Skip to main content
Log in

Hierarchical stereo matching with image bit-plane slicing

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

We propose a new stereo matching framework based on image bit-plane slicing. A pair of image sequences with various intensity quantization levels constructed by taking different bit-rate of the images is used for hierarchical stereo matching. The basic idea is to use the low bit-rate image pairs to compute rough disparity maps. The hierarchical matching strategy is then carried out iteratively to update the low confident disparities with the information provided by extra image bit-planes. It is shown that, depending on the stereo matching algorithms, even the image pairs with low intensity quantization are able to produce fairly good disparity results. Consequently, variate bit-rate matching is performed only regionally in the images for each iteration, and the average image bit-rate for disparity computation is reduced. Our method provides a hierarchical matching framework and can be combined with the existing stereo matching algorithms. Experiments on Middlebury datasets show that the proposed technique gives good results compared to the conventional full bit-rate matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. For example, most digital cameras, especially for the mid- to high-end models, have 14 or 12 bits per pixel in their internal or RAW image formats.

References

  1. Barnard, S.T., Fischler, M.A.: Computational stereo. ACM Comput. Surv. 14(4), 553–572 (1982). doi:10.1145/356893.356896

    Article  Google Scholar 

  2. Bhat, D.N., Nayar, S.K.: Ordinal measures for image correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 20(4), 415–423 (1998). doi:10.1109/34.677275

    Article  Google Scholar 

  3. Birchfield, S., Tomasi, C.: Depth discontinuities by pixel-to-pixel stereo. Int. J. Comput. Vision. 35(3), 269–293 (1999)

    Article  Google Scholar 

  4. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001). doi:10.1109/34.969114

    Article  Google Scholar 

  5. Brown, M.Z., Burschka, D., Hager, G.D.: Advances in computational stereo. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 993–1008 (2003). doi:10.1109/TPAMI.2003.1217603

    Article  Google Scholar 

  6. Chen, Y.S., Hung, Y.P., Fuh, C.S.: Fast block matching algorithm based on the winner-update strategy. IEEE Trans. Image Process. 10(8), 1212–1222 (2001). doi:10.1109/83.935037

    Article  MATH  Google Scholar 

  7. Dhond, U., Aggarwal, J.: Structure from stereo: A review. IEEE Trans. Syst. Man Cybern. 19(6), 1489–1510 (1989)

    Article  MathSciNet  Google Scholar 

  8. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. J. Comput. Vision 70(1), 41–54 (2006)

    Article  Google Scholar 

  9. Gehrig, S.K., Eberli, F., Meyer, T.: A real-time low-power stereo vision engine using semi-global matching. In: Proceedings of the 7th International Conference on Computer Vision Systems, pp. 134–143 (2009)

  10. Gong, M., Yang, Y.H.: Multi-resolution stereo matching using genetic algorithm. In: SMBV ’01: Proceedings of the IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV’01), p. 21 (2001)

  11. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004)

  12. Humenberger, M., Zinner, C., Weber, M., Kubinger, W., Vincze, M.: A fast stereo matching algorithm suitable for embedded real-time systems. Comput Vision Image Underst. 114(11), 1180–1202 (2010). doi:10.1016/j.cviu.2010.03.012. Special issue on Embedded Vision

    Article  Google Scholar 

  13. Hung, Y.P., Chen, C.S., Hung, K.C., Chen, Y.S., Fuh, C.S.: Multipass hierarchical stereo matching for generation of digital terrain models form aerial images. Mach. Vision Appl. 10(5–6), 280–291 (1998). doi:10.1007/s001380050079

    Article  Google Scholar 

  14. Klaus, A., Sormann, M., Karner, K.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: ICPR ’06: Proceedings of the 18th International Conference on Pattern Recognition, pp. 15–18 (2006)

  15. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. IEEE Int. Conf. Comput. Vision 2, 508 (2001)

    Google Scholar 

  16. Lu, J., Rogmans, S., Lafruit, G., Catthoor, F.: Stream-centric stereo matching and view synthesis: A high-speed approach on gpus. IEEE Trans. Circuits Syst. Video Technol. 19(11), 1598–1611 (2009). doi:10.1109/TCSVT.2009.2026948

    Article  Google Scholar 

  17. Min, D., Sohn, K.: Cost aggregation and occlusion handling with wls in stereo matching. IEEE Trans. Image Process. 17(8), 1431–1442 (2008). doi:10.1109/TIP.2008.925372

    Article  MathSciNet  Google Scholar 

  18. Ohta, Y., Kanade, T.: Stereo by intra- and inter-scanline search using dynamic programming. IEEE Trans. Pattern Anal. Mach. Intell. 7(2), 139–154 (1985)

    Article  Google Scholar 

  19. Roy, S., Cox, I.J.: A maximum-flow formulation of the n-camera stereo correspondence problem. In: ICCV ’98: Proceedings of the Sixth International Conference on Computer Vision, p. 492 (1998)

  20. Scharstein, D., Szeliski, R.: Middlebury stereo vision page. http://vision.middlebury.edu/stereo (2002)

  21. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 47(1–3), 7–42 (2002)

    Article  MATH  Google Scholar 

  22. Sun, J., Zheng, N.N., Shum, H.Y.: Stereo matching using belief propagation. IEEE Trans. Pattern Anal. Mach. Intell. 25(7), 787–800 (2003). doi:10.1109/TPAMI.2003.1206509

    Article  Google Scholar 

  23. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1068–1080 (2008). doi:10.1109/TPAMI.2007.70844

    Article  Google Scholar 

  24. Terzopoulos, D.: Regularization of inverse visual problems involving discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 8(4), 413–242 (1986). doi:10.1109/TPAMI.1986.4767807

    Article  Google Scholar 

  25. Witkin, A., Terzopouli, D., Kass, M.: (1987) Readings in computer vision: issues, problems, principles, and paradigms. chap. Signal matching through scale space, (pp. 759–764) Morgan Kaufmann Publishers Inc., San Francisco

  26. Yang, R., Pollefeys, M.: Multi-resolution real-time stereo on commodity graphics hardware. In: IEEE Computer Vision and Pattern Recognition, pp. 211–217 (2003)

  27. Zhang, L.: Fast stereo matching algorithm for intermediate view reconstruction of stereoscopic television images. IEEE Trans. Circuits Syst. Video Technol. 16(10), 1259–1270 (2006). doi:10.1109/TCSVT.2006.882390

    Article  Google Scholar 

Download references

Acknowledgments

The support of this work in part by the National Science Council of Taiwan, R.O.C, under Grant NSC-99-2221-E-194-005-MY3 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huei-Yung Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, HY., Lin, PZ. Hierarchical stereo matching with image bit-plane slicing. Machine Vision and Applications 24, 883–898 (2013). https://doi.org/10.1007/s00138-012-0452-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-012-0452-2

Keywords

Navigation