Skip to main content
Log in

GRowing Algorithm for Intersection Detection (GRAID) in branching patterns

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Analysis of branching structures represents a very important task in fields such as medical diagnosis, road detection or biometrics. Detecting intersection landmarks becomes crucial when capturing the structure of a branching pattern. We present a very simple geometrical model to describe intersections in branching structures based on two conditions: Bounded Tangency (BT) condition and Shortest Branch (SB) condition. The proposed model precisely sets a geometrical characterization of intersections and allows us to introduce a new unsupervised operator for intersection extraction. We propose an implementation that handles the consequences of digital domain operation that, unlike existing approaches, is not restricted to a particular scale and does not require the computation of the thinned pattern. The new proposal, as well as other existing approaches in the bibliography, are evaluated in a common framework for the first time. The performance analysis is based on two manually segmented image data sets: DRIVE retinal image database and COLON-VESSEL data set, a newly created data set of vascular content in colonoscopy frames. We have created an intersection landmark ground truth for each data set besides comparing our method in the only existing ground truth. Quantitative results confirm that we are able to outperform state-of-the-art performance levels with the advantage that neither training nor parameter tuning is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://goo.glMAKuPd.

References

  1. Aibinu, A.M., Iqbal, M.I., Shafie, A.A., Salami, M.J.E., Nilsson, M.: Vascular intersection detection in retina fundus images using a new hybrid approach. Comput. Biol. Med. 40(1), 81–89 (2010)

    Article  Google Scholar 

  2. Al-Kofahi, K.A., Lasek, S., Szarowski, D.H., Pace, C.J., Nagy, G., Turner, J.N., Roysam, B.: Rapid automated three-dimensional tracing of neurons from confocal image stacks. Inf. Technol. Biomed. IEEE Trans. 6(2), 171–187 (2002)

    Article  Google Scholar 

  3. Ardizzone, E., Pirrone, R., Gambino, O., Radosta, S.: Blood vessels and feature points detection on retinal images. In: Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pp. 2246–2249. IEEE (2008)

  4. Azzopardi, G., Petkov, N.: Automatic detection of vascular bifurcations in segmented retinal images using trainable cosfire filters. Pattern Recogn. Lett. 34(8), 922–933 (2013)

    Article  Google Scholar 

  5. Azzopardi, G., Petkov, N.: Trainable cosfire filters for keypoint detection and pattern recognition. Pattern Anal. Mach. Intell. IEEE Trans. 35(2), 490–503 (2013)

    Article  Google Scholar 

  6. Bernal, J., Sánchez, J., Vilariño, F.: Impact of image preprocessing methods on polyp localization in colonoscopy frames. In: Proceedings of the 35th International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). (in press), Osaka, Japan (2013)

  7. Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 45(9), 3166–3182 (2012)

    Article  Google Scholar 

  8. Bevilacqua, V., Cambò, S., Cariello, L., Mastronardi, G.: A combined method to detect retinal fundus features. In: Proceedings of IEEE European Conference on Emergent Aspects in Clinical Data Analysis (2005)

  9. Bhuiyan, A., Nath, B., Chua, J., Ramamohanarao, K.: Automatic detection of vascular bifurcations and crossovers from color retinal fundus images. In: Signal-Image Technologies and Internet-Based System, 2007. SITIS’07. Third International IEEE Conference on, pp. 711–718. IEEE (2007)

  10. Calvo, D., Ortega, M., Penedo, M.G., Rouco, J.: Automatic detection and characterisation of retinal vessel tree bifurcations and crossovers in eye fundus images. Comput. Methods Programs Biomed. 103(1), 28–38 (2011)

    Article  Google Scholar 

  11. Can, A., Shen, H., Turner, J.N., Tanenbaum, H.L., Roysam, B.: Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. Inf. Technol. Biomed. IEEE Trans. 3(2), 125–138 (1999)

    Article  Google Scholar 

  12. Can, A., Stewart, C.V., Roysam, B., Tanenbaum, H.L.: A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina. Pattern Anal. Mach. Intell. IEEE Trans. 24(3), 347–364 (2002)

  13. Chanwimaluang, T., Fan, G.: An efficient blood vessel detection algorithm for retinal images using local entropy thresholding. In: Circuits and Systems, 2003. ISCAS’03. Proceedings of the 2003 International Symposium on, vol. 5, p. V-21. IEEE (2003)

  14. Chapman, N., Dell’Omo, G., Sartini, M., Witt, N., Hughes, A., Thom, S., Pedrinelli, R.: Peripheral vascular disease is associated with abnormal arteriolar diameter relationships at bifurcations in the human retina. Clin. Sci. 103(2), 111–116 (2002)

  15. Danielsson, P.E.: Euclidean distance mapping. Comput. Gr. Image Process. 14(3), 227–248 (1980)

    Article  Google Scholar 

  16. Jung, E., Hong, K.: Automatic retinal vasculature structure tracing and vascular landmark extraction from human eye image. In: Hybrid Information Technology, 2006. ICHIT’06. International Conference on, vol. 2, pp. 161–167. IEEE (2006)

  17. Kwon, J.S., Gi, J.W., Kang, E.K.: An enhanced thinning algorithm using parallel processing. In: Image Processing, 2001. Proceedings. 2001 International Conference on, vol. 3, pp. 752–755. IEEE (2001)

  18. Nuñez, J.M., Bernal, J., Sanchez, F.J., Vilariño, F.: Blood vessel characterization in colonoscopy images to improve polyp localization. In: Proceeding of the 8th International Conference on Computer Vision Theory and Applications, vol. 1, pp. 162–171. SciTePress (2013)

  19. Parker, J.R.: Algorithms for image processing and computer vision. Wiley (2010)

  20. Perez, M., Highes, A., Stanton, A.V., Thorn, S.A., Chapman, N., Bharath, A.A., Parker, K.H.: Retinal vascular tree morphology: a semi-automatic quantification. Biomed. Eng. IEEE Trans. 49(8), 912–917 (2002)

    Article  Google Scholar 

  21. Pudzs, M., Fuksis, R., Greitans, M.: Palmprint image processing with non-halo complex matched filters for forensic data analysis. In: Biometrics and Forensics (IWBF), 2013 International Workshop on, pp. 1–4. IEEE (2013)

  22. Saaristo, A., Karpanen, T., Alitalo, K.: Mechanisms of angiogenesis and their use in the inhibition of tumor growth and metastasis. Oncogene 19(53) (2000)

  23. Saha, S., Dutta Roy, N.: Automatic detection of bifurcation points in retinal fundus images. Latest Research in Science and Technology. Int. J. 2(2), 105–108 (2013)

  24. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. Med. Imag. IEEE Trans. 23(4), 501–509 (2004)

    Article  Google Scholar 

  25. Tsai, C.L., Stewart, C.V., Tanenbaum, H.L., Roysam, B.: Model-based method for improving the accuracy and repeatability of estimating vascular bifurcations and crossovers from retinal fundus images. Inf. Technol. Biomed. IEEE Trans. 8(2), 122–130 (2004)

    Article  Google Scholar 

  26. Tso, M.O., Jampol, L.M.: Pathophysiology of hypertensive retinopathy. Ophthalmology 89(10), 1132–1145 (1982)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Spanish Gov. grants TIN2012-33116, MICINN TIN2009-10435 and the UAB grant 471-01-2/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan M. Núñez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Núñez, J.M., Bernal, J., Sánchez, F.J. et al. GRowing Algorithm for Intersection Detection (GRAID) in branching patterns. Machine Vision and Applications 26, 387–400 (2015). https://doi.org/10.1007/s00138-015-0663-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-015-0663-4

Keywords

Navigation