Skip to main content
Log in

Unsupervised manifold learning based on multiple feature spaces

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Manifold learning is a well-known dimensionality reduction scheme which can detect intrinsic low-dimensional structures in non-linear high-dimensional data. It has been recently widely employed in data analysis, pattern recognition, and machine learning applications. Isomap is one of the most promising manifold learning algorithms, which extends metric multi-dimensional scaling by using approximate geodesic distance. However, when Isomap is conducted on real-world applications, it may have some difficulties in dealing with noisy data. Although many applications represent a special sample by multiple feature vectors in different spaces, Isomap employs samples in unique observation space. In this paper, two extended versions of Isomap to multiple feature spaces problem, namely fusion of dissimilarities and fusion of geodesic distances, are presented. We have employed the advantages of several spaces and depicted the Euclidean distance on learned manifold that is more compatible to the semantic distance. To show the effectiveness and validity of the proposed method, some experiments have been carried out on the application of shape analysis on MPEG7 CE Part B and Fish data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton (1961)

    MATH  Google Scholar 

  2. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1349–1380 (2000)

    Article  Google Scholar 

  3. Webb, A.: Statistical Pattern Recognition. Wiley, New York, p 305 (2002)

  4. Ho, T.K.: Random decision forests. In: Proceedings of the 3th International Conference on Document Analysis and Recognition, pp 278–282 (1995)

  5. Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 17, 491–502 (2005)

    Article  Google Scholar 

  6. Burges, C.J.C.: Geometric methods for feature extraction and dimensional reduction—a guided tour. In: Data Mining and Knowledge Discovery Handbook. Springer, Berlin, pp 53–82 (2010)

  7. Min, W., Lu, K., He, X.: Locality pursuit embedding. Pattern Recognit. 37, 781–788 (2004)

    Article  MATH  Google Scholar 

  8. He, X., Ma, W.Y., Zhang, H.J.: Learning an image manifold for retrieval. In: Proceedings of the 12th Annual ACM International Conference on Multimedia, pp 17–23 (2004)

  9. Lin, Y.Y., Liu, T.L., Chen, H.T.: Semantic manifold learning for image retrieval. In: Proceedings of the 13th Annual ACM International Conference on Multimedia, pp 249–258 (2005)

  10. He, X., Cai, D., Han, J.: Learning a maximum margin subspace for image retrieval. IEEE Trans. Knowl. Data Eng. 20, 189–201 (2007)

    Google Scholar 

  11. Xiao, B., Hancock, E., Yu, H.: Manifold embedding for shape analysis. Neurocomputing 73, 1606–1613 (2010)

    Article  Google Scholar 

  12. Cheng, M., Fang, B., Tang, Y.Y., Zhang, T., Wen, J.: Incremental embedding and learning in the local discriminant subspace with application to face recognition. IEEE Trans. Syst. Man Cybern. 40, 580–891 (2010)

    Article  Google Scholar 

  13. Xiao, R., Zhao, Q., Zhang, D., Shi, P.: Facial expression recognition on multiple manifolds. Pattern Recognit. 44, 107–116 (2011)

    Article  MATH  Google Scholar 

  14. Qiao, H., Zhang, P., Zhang, B., Zheng, S.: Learning an intrinsic-variable preserving manifold for dynamic visual tracking. IEEE Trans. Syst. Man Cybernet. 40, 868–880 (2010)

    Article  Google Scholar 

  15. Wang, L., Suter, D.: Visual learning and recognition of sequential data manifolds with applications to human movement analysis. Comput. Vis. Image Underst. 110, 153–172 (2008)

    Article  Google Scholar 

  16. Wang, L., Suter, D.: Learning and matching of dynamic shape manifolds for human action recognition. IEEE Trans. Image Process. 16, 1646–1661 (2007)

    Google Scholar 

  17. Yan, S.: Synchronized submanifold embedding for person-independent pose estimation and beyond. IEEE Trans. Image Process. 18, 202–210 (2009)

    Article  MathSciNet  Google Scholar 

  18. Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  19. Geng, X., Zhan, D.C., Zhou, Z.H.: Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Trans. Syst. Man Cybern. 35, 1098–1107 (2005)

    Article  Google Scholar 

  20. Cai, X., Nie, F., Huang, H., Kamangar, F.: Heterogeneous image feature integration via multi-modal spectral clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1977–1984 (2011)

  21. Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  22. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. J. Shanghai Univ. (English Edition) 8, 406–424 (2004)

    Article  MathSciNet  Google Scholar 

  23. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shepard, R.N.: The analysis of proximities: multidimensional scaling with an unknown distance function. Psychometrika 27, 219–246 (1962)

    Article  MathSciNet  Google Scholar 

  25. Tenenbaum, J.B.: Mapping a manifold of perceptual observations. In: Advances in Neural Information Processing Systems, pp. 682–688 (1998)

  26. Sammon Jr, J.W.: A nonlinear mapping for data structure analysis. IEEE Trans. Comput. 100, 401–409 (1969)

    Article  Google Scholar 

  27. Demartines, P., Herault, J.: Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Trans. Neural Netw. 8, 148–154 (2002)

    Article  Google Scholar 

  28. Lee, J.A., Lendasse, A., Donckers, N., Verleysen, M.: A robust nonlinear projection method. In: Proceedings of the European Symposium on Artificial Neural Networks, pp. 13–20 (2000)

  29. Estevez, P.A., Chong, A.M.: Geodesic nonlinear mapping using the neural gas network. In: Proceedings of the International Joint Conference on Neural Networks, pp 3287–3294 (2006)

  30. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  31. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003)

    Article  MATH  Google Scholar 

  32. He, X., Niyogi, P.: Locality preserving projections. Adv. Neural Inf. Process. Syst. 16, 153–160 (2003)

    Google Scholar 

  33. Donoho, D.L., Grimes, C.: Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. 100, 5591–5596 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by semidefinite programming. Int. J. Comput. Vis. 70, 77–90 (2006)

    Article  Google Scholar 

  35. Xiang, S., Nie, F., Zhang, C.: Nonlinear dimensionality reduction with local spline embedding. IEEE Trans. Knowl. Data Eng. 21(9), 1285–1298 (2009)

    Article  Google Scholar 

  36. Zhan, Y., Yin, J.: Robust local tangent space alignment. Lect. Notes Comput. Sci. 5863, 293–301 (2009)

    Article  Google Scholar 

  37. Bloch, I.: Information Fusion in Signal and Image Processing, pp. 13–14. Wiley, New York (2008)

    Book  Google Scholar 

  38. Hall, D.L., Llinas, J.: An introduction to multisensor data fusion. In: Proceedings of the IEEE, pp. 6–23 (1997)

  39. Chahooki, M.A.Z., Charkari, N.M.: Shape retrieval based on manifold learning by fusion of dissimilarity measures. IET Image Process. 6, 327–336 (2012)

    Article  MathSciNet  Google Scholar 

  40. Chahooki, M.A.Z., Charkari, N.M.: Learning the shape manifold to improve object recognition. Mach. Vis. Appl. 24, 33–46 (2013)

    Article  Google Scholar 

  41. Chahooki, M.A.Z., Charkari, N.M.: Improvement of supervised shape retrieval by learning the manifold space. Int. J. Inf. Commun. Technol. 4, 49–56 (2011)

    Google Scholar 

  42. Mokhtarian, F., Abbasi, S., Kittler, J.: Robust and efficient shape indexing through curvature scale space. In: Proceedings of the British Machine and Vision Conference, pp. 53–62 (1996)

  43. El-ghazal, A., Basir, O., Belkasim, S.: Farthest point distance: a new shape signature for Fourier descriptors. Signal Process. Image Commun. 24, 572–586 (2007)

    Article  Google Scholar 

  44. Liu, H., Song, D., Rger, S., Hu, R., Uren, V.: Comparing dissimilarity measures for content-based image retrieval. In: Proceedings of the 4th Asia Information Retrieval Symposium (AIRS), pp. 44–50 (2008)

  45. Qi, H., Li, K., Shen, Y., Qu, W.: An effective solution for trademark image retrieval by combining shape description and feature matching. Pattern Recognit. 43, 2017–2027 (2010)

    Google Scholar 

  46. Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29, 286–299 (2007)

    Article  Google Scholar 

  47. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 509–522 (2002)

    Article  Google Scholar 

  48. Sebastian, T.B., Klein, P.N., Kimia, B.B.: On aligning curves. IEEE Trans. Pattern Anal. Mach. Intell. 25, 116–125 (2003)

    Article  Google Scholar 

  49. Grigorescu, C., Petkov, N.: Distance sets for shape filters and shape recognition. IEEE Trans. Image Process. 12, 1274–1286 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  50. Jalba, A.C., Wilkinson, M.H.F., Roerdink, J.: Shape representation and recognition through morphological curvature scale spaces. IEEE Trans. Image Process. 15, 331–341 (2006)

    Article  Google Scholar 

  51. Mokhtarian, F., Bober, M.: Curvature Scale Space Representation: Theory, Applications, and MPEG-7 Standardization, vol. 25. Kluwer Academic Publishers, Dordrecht (2003)

    Book  Google Scholar 

  52. Arica, N., Yarman Vural, F.T.: BAS: a perceptual shape descriptor based on the beam angle statistics. Pattern Recognit. Lett. 24, 1627–1639 (2003)

    Article  MATH  Google Scholar 

  53. Adamek, T., O’Connor, N.E.: A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Trans. Circuits Syst. Video Technol. 14, 742–753 (2004)

    Article  Google Scholar 

  54. Bandera, A., Antnez, E., Marfil, R.: An adaptive approach for affine-invariant 2D shape description. Pattern Recognit. Image Anal. 5524, 417–424 (2009)

    Article  Google Scholar 

  55. Alajlan, N., El Rube, I., Kamel, M.S., Freeman, G.: Shape retrieval using triangle-area representation and dynamic space warping. Pattern Recognit. 40, 1911–1920 (2007)

    Article  MATH  Google Scholar 

  56. Daliri, M.R., Torre, V.: Robust symbolic representation for shape recognition and retrieval. Pattern Recognit. 41, 1782–1798 (2008)

    Article  MATH  Google Scholar 

  57. Alajlan, N., Kamel, M.S., Freeman, G.H.: Geometry-based image retrieval in binary image databases. IEEE Trans. Pattern. Anal. Mach. Intell. 30, 1003–1013 (2008)

    Article  Google Scholar 

  58. Yang, X., Bai, X., Latecki, L., Tu, Z.: Improving shape retrieval by learning graph transduction. In: Computer Vision ECCV, pp. 788–801 (2008)

  59. Bai, X., Yang, X., Latecki, L.J., Liu, W., Tu, Z.: Learning context-sensitive shape similarity by graph transduction. IEEE Trans. Pattern Anal. Mach. Intell. 32, 861–874 (2009)

    Google Scholar 

  60. Bartolini, I., Ciaccia, P., Patella, M.: Warp: Accurate retrieval of shapes using phase of fourier descriptors and time warping distance. IEEE Trans. Pattern Anal. Mach. Intell. 27, 142–147 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Zare Chahooki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chahooki, M.A.Z., Charkari, N.M. Unsupervised manifold learning based on multiple feature spaces. Machine Vision and Applications 25, 1053–1065 (2014). https://doi.org/10.1007/s00138-014-0604-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-014-0604-7

Keywords

Navigation