracking objects be-

tween cameras), regions learned from each camera viewspace may be projected to a global

world space (e.g., lat-lon or UTM). For this we require a mapping between the pan-tilt

viewspace of a camera and the global (lat-lon or UTM) world space. To achieve this map-

ping we employ the registration technique described in [22]. They present a method to

81

Entries Exits

Figure 8.14: Entry and exit regions from a single view learned locally (row 1) and in the
camera viewspace (row 2).

82

register the viewspace of a pan-tilt-zoom camera with a common ground plane. We use an

aerial orthophoto as our ground plane. The registration process is composed of two steps,

1) “defishing” the panorama (which representees the camera viewspace), followed by 2)

learning a transformation between the defished panorama and the orthophoto. Combining

these two steps produces a registration matrix (shown below) that captures the relationship

between (θ, φ) camera space locations, and (xg, yg) locations on the ground plane. xg
yg
1

 =

 a1 a2 tx
a3 a4 ty
0 0 1

 tanφ · cos θ
tanφ · sin θ

1

 (8.4)

Here, the six parameters (a1, a2, a3, a4, tx, and ty) can be learned via a least squares

formulation by manually corresponding (xp, yp) points on the panorama image to (xg, yg)

points on the ground plane.

Using this method, we projected the entry and exit regions learned for Cameras 1 and 2

to an aerial orthophoto. The center of each entry/exit region are displayed in Figures 8.15,

and 8.16. We chose to only display the centroid of each region due to possible projection

distortion from the mapping model. The mapping model maps points between planes, so

distortion is possible if detected regions happen to not exist directly on the ground plane.

Displaying the centroid provides a rough estimate of the region location.

Here, the yellow circles correspond to regions from Camera 1, and the blue triangles

correspond to regions from Camera 2. The location of each camera is represented by a

square (yellow for Camera 1, blue for Camera 2). These two figures display the coverage

overlap between these two cameras. The regions are learned with respect to the view of

each camera, thus some of the regions do not correspond to true global entry/exit regions,

but rather occlusions with respect to each camera view. Such regions are still important,

however, for inter-camera tasks. For example, if an object being tracked by Camera 1

83

Figure 8.15: Entry regions for Cameras 1 and 2 plotted on an orthophoto.

84

Figure 8.16: Exit regions for Cameras 1 and 2 plotted on an orthophoto.

85

wishes to be handed off to Camera 2 to continue tracking, it is important to understand

where camera 2’s entry/exit regions exits in the world space to ensure a successful handoff.

8.6 Limitations

We have shown entry and exit detection results using our approach on many scenes for

both local and global views. As seen in the results, we our method is able to consistently

detect the set of expected entry and exit regions in each scenario with great accuracy. How-

ever, like all algorithms, there are situations and scenarios where our approach does not

perform perfectly. In this section we discuss limitations of our entity tracking technique,

our entry and exit detection process, and our occlusion discovery method.

8.6.1 Entities

In order for us to reliably detect and track entities from the underlying weak tracking

data, each semantic entity must be tracked by at least one weak track during each frame. If

there is a frame where no weak tracks are tracking the underlying entity, we consider this to

be an entity exit, and the subsequent frame where a weak track appears on the entity again

a new entity entry. Thus, as an object moves through the scene, it must be tracked by at

least one underlying weak track between each pair of frames for us to classify the motion

of the object into one semantic entity track.

8.6.2 Entry and Exit Region Detection

We are limited to detecting entry and exit regions that adhere to our entry/exit behavior

model. That is, tracks that leave (for entries) or enter (for exits) each region must do

so in a semi-directional manner. Thus, we are not able to detect entry (or exit) regions

where activity leaves (or enters) the region in all directions (e.g., a people coming out of

86

or moving into a manhole on the ground). Additionally, due to the nature of the weak

tracker we use, the entry and exit regions we learn are the consequence of object motion

initialization and termination in the scene. While the weak tracker we use is a feature point

tracker, we require the features being tracked to move in order to track them. Using our

current weak tracking approach as input, regions of a scene where objects typically stop

moving, and other objects do not pass through (e.g., at a park bench) would be learned as

exit (and entry) region by our approach. Depending on the application, such regions may be

important, though they do not correspond to true entry or exit regions where objects appear

or disappear from the scene. To prevent such regions from being detected, a different

type of object tracker could be used to generate input; one that does not stop tracking

objects/features when they stop moving.

8.6.3 Occlusion Detection and Entry→ Exit Region Relationships

For our approach to reliably detect scene occlusions we must first be able to learn entry

and exit regions and the entrance and exit of the occluding path. Thus, if an occlusion that

some people walk behind and other walk in front of exists in the scene, we will be unable to

detect entry and exit regions for such an occlusions. In this scenario the occlusion exit and

entry would appear as a “through state” as we are unable to differentiate the object tracks

that move behind and in front of the occlusion as differing in depth.

Both our occlusion discovery and region relationship detection methods, attempt to

correlate activity between regions by estimating the path distances between co-occurring

events between regions. This approach requires one distance estimate to strongly stand out

for us to consider two regions to be related. Thus, we assume that objects traveling between

87

two regions use roughly the same path to travel between them. The more paths that are used

will introduce more uncertainly to the distribution of estimated travel distances.

88

CHAPTER 9: CONCLUSION AND FUTURE WORK

We have presented a novel method to detect, and exploit entry and exit regions in video.

We have also introduced a novel extension that allows such regions to be detected in the

viewspace of a pan-tilt-zoom camera, rather than within a local camera view. After intro-

ducing the problem in Chapter 1, we provided a discussion of related work in Chapter 2.

A system overview was presented in Chapter 3, and a description of our entry/exit region

detection and scoring method was presented in Chapter 5. We then explained how the

learned regions can be exploited to learn areas of motion through occluding structures in

the scene, and relationships between entry and exit regions that capture higher level seman-

tic “actions” in the scene (e.g., people travel from entry A to exit B). Next, we presented

an extension of our local view region detection algorithm to allow for such regions to be

detected in the viewspace of a pan-tilt-zoom camera. Thorough experimental results and

discussion for each aspect of our approach were presented in Chapter 8, including a quan-

titative analysis of our region detection method, and a discussion regarding ground truth.

We have shown that utilizing the scene behavior is paramount to detecting semantic

regions in a scene. Often such problems are approached in a mechanized manner where

data (e.g., object trajectories, entry/exit observations) are collected and then thought of

as points or curves in an arbitrary space, completely ignoring the rules that defined the

world that they came from. Behavior models have been used previously for a handful

of scene modeling tasks (e.g., group detection) and often borrow ideas from sociology or

psychology, but such models have not been applied to entry/exit region detection explicitly.

89

Most previous approaches to entry/exit region detection pose the problem as a strict spatial

clustering problem, ignoring the scene behavior that generated the input data used. We

have shown that by applying a behavior model for object trajectories, we are able to detect

entry and exit regions with much higher accuracy and also require less data, providing the

data adhere to the expected entry/exit behavior (compared to approaches the score regions

based on density). This can be attributed to the behavior model supplementing the raw

trajectory data with higher level information.

We have also demonstrated weak tracking data can be powerful when working with very

busy scenes. Though the actual weak tracks cannot be directly tied to semantic objects in

the world, we have shown that a grouping of such tracks (entities) in a consistent manner

allows for a simplification of the weak track set on which more robust inference can occur.

This is especially the case when accumulating a set of entry and exit observations.

Our occlusion discovery method demonstrates that directly modeling the occluding

structures in the scene is not always necessary. Rather, we have shown that learning re-

gions where activity exits the scene (moves beind an occlusion), and re-enters a scene can

aid in tracking objects through occlusions. Additionally, we have demonstrated that path-

ways are not needed to model actions in the scene. Rather than learning pathways we

model forward relationships between entry and exit regions, and produce a probabilistic

model of where an object will exit the scene, depending on where it entered. Such a model

also allows for anomaly detection applications (as we have shown in the previous chapter).

We have also demonstrated that is is possible to detect entry and exit regions in the

camera viewspace reliably using a collection of overlapping local camera views, and we

have also shown that these regions may be pushed to an even more global space to combine

information between different cameras.

90

9.1 Contributions

We have presented several techniques that demonstrate the ideas described above. We

have also compared our approach to previous approaches and shown that our entry and

exit detection method outperforms previous approaches, especially in crowded and busy

scenes. Additionally, we have presented a method to quantitatively evaluate the accuracy

of our region detection method with respect to the amount of scene noise, and the number of

objects required to accurately estimate the shape of each entry/exit region. Our quantitative

results are especially important as most previous works only offer qualitative analysis and

anecdotal evidence that their methods perform well. Overall, the main contributions of our

work may be summarized in the following manner.

• Entity tracking: Our method to construct weak tracking data into “entities” creates

a more usable set of scene entry and exit observations. The “entities” represent “co-

herent motion regions” in the scene which may also be useful for various other visual

surveillance tasks (e.g., person counting).

• Behavior-based entry and exit detection algorithm: We have presented a method

to score the behavioral consistency of each potential entry and exit region Scoring

such regions based on behavior allows for more information to be gained from less

data, as the behavior model helps to define the entry and exit regions in the scene

which we detect.

• Quantitative analysis for region detection: Our quantitative region detection exper-

iments help to evaluate our method outside of our qualitative results. They demon-

strate the ability of our method to detect entry and exit regions when the ground truth

91

regions are known, and show how our approach performs with respect to noise and

object count.

• Method to discover relationships between detected regions: We have presented

an approach to detect causal relationships between exit and entry regions that result

from occlusion activity, and have presented a method to model forward entry→ exit

relationships in the scene.

• Extension to detect entry/exit regions in a camera viewspace: Lastly, we have

presented a novel extension of our local camera view entry/exit detection method to

allow for such regions to be detected with respect to the viewspace of a PTZ camera.

Learning such regions within a camera’s viewspace frees the camera to move to view

different parts of the world, and still retain semantic information about the area it is

monitoring.

9.2 Future Work

Below is a discussion of future work that may be interesting to explore to extend or

improve upon our current approach.

9.2.1 Adaptive Clustering

Our entry/exit observation clustering technique may over and under-cluster the space

when attempting to localize on entry and exit regions. This is especially apparent for the

global viewspace approach. Here, the scales that the entry and exit regions exist on may

vary greatly (e.g., small doorway vs. large walkway). As such, it may be beneficial to

explore alternative clustering approaches where either 1) a mean-shift clustering kernel

bandwidth is varied throughout the space, or 2) an alternative method to cluster/partition

92

the scene is used. For the local image approach, attempting to account for perspective for

certain scenes may also be beneficial. This could be accomplished again by varying the ker-

nel bandwidth depending on location of the space after a perspective model is determined

for the view.

9.2.2 Adaptive Viewspace Sampling

We generally have difficulty obtaining a reliable set of entry/exit observations at pe-

riphery of the camera viewspace (for our camera viewspace approach). This is due to the

weak tracking parameters (e.g., feature displacement between frames, minimum distance

between observations) being tuned to perform well near the camera, to reduce noise (e.g.,

trees swaying). These parameters tend to degrade the tracking performance as the camera

tilts toward the horizon. This is due to 1) the perspective of objects moving toward the

camera appear as if they’re not moving, thus causing small displacement between frames,

and 2) objects being smaller and not having as many weak tracking observations on them

due to the minimum distance between features constraint. One possible solution to these

problems is to vary the tracking parameters with respect to camera tilt. This can still be

problematic, however, as objects in a single camera view may vary greatly in depth. Addi-

tionally, the zoom of the camera could be increased with respect to tilt. This is probably the

most robust solution, though it requires many more views to sample the camera viewspace

for our viewspace region method.

9.2.3 Online Update

Our approaches to learn both local and global regions require a one time data collection.

However, the structure of a scene may vary over time. Aside from re-running our approach

93

to account for seasonal variations, it would be worth exploring a method to slowly adapt

our results via an online update that could be run periodically.

94

BIBLIOGRAPHY

[1] F. Bashir and F. Porikli. Performance evaluation of object detection and tracking
systems. In IEEE International Workshop on Performance Evaluation of Tracking
and Surveillance, 2006. 5

[2] M. Bevis and J.L. Chatelain. Locating a point on a spherical surface relative to a
spherical polygon of arbitrary shape. Mathematical Geology, 21(8), 1989. 47

[3] J. Black, T. Ellis, and P. Rosin. A novel method for video tracking performance
evaluation. In In Joint IEEE Int. Workshop on Visual Surveillance and Performance
Evaluation of Tracking and Surveillance, 2003. 5

[4] Y. Cheng. Mean shift, mode seeking, and clustering. PAMI, 17(8), 1995. 20

[5] A.M. Cheriyadat, B.L. Bhaduri, and R.J. Radke. Detecting multiple moving objects
in crowded environments with coherent motion regions. In POCV, 2008. 10

[6] A.M. Cheriyadat and R.J. Radke. Automatically determining dominant motions in
crowded scenes by clustering partial feature trajectories. In Proc. Int. Conf. on Dis-
tributed Smart Cameras, 2007. 10

[7] N. Cruz-Ramirez and et al. How good are the Bayesian information criterion and
the minimum description length principle for model selection? A Bayesian network
analysis. In Proc. 5th Mexican Int. Conf. on Artificial Intelligence, 2006. 23, 56

[8] H. Edelsbrunner, D.G. Kirkpatrick, and R. Seidel. On the shape of a set of points in
the plane. IEEE Trans. Inform. Theory., 29(4), 1983. 24

[9] W. Ge, R. T. Collins, and B. Ruback. Automatically detecting the small group struc-
ture of a crowd. In IEEE Workshop on Applications of Computer Vision, 2009. 62

[10] L. Guan, J.-S. Franco, and M. Pollefeys. 3D occlusion interference from silhouette
cues. In CVPR, 2007. 11

[11] L. et. al. Guan. Visual hull construction in the presence of partial occlusion. In 3rd
Int’l Symp. on 3D Data Proc., Vis, and Transmission., 2007. 11

95

[12] R. Kaucic, A.G.A. Perera, G. Brooksby, J. Kaufhold, and A. Hoogs. A unified frame-
work for trackig through occlusions and across sensor gaps. In CVPR, 2005. 11

[13] L. Lee, R. Romano, and G. Stein. Monitoring activities from multiple video streams:
Establishing a common coordinate frame. IEEE Trans. Patt. Analy. and Mach. Intell.,
22(8), 2000. 12

[14] D. Makris and T. Ellis. Path detection in video surveillance. In Image and Vis. Comp.,
2002. 5

[15] D. Makris and T. Ellis. Automatic learning of an activity-based semantic scene model.
In AVSS, 2003. xi, 5, 10, 23, 25, 26, 55, 56, 57, 60

[16] D. Makris, T. Ellis, and J Black. Bridging the gaps between cameras. In CVPR, 2004.
11

[17] H.S. Na, C.N. Lee, and O. Cheong. Voronoi diagrams on the sphere. Computational
Geometry: Theory and Applications, 23(2), 2002. 46

[18] E. Parzen. On estimation of a probability density function and mode. Ann. Math.
Statist., 33(3), 1962. 25

[19] F. Porikli, O. Tuzel, and P. Meer. Covariance tracking using model update based on
means on Riemannian manifolds. In CVPR, 2006. 73

[20] V. Rabaud and S. Belongie. Counting crowded moving objects. In CVPR, 2006. 10

[21] K. Sankaranarayanan and J.W. Davis. An efficient active camera model for video
surveillance. In Proc. Wkshp. Applications of Comp. Vis., 2008. 12, 13, 40, 41

[22] K. Sankaranarayanan and J.W. Davis. A fast linear registration framework for multi-
camera gis coordination. In Advanced Video and Signal Based Surveillance, 2008.
81

[23] G. Schwarz. Estimating the dimension of a model. Ann. of Statist., 6(2), 1978. 23, 56

[24] J. Shi and C. Tomasi. Good features to track. In CVPR, 1994. 6

[25] S.N. Sinha and Marc Pollefeys. Pan-tilt-zoom camera calibration and high-resolution
mosaic generation. Comp. Vis. and Image Understanding, 103:170 – 183, 2006. 12

[26] R.W. Sinnott. Virtues of the haversine. Sky and Telescope., 68(2), 1984. 45

[27] K. Smith, D. Gatica-perez, Odobez J.M., and S. Ba. Evaluating multi-object tracking.
In In Workshop on Empirical Evaluation Methods in Computer Vision, 2005. 5, 6

96

[28] C. Stauffer. Estimating tracking sources and sinks. In In Proc. Second IEEE Event
Mining Workshop, 2003. 5, 10, 62

[29] C. Stauffer and K. Tieu. Automated multi-camera planar tracking correpondence
modeling. In CVPR, 2003. 12

[30] K. Streib and J. Davis. Using ripley’s k-function to improve graph-based clustering
techniques. In CVPR, 2011. 66

[31] K. Streib and J.W. Davis. Extracting pathlets from weak tracking data. In AVSS, 2010.
xi, 6, 11, 55, 56, 60, 61

[32] T. Wada and T. Matsuyama. Appearance sphere: Background model for pan-tilt-zoom
camera. In Proc. Int. Conf. Pat. Rec., 1996. 13

[33] X. Wang, K. Tieu, and E. Grimson. Learning semantic scene models by trajectory
analysis. In ECCV, 2006. 5, 11

[34] X. Wang, K. Tieu, and E.L. Grimson. Correspondence-free activity analysis and scene
modeling in multiple camera views. IEEE Trans. Patt. Analy. and Mach. Intell., 1(1),
2009. 12

97

	Abstract
	Dedication
	Acknowledgments
	Vita
	List of Tables
	List of Figures
	Introduction
	Motivation
	Contribution and Significance
	Proposed Approach
	Weak Tracking
	Entry and Exit Region Detection

	Organization

	Related Work
	Weak Tracking
	Entry and Exit Discovery
	Entry and Exit Exploitation
	Camera Viewspace Entry and Exits

	System Overview
	Local View Region Detection
	Camera Viewspace Region Detection
	Method Applications

	Entity Detection and Tracking
	Entity Discovery
	Entity Tracking

	Entry and Exit Region Detection
	Region Shape
	Region Reliability

	Exploiting Entry and Exit Regions
	Exit Exit Occlusion Relationships
	Entry Exit Non-Pathway Relationships

	Extension To Camera Viewspace
	Camera Geometry
	Viewspace Data Collection
	Viewspace Region Detection
	Using the Viewspace Model in a Local View
	Viewspace Region Exploitation

	Experiments and Results
	Region Detection Experiments
	Ground Truth Evaluation
	Region Shape Evaluation

	Region Exploitation Experiments
	Occlusion Discovery
	Entry-Exit Relationships
	Region Exploitation Applications

	Camera Viewspace Experiments
	Viewspace Region Detection
	Local vs. Viewspace Approach Comparison

	World Space Entry/Exit Regions
	Limitations
	Entities
	Entry and Exit Region Detection
	Occlusion Detection and Entry Exit Region Relationships

	Conclusion and Future Work
	Contributions
	Future Work
	Adaptive Clustering
	Adaptive Viewspace Sampling
	Online Update

	Bibliography

