Skip to main content
Log in

Homography-based depth recovery with descent images

  • Short Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In planetary landing exploration task, the images captured by the landing camera are nearly along optical axis which results in multi-resolution images of same terrain surface. Recovering the surface shape of landing terrain from descent imagery is of great value for lander to choose safe landing area. In this paper, a homography-based depth recovery method with descent images is addressed. At first, the parallax and scale change in descent images are analyzed. Second, the camera motion is optimized with SIFT features correspondence constraints. For dense depth recovery, a set of virtual parallel planes is assumed to slice the terrain and each plane induces a homography to warp back the second image to first image plane. Zero-normalized cross-correlation score is chosen to compute the correlation score and the correlation curve is smoothed by two Gaussian filters. The depth for each pixel is determined by the plane which has highest correlation value. At the end, some experiments are conducted, including different correlation computation, depth recovery with different terrain, and the error tests. The results show that the discussed method is feasible to recover the depth information overall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Matthies, L., Olson, C., Tharp, G., et al.: Visual localization methods for mars rovers using lander, rover, and descent imagery. In: International Symposium on Artificial Intelligence, Robotics, and Automation in Space, Tokyo, Japan, Citeseer (1997)

  2. Li, R., Ma, F., Xu, F., et al.: Localization of mars rovers using descent and surface-based image data. J. Geophys. Res. 107(E11), 8004 (2002)

    Google Scholar 

  3. Xiong, Y., Olson, C., Matthies, L.: Computing depth maps from descent images. Mach. Vis. Appl. 16(3), 139–147 (2005)

    Google Scholar 

  4. Matthies, L., Maimone, M., Johnson, A., et al.: Computer vision on mars. Int. J. Comput. Vis. 75(1), 67–92 (2007)

    Article  Google Scholar 

  5. Collins, R.: A space-sweep approach to true multi-image matching. In: Proceedings of the 1996 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’96), pp. 358–363. IEEE, New york (1996)

  6. Hanna, K.: Direct multi-resolution estimation of ego-motion and structure from motion. In: Proceedings of the IEEE Workshop on Visual Motion, 1991, pp. 156–162. IEEE, New York (1991)

  7. Soatto, S., Perona, P.: Reducing “structure from motion”. In: Proceedings of the 1996 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’96), pp. 825–832. IEEE, New York (1996)

  8. Oliensis, J., Genc, Y.: Fast and accurate algorithms for projective multi-image structure from motion. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 546–559 (2001)

    Google Scholar 

  9. Xiong, Y., Gson, C. F., Matthies, L. H.: Computing depth maps from descent imagery. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 392–397 (2001)

  10. Olson, C., Matthies, L., Xiong, Y., et al.: Multi-resolution mapping using surface, descent, and orbital images. In: Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Citeseer (2001)

  11. Pei, M., Jia, Y.D.: 3D reconstruction under camera motion along optic axis. J. Comput. Aided Des. Comput. Graph. 17(3), 534–539 (2005)

    Google Scholar 

  12. Oi-Hara, R., Barnes, D.: A new shape from shading technique with application to Mars Express HRSC images. ISPRS J. Photogramm. Remote Sens. 67, 27–34 (2012)

    Article  Google Scholar 

  13. Tomasi, C., Kanade, T.: Shape and motion from image streams: a factorization method—2. Point features in 3D motion. Int. J. Comput. Vis. 9(2), 137–154 (1992)

    Google Scholar 

  14. Morita, T., Kanade, T.: A sequential factorization method for recovering shape and motion from image streams. IEEE Trans. Pattern Anal. Mach. Intell. 19(8), 858–867 (1997)

    Article  Google Scholar 

  15. Li, Y.C., Wen, W.G.: Lidar technological system for acquiring quickly 3D terrain data. Develop. Surv. Mapp. 27(4), 35–39 (2002)

    Google Scholar 

  16. Horn, B.: Height and gradient from shading. Int. J. Comput. Vis. 5(1), 37–75 (1990)

    Article  Google Scholar 

  17. Tsai, P., Shah, M.: Shape from shading using linear approximation. Image Vis. Comput. 12(8), 487–498 (1994)

    Article  Google Scholar 

  18. Leclerc, Y., Bobick, A.: The direct computation of height from shading. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1991 (CVPR’91), pp. 552–558. IEEE, New York (2002)

  19. Biswas, S., Aggarwal, G., Chellappa, R.: Robust estimation of albedo for illumination-invariant matching and shape recovery. IEEE Trans. Pattern Anal. Mach. Intell. 31, 884–899 (2008)

    Google Scholar 

  20. Pentland, A.: Finding the illuminant direction. JOSA 72(4), 448–455 (1982)

    Google Scholar 

  21. Lee, C., Rosenfeld, A.: Improved methods of estimating shape from shading using the light source coordinate system. Artif. Intell. 26(2), 125–143 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zheng, Q., Chellappa, R.: Estimation of illuminant direction, albedo, and shape from shading. IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 680–702 (2002)

    Article  Google Scholar 

  23. Zhang, R., Tsai, P., Cryer, J., et al.: Shape-from-shading: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 690–706 (2002)

    Article  Google Scholar 

  24. Barmpoutis, A., Bozia, E., Wagman, R.: A novel framework for 3D reconstruction and analysis of ancient inscriptions. Mach. Vis. Appl. 21(6), 989–998 (2010)

    Article  Google Scholar 

  25. Namboodiri, V., Chaudhuri, S.: Recovery of relative depth from a single observation using an uncalibrated (real-aperture) camera. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008, CVPR 2008, pp. 1–6. IEEE, New York (2008)

  26. Oliensis, J.: A critique of structure-from-motion algorithms. Comput. Vis. Image Underst. 80(2), 172–214 (2000)

    Article  MATH  Google Scholar 

  27. Chiuso, A., Favaro, P., Jin, H., Soatto, S.: Structure from motion causally integrated over time. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 523–535 (2002)

    Article  Google Scholar 

  28. Huang, T., Netravali, A.: Motion and structure from feature correspondences a review. Proc. IEEE 82(2), 252–268 (1994)

    Article  Google Scholar 

  29. Szeliski, R., Torr, P.: Geometrically constrained structure from motion: points on planes. In: 3D Structure from Multiple Images of Large-Scale Environments, pp. 171–186 (1998)

  30. Molton, N., Davison, A., Reid, I.: Locally planar patch features for real-time structure from motion. In: British Machine Vision Conference, vol. 3 (2004)

  31. Dellaert, F., Seitz, S., Thorpe, C., Thrun, S.: Structure from motion without correspondence. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 557–564. IEEE, New York (2000)

  32. Ens, J., Lawrence, P.: An investigation of methods for determining depth from focus. IEEE Trans. Pattern Anal. Mach. Intell. 15(2), 97–108 (1993)

    Google Scholar 

  33. Grossmann P.: Depth from focus. Pattern Recognit. Lett. 5(1), 63–69 (1987)

    Google Scholar 

  34. Chaudhuri, S., Rajagopalan, A.: Depth From Defocus: a Real Aperture Imaging Approach. Springer, Berlin (1999)

  35. Prazdny, K.: Egomotion and relative depth map from optical flow. Biol. Cybern. 36(2), 87–102 (1980)

    Google Scholar 

  36. Heeger, D., Jepson, A.: Simple method for computing 3D motion and depth. In: Proceedings of the Third International Conference on Computer Vision, 1990, pp. 96–100 (1990)

  37. Adato, Y., Vasilyev, Y., Zickler, T., Ben-Shahar, O.: Shape from specular flow. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2054–2070 (2010)

    Article  Google Scholar 

  38. Vizireanu, D.: Generalizations of binary morphological shape decomposition. J. Electron. Imaging 16(1), 013002–013002 (2007)

    Article  Google Scholar 

  39. Vizireanu, D.: Morphological shape decomposition interframe interpolation method. J. Electron. Imaging 17(1), 013007–013007 (2008)

    Article  Google Scholar 

  40. Vizireanu, N., Halunga, S., Marghescu, G.: Morphological skeleton decomposition interframe interpolation method. J. Electron. Imaging 19(2), 023018–023018 (2010)

    Article  Google Scholar 

  41. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  42. Xiong, Y., Matthies, L.: Error analysis of a real-time stereo system. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997, pp. 1087–1093. IEEE, New York (2002)

  43. Hirschmuller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition: CVPR 2005, vol. 2, pp. 807–814. IEEE, New York (2005)

  44. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by China Academy of Space Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, C., Zhou, N., Xue, X. et al. Homography-based depth recovery with descent images. Machine Vision and Applications 24, 1093–1106 (2013). https://doi.org/10.1007/s00138-013-0498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-013-0498-9

Keywords

Navigation