Skip to main content
Log in

Background modeling in the maritime domain

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Maritime environment represents a challenging scenario for automatic video surveillance due to the complexity of the observed scene: waves on the water surface, boat wakes, and weather issues contribute to generate a highly dynamic background. Moreover, an appropriate background model has to deal with gradual and sudden illumination changes, camera jitter, shadows, and reflections that can provoke false detections. Using a predefined distribution (e.g., Gaussian) for generating the background model can result ineffective, due to the need of modeling non-regular patterns. In this paper, a method for creating a “discretization” of an unknown distribution that can model highly dynamic background such as water is described. A quantitative evaluation carried out on two publicly available datasets of videos and images, containing data recorded in different maritime scenarios, with varying light and weather conditions, demonstrates the effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.dis.uniroma1.it/~bloisi/software/imbs.html Also available in OpenCV in a few time.

References

  1. Ablavsky, V.: Background models for tracking objects in water. In: ICIP, vol. 3, pp. 125–128 (2003)

  2. ATON: Autonomous Agents for On-Scene Networked Incident Management. http://cvrr.ucsd.edu/aton/testbed

  3. Bloisi, D., Iocchi, L.: Independent multimodal background subtraction. In: Proceedings of the Third International Conference on Computational Modeling of Objects Presented in Images: Fundamentals, Methods and Applications, pp. 39–44 (2012)

  4. Bloisi, D.D., Iocchi, L.: ARGOS—a video surveillance system for boat trafic monitoring in venice. Int. J. Pattern Recognit. Artif. Intell. 23(7), 1477–1502 (2009)

    Article  Google Scholar 

  5. changedetection.net: Benchmark dataset. http://www.changedetection.net/

  6. Cheung, S., Kamath, C.: Robust techniques for background subtraction in urban traffic video. In: Visual Communications and Image Processing, vol. 5308, pp. 881–892 (2004)

  7. Cristani, M., Farenzena, M., Bloisi, D., Murino, V.: Background subtraction for automated multisensor surveillance: a comprehensive review. EURASIP J. Adv. Signal Process. 1–24 (2010)

  8. Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting moving objects, ghosts, and shadows in video streams. PAMI 25(10), 1337–1342 (2003)

    Article  Google Scholar 

  9. Dalley, G., Migdal, J., Grimson, W.: Background subtraction for temporally irregular dynamic textures. In: IEEE Workshop on Applications of Computer Vision, pp. 1–7 (2008)

  10. Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S.: Dynamic textures. IJCV 51(2), 91–109 (2003)

    Article  MATH  Google Scholar 

  11. Elgammal, A.M., Harwood, D., Davis, L.S.: Non-parametric model for background subtraction. In: ECCV, pp. 751–767 (2000)

  12. Elhabian, S.Y., El-Sayed, K.M., Ahmed, S.H.: Moving object detection in spatial domain using background removal techniques—state-of-art. Recent Pat. Comput. Sci. 1, 32–54 (2008)

    Article  Google Scholar 

  13. Godbehere, A.B., Matsukawa, A., Goldberg, K.: Visual tracking of human visitors under variable-lighting conditions for a responsive audio art installation. In: American Control Conference (ACC), pp. 4305–4312 (2012)

  14. Goyette, N., Jodoin, P.M., Porikli, F., Konrad, J., Ishwar, P.: changedetection.net: a new change detection benchmark dataset. In: Proceedings of IEEE Workshop on Change Detection at CVPR12 (2012)

  15. He, Q., Chu, C.H.H.: Detection of reflecting surfaces by a statistical model. In: SPIE (2009)

  16. Heikkila, M., Pietikainen, M.: A texture-based method for modeling the background and detecting moving objects. PAMI 28(4), 657–662 (2006)

    Article  Google Scholar 

  17. Jug Sequence: Dynamic background sequences. http://www.cs.bu.edu/groups/ivc/data.php

  18. Kaewtrakulpong, P., Bowden, R.: An improved adaptive background mixture model for realtime tracking with shadow detection. In: Proceedings of 2nd European Workshop on Advanced Video Based Surveillance Systems, pp. 135–144 (2001)

  19. MAR: Maritime Activity Recognition Dataset. http://labrococo.dis.uniroma1.it/MAR

  20. Mittal, A., Paragios, N.: Motion-based background subtraction using adaptive kernel density estimation. In: CVPR, pp. 302–309 (2004)

  21. Noriega, P., Bernier, O.: Real time illumination invariant background subtraction using local kernel histograms. In: Proceedings of BMVC, pp. 100.1-100.10 (2006)

  22. Oliver, N.M., Rosario, B., Pentland, A.P.: A bayesian computer vision system for modeling human interactions. PAMI 22(8), 831–843 (2000)

    Article  Google Scholar 

  23. OpenCV: Open Source Computer Vision. http://opencv.org

  24. Piccardi, M.: Background subtraction techniques: a review. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 3099–3104 (2004)

  25. Rankin, A.L., Matthies, L.H., Huertas, A.: Daytime water detection by fusing multiple cues for autonomous off-road navigation. In: 24th Army Science Conference, vol. 9 (2004)

  26. Sheikh, Y., Shah, M.: Bayesian object detection in dynamic scenes. In: CVPR, pp. 74–79 (2005)

  27. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: CVPR, vol. 2, pp. 246–252 (1999)

  28. Stenger, B., Ramesh, V., Paragios, N., Coetzee, F., Buhmann, J.: Topology free hidden markov models: application to background modeling. In: ICCV, vol. 1, pp. 294–301 (2001)

  29. Tavakkoli, A., Nicolescu, M., Bebis, G.: Robust recursive learning for foreground region detection in videos with quasi-stationary backgrounds. In: ICPR, pp. 315–318 (2006)

  30. Tian, Y., Feris, R.S., Liu, H., Hampapur, A., Sun, M.T.: Robust detection of abandoned and removed objects in complex surveillance videos. IEEE Trans. Syst. Man Cybern. Part C 41(5), 565–576 (2011)

    Article  Google Scholar 

  31. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: ICCV, vol. 1, pp. 255–261 (1999)

  32. Vacavant, A., Chateau, T., Wilhelm, A., Lequivre, L.: A benchmark dataset for outdoor foreground/background extraction. In: ACCV 2012, Workshop: Background Models, Challenge (2012)

  33. Wallflower Sequence: Test Images for Wallflower Paper. http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.htm

  34. Wang, H., Suter, D.: Background subtraction based on a robust consensus method. In: ICPR, pp. 223–226 (2006)

  35. Water surface sequence: Statistical Modeling of Complex Background for Foreground Object Detection. http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html

  36. Zhang, S., Yao, H., Liu, S.: Dynamic background modeling and subtraction using spatio-temporal local binary patterns. In: ICIP, pp. 1556–1559 (2008)

  37. Zhang, S., Yao, H., Liu, S.: Dynamic background subtraction based on local dependency histogram. IJPRAI 23(7), 1397–1419 (2009)

    Google Scholar 

  38. Zhang, S., Yao, H., Liu, S.: Spatial-temporal nonparametric background subtraction in dynamic scenes. In: ICME, pp. 518–521 (2009)

  39. Zhang, S., Yao, H., Liu, S., Chen, X., Gao, W.: A covariance-based method for dynamic background subtraction. In: ICPR, pp. 1–4 (2008)

  40. Zhao, J., Xu, X., Ding, X.: New goodness of fit tests based on stochastic EDF. Commun. Stat. Theory Methods 39(6), 1075–1094 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. Zhao, M., Bu, J., Chen, C.: Robust background subtraction in HSV color space. In: SPIE: Multimedia Systems and Applications, pp. 325–332 (2002)

  42. Zhong, B., Yao, H., Shan, S., Chen, X., Gao, W.: Hierarchical background subtraction using local pixel clustering. In: ICPR, pp. 1–4 (2008)

  43. Zhong, J., Sclaroff, S.: Segmenting foreground objects from a dynamic textured background via a robust Kalman filter. In: ICCV, pp. 44–50 (2003)

  44. Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. Int. Conf. Pattern Recognit. 2, 28–31 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Pennisi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloisi, D.D., Pennisi, A. & Iocchi, L. Background modeling in the maritime domain. Machine Vision and Applications 25, 1257–1269 (2014). https://doi.org/10.1007/s00138-013-0554-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-013-0554-5

Keywords

Navigation