Skip to main content
Log in

A nonlocal energy minimization approach to brain image segmentation with simultaneous bias field estimation and denoising

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Image segmentation plays an important role in medical image analysis. The most widely used image segmentation algorithms, region-based methods that typically rely on the homogeneity of image intensities in the regions of interest, often fail to provide accurate segmentation results due to the existence of bias field, heavy noise and rich structures. In this paper, we incorporate nonlocal regularization mechanism in the coherent local intensity clustering formulation for brain image segmentation with simultaneously estimating bias field and denoising, specially preserving good structures. We define an energy functional with a local data fitting term, two nonlocal regularization terms for both image and membership functions, and a \(L_2\) image fidelity term. By minimizing the energy, we get good segmentation results with well preserved structures. Meanwhile, the bias estimation and noise reduction can also be achieved. Experiments performed on synthetic and clinical brain magnetic resonance imaging data and comparisons with other methods are given to demonstrate that by introducing the nonlocal regularization mechanism, we can get more regularized segmentation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thompson, P., Mega, M., Woods, R., Zoumalan, C., Lindshield, C., Blanton, R., Moussai, J., Holmes, C., Cummings, J., Toga, A.: Cortical change in alzheimer’s disease detected with a disease-specific population-based brain atlas. Cereb. Cortex 11(1), 1–16 (2001)

    Article  Google Scholar 

  2. Acton, P., Newberg, A.: Artificial neural network classifier for the diagnosis of parkinson’s disease using [99mtc] trodat-1 and spect. Phys. Med. Biol. 51, 3057–3066 (2006)

    Article  Google Scholar 

  3. Tincher, M., Meyer, C., Gupta, R., Williams, D.: Polynomial modeling and reduction of rf body coil spatial inhomogeneity in MRI. IEEE Trans. Med. Imaging 12(2), 361–365 (1993)

    Article  Google Scholar 

  4. Liew, A., Yan, H.: An adaptive spatial fuzzy clustering algorithm for 3-d mr image segmentation. IEEE Trans. Med. Imaging 22(9), 1063–1075 (2003)

    Article  Google Scholar 

  5. Li, C., Gatenby, C., Wang, L, Gore, J.: A robust parametric method for bias field estimation and segmentation of mr images. IEEE Conference on Computer Vision and Pattern Recognition, pp. 218–223 (2009)

  6. García-Sebastián, M., Fernández, E., Graña, M., Torrealdea, F.: A parametric gradient descent mri intensity inhomogeneity correction algorithm. Pattern Recognit. Lett. 28(13), 1657–1666 (2007)

    Article  Google Scholar 

  7. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based bias field correction of mr images of the brain. IEEE Trans. Med. Imaging 18(10), 885–896 (1999)

    Article  Google Scholar 

  8. Gispert, J., Reig, S., Pascau, J., Vaquero, J., García-Barreno, P., Desco, M.: Method for bias field correction of brain t1-weighted magnetic resonance images minimizing segmentation error. Human Brain Mapp. 22(2), 133–144 (2004)

    Article  Google Scholar 

  9. Wells III, W., Grimson, W., Kikinis, R., Jolesz, F.: Adaptive segmentation of mri data. IEEE Trans. Med. Imaging 15(4), 429–442 (1996)

  10. Guillemaud, R., Brady, M.: Estimating the bias field of mr images. IEEE Trans. Med. Imaging 16(3), 238–251 (1997)

    Article  Google Scholar 

  11. Sled, J., Pike, G.: Understanding intensity non-uniformity in mri. Medical Image Computing and Computer-Assisted InterventationMICCAI98 pp. 614–622 (1998)

  12. Likar, B., Viergever, M., Pernus, F.: Retrospective correction of mr intensity inhomogeneity by information minimization. IEEE Trans. Med. Imaging 20(12), 1398–1410 (2001)

    Article  Google Scholar 

  13. Ahmed, M., Yamany, S., Mohamed, N., Farag, A., Moriarty, T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of mri data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002)

    Article  Google Scholar 

  14. Mayer, A., Greenspan, H.: An adaptive mean-shift framework for mri brain segmentation. IEEE Trans. Med. Imaging 28(8), 1238–1250 (2009)

    Article  Google Scholar 

  15. Li, C., Xu, C., Anderson, A., Gore, J.: Mri tissue classification and bias field estimation based on coherent local intensity clustering: A unified energy minimization framework. In: Information Processing in Medical Imaging, pp. 288–299. Springer, Berlin (2009)

  16. Li, C., Li, F., Kao, C., Xu, C.: Image segmentation with simultaneous illumination and reflectance estimation: An energy minimization approach. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 702–708 (2009)

  17. Ji, Z., Chen, Q., Sun, Q., Xia, D., Heng, P.: Mr image segmentation and bias field estimation using coherent local and global intensity clustering. In: 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Vol. 2. IEEE, pp. 578–582 (2010)

  18. Ji, Z., Xia, Y., Sun, Q., Chen, Q., Xia, D., Feng, D.: Fuzzy local gaussian mixture model for brain mr image segmentation. IEEE Trans. Inf. Technol. Biomed. 16(3), 339–347 (2012)

    Article  Google Scholar 

  19. Ji, Z., Xia, Y., Sun, Q., Xia, D., Feng, D.: Local gaussian distribution fitting based FCM algorithm for brain MR image segmentation. Intelligent Science and Intelligent Data Engineering, pp. 318–325 (2012)

  20. Derganc, J., Likar, B., Pernus, F.: Nonparametric segmentation of multispectral mr images incorporating spatial and intensity information. In: Proceedings of SPIE, vol 4684, p. 391 (2002)

  21. Vovk, U., Pernus, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in mri. IEEE Trans. Med. Imaging 26(3), 405–421 (2007)

    Article  Google Scholar 

  22. Bresson, X., Chan, T.: Non-local unsupervised variational image segmentation models. UCLA cam report 08–67 (2008)

  23. Jung, M., Vese, L.: Nonlocal variational image deblurring models in the presence of gaussian or impulse noise. Scale Space and Variational Methods in Computer Vision, pp. 401–412 (2009)

  24. Caldairou, B., Rousseau, F., Passat, N., Habas, P., Studholme, C., Heinrich, C.: A non-local fuzzy segmentation method: Application to brain mri. In: Computer Analysis of Images and Patterns, pp. 606–613, Springer, Berlin (2009)

  25. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. CVPR 2005. IEEE Computer Society Conference, vol. 2, pp. 60–65 (2005)

  26. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Caldairou, B., Passat, N., Habas, P., Studholme, C., Rousseau, F.: A non-local fuzzy segmentation method: application to brain mri. Pattern Recognit. 44(9), 1916–1927 (2011)

    Article  Google Scholar 

  28. Pham, D., Prince, J.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Med. Imaging 18(9), 737–752 (1999)

    Article  Google Scholar 

  29. Pham, D.: Spatial models for fuzzy clustering. Comput. Vis. Image Underst. 84(2), 285–297 (2001)

    Article  MATH  Google Scholar 

  30. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  31. Chen, Y., Zhang, J., Macione, J.: An improved level set method for brain mr images segmentation and bias correction. Comput. Med. Imag. Graph. 33(7), 510–519 (2009)

    Article  Google Scholar 

  32. Zhou, D., Schölkopf, B.: A regularization framework for learning from graph data. In: ICML Workshop on Statistical Relational Learning and its Connections to other Field. Banff, Alberta, Canada, pp. 132–137 (2004)

  33. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Google Scholar 

  34. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460 (2005)

    Google Scholar 

  35. Cocosco, C., Kollokian, V., Kwan, R., Pike, G., Evans, A.: Brainweb: Online interface to a 3d mri simulated brain database. In: NeuroImage, Citeseer (1997)

  36. Worth, A.J.: Internet brain segmentation repository. http://www.cma.mgh.harvard.edu/ibsr/

  37. Wang, J., Guo, Y., Ying, Y., Liu, Y., Peng, Q.: Fast non-local algorithm for image denoising. In: 2006 IEEE International Conference on Image Processing, pp. 1429–1432 (2006)

Download references

Acknowledgments

This work was in part supported by a national science and technology project during the twelfth five-year plan (No. 2012BAI10B04) and the National Natural Science Foundation of China under Grant No. 11101365.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangfang Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Wang, J., Kong, D. et al. A nonlocal energy minimization approach to brain image segmentation with simultaneous bias field estimation and denoising. Machine Vision and Applications 25, 529–544 (2014). https://doi.org/10.1007/s00138-013-0546-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-013-0546-5

Keywords

Navigation