Skip to main content
Log in

Detail-generating geometry completion for point-sampled geometry

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present a novel method for detail-generating geometry completion over point-sampled geometry. The main idea consists of converting the context-based geometry completion into the detail-based texture completion on the surface. According to the influence region of boundary points surrounding a hole, a smooth patch covering the hole is first constructed using radial base functions. By applying region-growing clustering to the patch, the patching units for further completion with geometry details is then produced, and using the trilateral filtering operator formulated by us, the geometry-detail texture of each sample point on the input geometry is determined. The geometry details on the smooth completed patch are finally generated by optimizing a constrained global texture energy function on the point-sampled surfaces. Experimental results demonstrate that the method can achieve efficient completed patches that not only conform with their boundaries, but also contain the plausible 3D surface details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hong, R.C., Tang, J.H., Tan, H.K., Ngo, C.W., Yan, S.C., Chua, T.S.: Beyond search: event-driven summarization for web videos. ACM Trans. Multimed. Comput. Commun. Appl. 7(4), 35 (2011)

    Article  Google Scholar 

  2. Wang, M., Hong, R.-C., Li, G.-D., Zha, Z.-J., Yan, S.-C., Chua, T.-S.: Event driven web video summarization by tag localization and key-shot identification. IEEE Trans. Multimed. 14(4), 975–985 (2012)

    Article  Google Scholar 

  3. Hong, R.-C., Wang, M., Li, G.-D., Nie, L.-Q., Zha, Z.-J., Chua, T.-S.: Multimedia question answering. IEEE MultiMed. 19(4), 72–78 (2012)

    Google Scholar 

  4. Hong, R.-C., Zha, Z.-J., Gao, Y., Chua, T.-S., Wu, X.-D.: Multimedia encyclopedia construction by mining web knowledge. Signal Process. 93(8), 2361–2368 (2013)

    Article  Google Scholar 

  5. Wang, R.-F., Wang, Q., Xue, B.-B., Yang, Q., Li, J.-F.: Simplification of point-sampled geometry with feature preservation. IET Image Process. 5(4), 299–305 (2011)

    Article  Google Scholar 

  6. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of the SIGGRAPH’2001, pp. 67–76. Los Angeles (2001)

  7. Ohtake, Y., Belyaev, A., Seidel, H.P.: A multi-scale approach to 3D scattered data interpolation with compactly supported basis functions. In: Proceedings of Shape Modeling International, pp. 153–161. Seoul (2003)

  8. Casciola, G., Lazzaro, D., Montefusco, L.B., Morigi, S.: Fast surface reconstruction and hole filling using positive definite radial basis functions. Numer. Algorithms 39(1–3), 289–305 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, F.Z., Chen, Z.Y., Ding, Z., Ye, X.Z., Zhang, S.Y.: Filling holes in point cloud with radial basis function. J. Comput. Aided Design Comput. Graph. 18(9), 1414–1419 (2006). (in Chinese with English abstract)

    Google Scholar 

  10. Süßmuth, J., Meyer, Q., Greiner, G.: Surface reconstruction based on hierarchical floating radial basis functions. Comput. Graph. Forum. 29(6), 1854–1864 (2010)

    Article  Google Scholar 

  11. Du, X.-W., Che, X.-J.: A hierarchical approach to 3D scattered data interpolation with radial basis functions. In: proceedings of Computer-Aided Design and Computer Graphics (CAD/Graphics), pp. 262–267. Jinan (2011)

  12. Ahn, S.J., Yoo, J., Lee, B.G., Lee, J.J.: 3D surface reconstruction from scattered data using moving least square method. In: Proceedings of ICIAP, pp. 719–726. Cagliari (2005)

  13. Wang, J., Oliveira, M.M.: Filling holes on locally smooth surfaces reconstructed from point clouds. Image Vis. Comput. 25(1), 103–113 (2007)

    Article  Google Scholar 

  14. Sharf, A., Alexa, M., Cohen-Or, D.: Context-based surface completion. ACM Trans. Graph. 23(3), 878–887 (2004)

    Article  Google Scholar 

  15. Park, S., Guo, X., Shin, H., Qin, H.: Shape and appearance repair for incomplete point surfaces. In: Proceedings of the International Conference on Computer Vision, pp. 1260–1267. Beijing (2005)

  16. Kawai, N., Sato, T., Yokoya, N.: Surface completion by minimizing energy based on similarity of shape. In: Proceedings of ICIP’2008, pp. 1532–1535. San Diego (2008)

  17. Kawai, N., Sato, T., Yokoya, N.: Efficient surface completion using principal curvature and its evaluation. In: Proceedings of ICIP’2009, pp. 521–524. Cairo (2009)

  18. Kawai, N., Zakhor, A., Sato, T., Yokoya, N.: Surface completion of shape and texture based on energy minimization. In: Proceedings of ICIP’2011, pp. 897–900. Brussels (2011)

  19. Pauly, M., Mitra, N.J., Giesen, J., Guibas, L., Gross, M.: Example-Based 3D Scan Completion. In: Proceedings of the Third Eurographics Symposium on Geometry Processing, pp. 23–32. Vienna (2005)

  20. Park, S., Guo, X., Shin, H., Qin, H.: Surface completion for shape and appearance. Vis. Comput. 22(3), 168–180 (2006)

    Article  Google Scholar 

  21. Pauly, M., Mitra, N.J., Wallner, J., Pottmann, H., Guibas, L.: Discovering structural regularity in 3D geometry. ACM Trans. Graph. 27(3), 1–11 (2008)

    Article  Google Scholar 

  22. Sun, J., Yuan, L., Jia, J., Shum, H.-Y.: Image completion with structure propagation. ACM Trans. Graph. 24(3), 861–868 (2005)

    Article  Google Scholar 

  23. Komodakis, N., Tziritas, G.: Image completion using efficient belief propagation via priority scheduling and dynamic pruning. IEEE Trans. Image Process. 16(11), 2649–2661 (2007)

    Article  MathSciNet  Google Scholar 

  24. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 1–11 (2009)

    Article  Google Scholar 

  25. Yang, Y., Zhu, Y., Peng, Q.: Image completion using structural priority belief propagation. In: Proceedings of the 17th ACM International Conference on Multimedia, pp. 717–720. Beijing (2009)

  26. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimization for example-based synthesis. ACM Trans. Graph. 24(3), 795–802 (2005)

    Article  Google Scholar 

  27. Xiao, C.-X.: Multi-level partition of unity algebraic point set surfaces. J. Comput. Sci. Technol. 26(2), 229–238 (2011)

    Article  Google Scholar 

  28. Savchenko, V., Kojekine, N.: An approach to blend surfaces. In: Proceedings of Computer Graphics International, pp. 139–150. Bradford (2002)

  29. Dong, J., Ma, S., Li, L., Yu, Z.: Hole filling on three-dimensional surface texture. In: Proceedings of ICME’2007, pp. 1299–1302. Beijing (2007)

  30. Bendels, G.H., Schnabel, R., Klein, R.: Detecting holes in point set surfaces. J. WSCG 14, 89–96 (2006)

    Google Scholar 

  31. Pauly, M., Gross, M., Kobbelt, L.P.: Efficient simplification of point-sampled surfaces. In: Proceedings of IEEE Visualization, pp. 163–170. Boston (2002)

  32. Lorensen, W., Cline, H.: Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of the SIGGRAPH’1987, pp. 163–169. Anaheim (1987)

  33. Wang, R.-F., Li, J.-F., Yang, Q., Zhang, S.-Y.: Fast High-Quality Rendering of Point-Sampled Geometry. J. Comput. Aided Design Comput. Graph. 22(2), 191–197 (2010). (in Chinese with English abstract)

    Google Scholar 

  34. Wang, H., Chen, H., Su, Z., Cao, J., Liu, F., Shi, X.: Versatile surface detail editing via Laplacian coordinates. Vis. Comput. 27(5), 401–411 (2011)

    Article  Google Scholar 

  35. Wei, M., Shen, W., Qin, J., Wu, J., Wong, T.T., Heng, P.A.: Feature-preserving optimization for noisy mesh using joint bilateral filter and constrained Laplacian smoothing. Opt. Lasers Eng. 51(11), 1223–1234 (2013)

    Article  Google Scholar 

  36. Wang, R.-F., Chen, W.-Z., Zhang, S.-Y., Zhang, Y., Ye, X.-Z.: Similarity-based denoising of point-sampled surfaces. J. Zhejiang Univ Sci. A 9(6), 807–815 (2008)

    Article  MATH  Google Scholar 

  37. Georgescu, B., Shimshoni, I., Meer, P.: Mean shift based clustering in high dimensions: a texture classification example. In: Proceedings of the ICCV’2003, pp. 456–463. Nice (2003)

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their valuable comments and insightful suggestions. The work is supported in part by the National Natural Science Foundation of China (Grant Nos. 61073074 and 61303144), the Natural Science Foundation of Zhejiang Province (Grant No. Y1090137), the Project of Science and Technology Plan for Zhejiang Province (Grant No. 2012C21004), Ningbo Natural Science Foundation (Grant Nos. 2013A610111 and 2013A610096) and the Project in Science and Technique of Ningbo Municipal (Grant No. 2012B82003). Models are courtesy of Stanford University and EU Aim@Shape project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-fang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Rf., Liu, Yp., Sun, Dc. et al. Detail-generating geometry completion for point-sampled geometry. Machine Vision and Applications 25, 1747–1759 (2014). https://doi.org/10.1007/s00138-013-0582-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-013-0582-1

Keywords

Navigation