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Abstract The key problems in a structured-light 3D scan-
ner using a projector and camera are its geometric and radio-
metric calibration. A projector can be effectively represented
using the familiar pin-hole model for cameras. However,
since we cannot directly observe the projector plane, it can-
not be calibrated like a camera. The first contribution of our
paper is to develop a geometric calibration and 3D estima-
tion method that utilises the projective geometric relation-
ships available in a projector–camera pair, i.e., homography
induced by a plane and invariance of cross-ratios. The low-
dimensional parametric form of the homography averages
out individual errors, resulting in a geometric calibration
approach that is both simple to use and highly accurate. We
present an extensive set of results to demonstrate the effec-
tiveness of our approach and also characterise its accuracy.
Second, we present a method for correcting systematic errors
introduced due to the radiometric non-linearities present in
commercial projectors. These errors are pronounced when
only a few phase shifts are used in the sinusoidal coding
scheme for structured-light scanners. We develop a cubic
spline-based method to model and remove the effects due to
these non-linearities. The efficacy of our model is demon-
strated on real datasets.
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1 Introduction

The accurate 3D measurement of objects has a variety of
applications in areas such as industrial manufacture, pros-
thetics, archaeology and digital preservation of cultural arte-
facts. An accurate representation of surface geometry can be
acquired by illuminating the object of interest by a sequence
of projected intensity patterns and imaging with a camera.
Unlike imaging using ambient light, such coded illumination
in structured-light scanning results in a dense correspondence
between the projector and camera planes. This in turn leads
to a dense reconstruction of the imaged surface. With dense
correspondences easily available in structured-light systems,
the primary problems pertain to the geometric calibration of
the projector–camera pair as well as radiometric calibration
of the projector. While a projector–camera pair has the same
projective geometry as between a pair of cameras, for its cal-
ibration we need to use indirect methods since in a projector
the direction of light is reversed. Also, typically projectors
suffer from radiometric and some geometric non-linearities
that need to be corrected. The first contribution of this paper is
a new method of projector–camera geometry calibration and
3D estimation using projective geometric relationships, i.e.,
homography induced by a plane and projective invariance of
cross-ratios. Our approach develops a low-dimensional para-
metric representation for calibration thereby simplifying its
estimation while improving accuracy. Our second contribu-
tion is a method that corrects for radiometric non-linearities
present in the projector–camera system. These non-linearities
manifest as systematic artefacts (distortions) in 3D recon-
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struction. In our approach, we model these artefacts using
cubic splines thereby allowing us to correct for the distor-
tions.

The existing approaches for geometric and radiometric
calibration in the literature are presented in Sect. 2. We pro-
vide an overview of our reconstruction pipeline in Sect. 3.
In Sect. 4, we present a brief overview of the geometry we
will utilise, i.e. two-view projective geometry and view-space
codification in a projector–camera system. In Sect. 5, we
develop our approach for geometric calibration and 3D esti-
mation in a projector–camera pair. This is followed by an
extensive set of qualitative and quantitative results demon-
strating the efficacy of our method. In Sect. 7, we describe the
effect of radiometric projector non-linearities on 3D shape
recovered in a structured-light system when using sinusoidal
phase codification. In Sect. 8, we develop our cubic spline-
based modelling solution and present the results of using our
method for correcting radiometric non-linearities.

2 Related work

In this section, we describe the relevant approaches to
projector–camera calibration as well as radiometric correc-
tion in the literature. Our discussion is limited to calibra-
tion of structured-light projector–camera pairs and does not
consider methods to calibrate cameras. While calibrating a
projector–camera pair geometrically, it is a common prac-
tice to use reference plane/s to capture projective relations
between camera and projector pixels [2,4–13,16]. Each ref-
erence plane is projected upon with illumination markers,
stripes or coded patterns to establish reference maps between
projector pixels and their respective images in the camera
view. It is common to use sinusoidal patterns for such view-
space codification during calibration and then the respective
maps are termed as Reference Phase Maps [5–7,16]. Ref-
erence maps may be used to either explicitly or implicitly
calibrate the projector and the relative geometry between the
camera–projector view pair.

Here, we first consider active scanning systems, where
the projector–camera geometry is allowed to change during
data acquisition. For such systems, the method of [2] pro-
poses to build an uncalibrated reconstruction by imposing
affine constraints that are an approximation to the underly-
ing projective relationships using reference planes. In [3],
an error function based on the relative deviation of two
back-projected rays from a common triangulation plane is
minimised, yielding a Euclidean reconstruction. Both these
methods [2,3] involve computationally expensive non-linear
minimization. In [4], only the camera parameters are allowed
to change. This approach uses reference planes and solves for
homographies using a planar grid pattern (of circular mark-
ers) translated precisely in a direction perpendicular to the

mounted plane, thereby allowing for direct 3D reconstruc-
tion. While this approach avoids non-linear minimization,
the projector pre-calibration and the camera self-calibration
described are cumbersome steps and require a precisely con-
trolled mechanical device for moving the calibration plane.

For most methods, including the one presented in this
paper, the projector–camera geometry is fixed. The method
of [5] explicitly estimates the calibration parameters of the
projector. The authors project a sequence of sinusoidal fringe
patterns on a calibration plane, while placing it in different
positions. Using dense correspondences between the cam-
era and the projector for a given position of the calibra-
tion plane, they construct its respective virtual image in pro-
jector’s image plane. Finally, using the set of such virtual
images, they calibrate the projector just like a camera. Simi-
lar to [5,8] performs explicit projector calibration by generat-
ing virtual images of calibration markers in projector’s view-
space. However, they use graycode patterns to establish dense
correspondences for each calibration plane position. Further-
more, they compute local homographies for the neighbour-
hoods of each calibration marker in each plane position to
improve respective estimated positions of calibration mark-
ers in the virtual images. Although [5,8] perform explicit cali-
bration, these methods are cumbersome and computationally
demanding as they need a large number of images for reliable
estimation. In contrast to [5,8], other methods do not explic-
itly estimate the projector parameters [6,7,16]. Peng and
Gupta [6] uses a set of reference planes and a fully calibrated
camera to implicitly calibrate the projector. By minimising a
least-squares error, the projector’s optical centre is estimated
and in the scanning step, the point location is estimated by
defining the corresponding epipolar plane. While the authors
of [6] have demonstrated their system to be highly accurate,
their calibration process is laborious. Furthermore, their 3D
estimation approach involves a computationally expensive
1D search along the epipolar line in the reference phase map
for each reconstructed 3D point. In [16], the authors use a pair
of reference planes to calibrate the projection planes corre-
sponding to vertical light stripes projected from the projector.
This approach uses an over-parametrisation of the underly-
ing projector geometry and does not impose any consistency
constraints. In [7], the authors proposed a cross-ratio based
3D reconstruction system that avoids estimation of the epipo-
lar geometry. For each camera pixel, the authors determine
the phase values for the unknown surface and for three refer-
ence parallel planes. Using the invariance of the cross-ratio,
3D depth is established.

Some of the recent approaches to calibration utilise the
projective geometric relationship available between the cam-
era and projector when viewing a planar object, i.e. the
homography between camera and projector induced by a
plane. For instance, [9] uses a calibration plane of known
size with orthogonal edges. Observing this object allows for
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the identification of vanishing points which are used to cal-
ibrate the camera. Subsequently, as in our work in [1], a
rectified pattern is projected onto the same calibration object
and the new vanishing points are identified. These vanishing
points are used to calibrate the projector. In [10], the authors
invert the workflow of camera calibration to calibrate the
projector. Once the homography from camera to projector is
established, [10] iteratively adjusts a projected checkerboard
pattern to coincide with detected corners in the camera image.
Having established correspondences in the projector plane in
this indirect fashion, [10] can carry out the calibration of the
projector with standard camera calibration methods. In [11],
the authors utilise the projection of colour patterns onto
a printed chessboard to establish correspondences between
the camera and projector planes. These correspondences are
refined using multiple projection patterns until an accurate
camera–projector calibration is achieved. Other related meth-
ods based on planar homography include [12,13].

Apart from the geometric calibration step, we need
to account for residual radiometric and geometric non-
linearities that always exist in projector–camera pairs. While
our solution is detailed in Sect. 7, here we briefly describe the
existing methods in the literature. In [6], the authors effec-
tively model radiometric non-linearities implicitly with the
use of a reference phase map. However, their method ignores
the existing geometric non-linearities while estimating the
projector centre. In [5], although the authors use an exhaus-
tive mapping between the projector and the camera their
method does not model radiometric non-linearities. This may
result in wave-like artefacts due to systematic errors in phase
estimation for sinusoidal codification. In contrast, [7] does
handle geometric and radiometric non-linearities. However,
their calibration method has a high image acquisition time
and their 3D estimation involves a computationally demand-
ing 1D search algorithm along with the need for interpola-
tion. Another class of approaches explicitly model the error
in phase estimation introduced by the non-linearity of the pro-
jector’s radiometric response. In [14], the authors consider
the case where the number of projected patterns used in phase
decoding varies between 3 and 5. For these cases, they repre-
sent the phase error introduced by projector non-linearities as
a sum of higher order harmonics. Subsequently, this phase
error is cancelled out by iteratively estimating the amount
of harmonic distortion and subtracting it from the observed
phase map. Similarly, in [15], the authors analyse the effect
of non-linear projector distortion (gamma distortion) as a
series sum of harmonics which gives them an expression for
the error introduced in phase measurement. Subsequently,
the phase estimate can be corrected for this non-linear error
term. Finally, we note that [4,16] and many other methods
completely ignore existing non-linearities.

In terms of final accuracy, there exists a trade-off between
the complexity and precision of the calibration method and

the ease and accuracy of the estimation of shape. While
some methods [3,6,7] are computationally expensive oth-
ers have an elaborate calibration/scanning process [5,6,16].
Some require very precise control of the placement of calibra-
tion planes [4,6,7]. The methods of [4,6,7,16] use an over-
parameterization of the relative projector–camera geometry,
leading to inaccuracies in 3D estimation. Many methods
ignore the radiometric non-linearities [4,5,16] as they do not
employ sinusoidal codification which reduces the acquisition
cycle. We seek to address some of the issues with existing
methods as outlined above. As explained in Sect. 5, we utilise
projective geometric relationships to greatly simplify the cal-
ibration process. Our method is flexible and does not require
that the calibration plane be moved precisely. The overall
mapping between the camera and projector is handled in an
implicit two-step process and the resulting 3D estimate is
both simple and reliable. Additionally, we model and rectify
the systematic errors in phase estimation due to radiometric
non-linearities to enable sinusoidal phase codification for a
faster acquisition cycle.

3 Our reconstruction pipeline

This section gives an overview of our reconstruction pipeline.
Our camera–projector view pair is operated in two phases,
namely: (a) calibration phase, and (b) 3D scanning phase.

Calibration phase: Calibration phase involves:

Camera calibration For calibrating the camera, we use
the implementation provided by [19] of the well-known
approach of [20].
Projector calibration We implicitly calibrate the projec-
tor using a pair of reference planes to estimate Reference
Maps. This is explained in detail in Sect. 5.
System calibration We also calibrate the projector–
camera relative geometry implicitly using the same Ref-
erence Maps as above.
Radiometric calibration We calibrate the radiometric
non-linearities in the system to rectify systematic errors
in the Phase Map for the surface/object being scanned.
Section 7 explains our method in detail.

3D scanning phase: During this phase, we project sinusoidal
coded patterns on an unknown object/surface. We compute
its Phase Map, (optionally) rectify it for radiometric errors
and estimate 3D point cloud using cross-ratios, as explained
in Sect. 5.

4 View-space codification

Before we present our proposed calibration approach, we first
discuss our approach to view-space codification, i.e. Sinu-
soidal Codification. As stated earlier, unlike in our method,
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Fig. 1 Epipolar geometry of a projector–camera pair

sinusoidal coded patterns may be used to generate Reference
maps during the Calibration phase. However, we use sinu-
soidal coded patterns only for solving the correspondence
problem during 3D Scanning phase. An understanding of
view-space codification helps to understand the role of Refer-
ence Maps in our proposed approach for implicit calibration
and 3D estimation.

To achieve dense reconstruction, we use view-space cod-
ification which allows us to uniquely identify each light ray
emanating from the projector and determine its reflected
image in the camera plane. While our method for geomet-
ric calibration and 3D estimation will be detailed in Sect. 5,
here we note that the relative geometry of a projector–camera
pair is identical to that of two cameras, see Fig. 1. Therefore,
in the following discussion on view-space codification, we
treat the projector as the second view. Structured-light sys-
tems address the problem of sparse correspondences under
ambient lighting by illuminating the object by a known light
pattern thereby enabling us to associate a unique codeword
to every scene point illuminated by the projector. Further,
the same codeword can be observed (i.e. decoded) from the
images of the scene and we can associate points in the pro-
jector plane with points in the image plane if they share
a unique codeword. Thus, structured-light systems convert
the difficult correspondence problem into a simple codeword
matching problem resulting in a dense 3D surface represen-
tation. For static scenes, temporal codification schemes are
preferred since they encode each projector pixel indepen-
dently. Throughout this paper, we use the temporal scheme
of sinusoidal codification which is given below. The reader
is also referred to [17] for a discussion of various pattern
codification schemes.

In Fig. 1, let the projector ray passing through projector
pixel p′ be reflected at the surface point X and be imaged at
the camera pixel p. Let the x-coordinate of p′ be denoted x ′.
To codify the view-space, we use a sequence of N equally
phase-shifted vertical sinusoidal patterns where the k-th pat-
tern Sk, k = 0 . . . (N − 1), is

Sk(p′) = A + B sin

(
2πk

N
+ �(p′)

)
. (1)

Here, �(p′) = 2πx ′
C�

, with x ′ being the x-component of p′
and C� being the period of the sinusoid used. Also, A is an
offset term used to ensure positive gray levels and B is the
sinusoidal amplitude. The key point of such sinusoidal codi-
fication is that the phase value �(p′) uniquely codifies each
column of pixels in the projector plane and this phase can
be recovered from the sequence of images observed by the
camera. For the projected images Sk , we denote the corre-
sponding observed camera images as I k . As the camera pixel
p corresponds with projector pixel p′, the phase associated
with the sequence I k(p) should also be �(p′). The actual
decoded phase at p is given by

�̂(p) = tan−1
(∑

k I k(p)cos(2πk/N )∑
k I k(p)sin(2πk/N )

)
. (2)

Since the estimated phase is always wrapped to the range
[0, 2π), the estimated phase is given by,

�̂(p) = �(p′) − 2π��(p′)/2π�. (3)

Typically, C� is much smaller than the projector plane’s
width to avoid poor quantisation of sinusoidal patterns and
we need to unwrap �̂(p) into �(p) to match with �(p′). We
use graycodes for phase unwrapping as explained in [17].
Each column of projector pixels is assigned a graycode that
has an equivalent code of ��(p′)/2π� which is the same for
all p′ in a given column. We project these graycode patterns
sequentially along with the sinusoidal patterns. The cam-
era images corresponding to the graycode patterns are bina-
rised and stacked together to give a graycode, i.e. the value
obtained by taking the pixel p in each of the binary gray-
code images. Using the equivalent binary codeword β(p),
the unwrapped phase value for a camera pixel p is obtained
as

�(p) = �̂(p) + 2πβ(p). (4)

While using the projector as the second view, solving the
correspondence problem becomes a trivial task. A decoded
phase in the image plane indicates the matching location in
the projector, i.e. given �(p) in Eq. (4), we look for pro-
jector pixel p′ such that �(p) = �(p′). As we shall see
later, in combination with knowledge of the geometry of the
projector–camera pair, we can use this relationship to solve
for the matching location. Since we use a known �(p′) for
the projector, knowing the decoded phase map is the same
as knowing a dense correspondence between the camera and
projector pixels. Thus, in the remainder of this paper, when
we refer to a phase map we implicitly refer to the known
dense correspondence map between the camera and projec-
tor planes.
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5 Proposed approach for geometric calibration and 3D
estimation

In this section, we describe our proposed method for geo-
metric calibration and 3D estimation that utilises the projec-
tive geometry between two views. Throughout we shall use
the pin-hole model to describe the geometry of the projector
and camera, please see [18] for details, and use two-view
projective geometric relationships to calibrate the projector–
camera pair and for 3D estimation. However, since the direc-
tion of light rays is reversed in a projector, we cannot directly
observe points (pixels) on the projector plane requiring an
indirect approach for its calibration. While the general phase
map between projector and camera is arbitrary, when view-
ing a planar scene this relationship has a simple parametric
form that can be exploited. Without loss of generality we
attach a 3D reference frame to a camera that can be cali-
brated as described earlier. Let the projector undergo a rigid
3D rotation R and 3D translation t with respect to this frame
of reference. Furthermore, we denote the intrinsic calibration
of the camera and the projector as KC and KP , respectively,
which are 3 × 3 upper triangular matrices. Therefore, the
projection matrices for the camera and projector are,

PC = KC [I3×3 | 03×1], (5)

PP = KP [R3×3 | t3×1]. (6)

For an unknown 3D point X = (X, Y, Z) with the projections
at p = (x, y) in the first view (camera) and p′ = (x ′, y′) in
the second view (projector), we have

p = [
x y 1

]T = λ1PC
[
X Y Z 1

]T
, (7)

p′ = [
x ′ y′ 1

]T = λ2PP
[
X Y Z 1

]T
. (8)

Here, λ1 and λ2 are unknown scale factors and [x y 1] is
the homogeneous representation of p.

For two views, given the homogeneous point p in the first
view (camera) and its corresponding homogeneous point p′
in the second view (projector), we have the epipolar rela-
tionship, p′T Fp = 0 where F is a 3 × 3 matrix known as
the Fundamental Matrix which has a rank of 2 with only
7 degrees of freedom. The Fundamental Matrix is of the
form F = K−T

P [t]× R K−1
C where [ ]× denotes the skew-

symmetric form of a vector. Given a sufficient number of
matched point pairs (p, p′), F can be estimated, see [18].

5.1 Homography induced by a plane

While the epipolar relationship p′T Fp = 0 is always satis-
fied, when the object being viewed is a plane (denoted by �

in Fig. 2), every corresponding pair of image points (p, p′)
of the observed plane also obeys the relationship p′ = Hp,

Fig. 2 The 3D plane � induces a homography that relates the corre-
spondences in the two views

where the equality is up to scale (i.e. projective) and the 3×3
matrix, H is known as the homography induced by the plane.
The homography H has 8 degrees of freedom (nine elements
of the matrix minus one for an overall scale) and can be
accurately estimated given enough correspondences. Thus,
while the reference phase map has a value associated with
each pixel, it is in fact a low-dimensional mapping and can
be fully described by a homography with only 8 degrees of
freedom, i.e. for projector pixel p′, we should observe the
same phase in the corresponding camera pixel p = H−1p′,
i.e. �(p′) = �(H−1p′).

The other techniques in the literature that utilise reference
planes [7,16] fail to make use of this important observation.
Consequently, they retain the entire measured phase map, i.e.,
a phase value at each camera pixel. The key contribution of
our calibration technique is that for each reference plane used,
we represent the phase map by a homography represented by
eight parameters. This results in greatly improved accuracy
of the phase map since the noise in individual observed phase
values are averaged out in the homography estimation. Cru-
cially, it should also be noted that the homography relation-
ship holds for planes in general position. As a result, unlike
some other methods, we do not rely on accurate placement
and precisely controlled movement of the reference plane.
Our reference plane can be placed arbitrarily and does not
need any precisely guided mechanical devices for placement.

To calibrate the camera using the method in [20], we need
to acquire a set of images of a reference calibration plane
placed in different positions. For this purpose, we use a pla-
nar object onto which we paste the pattern in Fig. 3a. To com-
pute the plane-induced homographies, we need to project a
single fixed grid pattern (Fig. 3b) onto each reference plane
and establish correspondences for the grid corner locations in
the projector plane and their respective images in the camera
plane. These correspondences are then used to solve for the
homography induced between the projector and the camera.
All such correspondences (i.e. for each reference plane) sat-
isfy the epipolar geometry as well. We thus use all of them
together, as a large set of reliable correspondences, to esti-
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Fig. 3 a Camera image of calibration pattern with ‘+′ marks, b camera
image of the grid pattern projected onto reference plane to compute
homographies

mate the fundamental matrix accurately using a robust MAP-
SAC estimator [21]. It may be noted that to reliably estab-
lish the homography induced by the plane, we only need a
few matched points in the projector and camera planes. As a
result, the grid pattern of Fig. 3b suffices and we do not need
to use the full sinusoidal codification to establish a complete
reference phase map that matches all points in the camera
plane to those in the projector plane. In other words, during
the calibration step we can use a simple grid image pattern
and only need the sinusoidal codification patterns during the
scanning step.

To simplify the calibration step, we can use the same
calibration reference plane placed in different locations for
acquiring both the image of the calibration marker pattern
(Fig. 3a) for camera calibration and the image of the grid
pattern projected onto it (Fig. 3b) for computing the homog-
raphy induced by the plane. Our method thus acquires images
for projector and system calibration simultaneously with the
images for camera calibration, see [1]. When we project a
grid pattern onto a given reference plane and locate their
images in the camera plane, the 3D–2D projection induced
is also a homography, i.e. there exists a linear projective rela-
tionship between every grid corner image in the camera and
its corresponding 3D point location on the reference plane.
In fact, given this 3D–2D homography and calibration, for
every pixel in the camera plane we can easily determine the
location of the intersection of the reference plane with the
ray through the camera centre and the given pixel [20]. This
allows us to estimate the 3D location of a point on a surface
in the view-space via a well-known projective invariant, i.e.,
the cross-ratio.

5.2 Using the cross-ratio

For four collinear points p1, p2, p3, p4, their cross-ratio is
defined as

C R(p1, p2, p3, p4) = ||(p1 − p3)(p2 − p4)||
||(p2 − p3)(p1 − p4)|| . (9)

Fig. 4 Using reference planes for estimating 3D point locations using
cross-ratios

It is a fundamental result in projective geometry that the
cross-ratio is invariant to projective transformations (see Sec
2.5 of [18]). Therefore, the cross-ratio measured in a projec-
tive frame of reference can be directly related to the cross-
ratio measured in a Euclidean frame of reference. This allows
us to use the cross-ratios measured in the projector plane to
solve for 3D depth, given that the rays falling onto a cam-
era’s image plane are calibrated in a Euclidean sense [7].
Let Xp be an unknown 3D point that is imaged at a camera
pixel location p and let its back-projected ray be denoted,
Rx , see Fig. 4. We note that the camera centre OC and the
two points on reference planes �A and �B , i.e. Ap and Bp

are all collinear as they lie on the back-projected 3D ray,
Rx . Here, we note that there exists a projective transforma-
tion that maps the ray Rx onto the projector plane generating
the epipolar line (l p) corresponding to pixel p in the camera
plane. The corresponding images on this epipolar line of the
collinear points OC , Ap, X p, and Bp are e′, ap, x p and bp,
respectively, where e′ is the epipole in the projector plane.
Since this is a projective transformation applied to a line, we
have the invariance of the cross-ratio, i.e.

C R(OC , Ap, X p, Bp) = C R(e, ap, x p, bp). (10)

Furthermore, an orthogonal projection from l p to the column
axis maps the points to their column indices and is itself a
projective transformation. Thus,

C R(e′, ap, x p, bp) = C R(ce′ , cap , cx p , cbp ). (11)

Similarly, the cross-ratio for any four given points on the ray
Rx is equal to the cross-ratio for their coordinates along the
Cartesian z-axis which results in,

C R(Z OC , Z Ap , Z X p , Z Bp ) = C R(OC , Ap, X p, Bp). (12)

Using Eqs. (10), (11) and (12), we get

C R(Z OC , Z Ap , Z X p , Z Bp ) = C R(ce′ , cap , cx p , cbp ). (13)
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Now, locations ce′ , cap , cx p , cbp are nothing but the x-
coordinates (i.e. column locations) of e′, ap, x p, bp, respec-
tively, in the projector plane. cap and cbp can be estimated
using homographies induced by planes �A and �B , respec-
tively. e′ (and thus ce′) can be obtained from the estimated
Fundamental matrix F and cx p is estimated by decoding sinu-
soidal phase at camera pixel location p for the unknown point
Xp. Thus, using estimated values for ce′ , cap , cx p and cbp ,
the r.h.s for Eq. (13) can be calculated. Again, the camera
centre OC is at the origin of our frame of reference and the
equations of the reference planes �A and �B can be obtained
from the 3D–2D homographies between the camera and each
of the corresponding reference planes (see [20] for details).
Given the plane equations for �A and �B , we can obtain
the 3D coordinates of Ap and Bp by intersecting the back-
projected ray (for pixel p) with these planes. Since the other
Z -coordinates in the l.h.s for Eq. (13) are now estimated, the
only unknown quantity Z X p can be solved for using Eq. (13).

5.3 Advantages of the proposed approach

Our approach to calibration and 3D estimation presented
above has considerable advantages over other existing meth-
ods. The most important advantage of our method is that
it represents the entire phase map by an eight-parameter
homography. Since we only need to solve for the eight
degrees of freedom, the entire phase map can be accurately
estimated by projecting a single grid pattern on the reference
plane with an arbitrary placement. This makes our calibration
stage much faster than in [5–7,16] which need to project an
entire pattern sequence on each reference plane as the phase
map has to be estimated for every pixel. This process is con-
siderably slow for [6,7] which require precise control for par-
allel placement of reference planes. In addition, since [6,7]
do not impose the homography constraint, they cannot mit-
igate localised phase map errors due to noise, optical blur,
etc. In contrast, since in our method we fit an eight-parameter
homography using a large number of correspondences, the
individual errors are averaged out. Consequently, as we will
demonstrate in Sect. 6.2, our method achieves sub-millimetre
accuracy.

Methods based on the cross-ratio defined by four collinear
points require that the calibration be carried out for three ref-
erence planes. In our case, apart from the projector–camera
correspondences induced by a plane satisfying a homogra-
phy for each reference plane, all these correspondences also
collectively satisfy the epipolar geometry between the pro-
jector and camera. As a result, two reference planes are suf-
ficient since we get the third cross-ratio point for ‘free’ as the
origin of the camera-based frame of reference and the epi-
pole in the projector plane. Given the large number of reli-
able correspondences generated using two reference planes,
the epipole can be estimated accurately. Furthermore, in our

method, codification along one dimension is sufficient for
3D-point estimation. This halves the image acquisition time
during scanning.

Our homography model provides a specific advantage in
terms of the field of view that may be scanned. Unlike meth-
ods that use complete reference phase maps, in our case even
if the calibration is carried out using a plane that only spans a
small area of the camera field of view, the estimated homogra-
phy applies to the entire field of view, i.e., during the scanning
process we can reconstruct the entire view-space imaged by
the camera. This simplifies the task of placement of reference
planes during calibration and it is particularly advantageous
when scanning a large object where it might be difficult to
place reference planes in a manner that they span the entire
field of view of the camera. A final significant advantage that
may be mentioned is that since our geometric relationship
is parametric, we can directly achieve subpixel correspon-
dence localisation and do not need to carry out expensive
interpolated searches as in [6,7].

6 Experiments and results

In this section, we detail a series of qualitative and quan-
titative experiments that demonstrate the accuracy of our
method. Throughout, we used a Canon S5IS digital cam-
era and an NEC NP400 LCD projector set at resolutions
of 2048 × 1536 and 1024 × 768 pixels, respectively. Each
homography was estimated using upto 121 grid point corre-
spondences (see Fig. 3b), and the Fundamental Matrix was
estimated using MAPSAC [22] using all such correspon-
dences. While we identified shadow pixels and smoothed
the phase signal, in the case of quantitative comparisons,
we did not smooth the decoded phase signal to allow for a
true comparison of the performance of different methods.
Since in these experiments we are interested in evaluating
our geometric calibration, we used N = 32 phase-shifted
sinusoidal patterns for phase estimation. Using a large num-
ber of patterns allowed us to remove the effect of radiometric
non-linearities that are addressed in Sect. 8 where we provide
results with as few as N = 4 phase-shifted patterns.

6.1 Qualitative evaluation

The first set of results we detail here constitute a qualitative
evaluation of our method. We scanned objects with varying
degrees of surface complexity and the results were visually
examined. Figure 5 shows scan results for simple surfaces
that appear to be accurately recovered. Figure 6 shows results
for an object with surfaces of moderate complexity, a clay
figurine of the Hindu god, Ganesh. Fine details on the trunk,
head and limbs are distinctly noticeable in the surface render-
ing. We also scanned another object with a significantly high
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Fig. 5 Scan results for simple surfaces (with images in the insets): a
sphere, b surface of revolution, and c a Buddha figurine

Fig. 6 Scan results for an object (70 mm by 90 mm) with moderate sur-
face complexity, a clay figurine of the Hindu god, Ganesh. a Estimated
Point Cloud, b estimated Mesh, and c texture-mapped Mesh

degree of surface complexity, a clay idol with five heads, i.e.
the panchamukhi Hanuman. The reconstruction results are
shown in Fig. 7. As can be seen, details of the irises in the
eyes, nostrils, features on the hand and ornamental details
on the chest are accurately reconstructed. We also note that
even finer details like etching marks on legs are clearly vis-
ible. These details are shown in Fig. 7c with close-up views
of selected regions of the scan.

We also tested our scanning approach for generating a
complete model using eight different scan views of a Buddha
figurine as shown in Fig. 8a. These individual scans were
aligned and merged using standard methods in Meshlab [23].
As can be seen in Fig. 8b, due to the accuracy of the individual
scans, the aligned scans are merged seamlessly into a single
surface.

Fig. 7 Scan results for a complex object, a clay idol of the pan-
chamukhi Hanuman that is 250 mm wide and 280 mm high

6.2 Quantitative evaluation

To characterise the accuracy of our approach, we also carried
out quantitative experiments by scanning a plane placed at
an arbitrary orientation. As shown in Table 1, the root mean
squared (RMS) plane fitting error for the recovered plane
(Plane 1) characterises the impact of different factors dur-
ing calibration. Column (a) indicates the results using three
complete ‘raw’ reference phase maps, i.e. we do not esti-
mate homographies using these maps. Column (b) indicates
the results when homographies are estimated for the three
reference maps. Note that in both (a) and (b), we do not
compute the epipole and instead use three reference maps.
For columns (d), (e) and (f), multiple reference planes were
used (up to 5), where we average multiple 3D estimates that
use two reference planes and the epipole to compute cross-
ratios. Compared to the basic method in column (a), using the
homographies improved scanning accuracy by about 12 %
which is very significant. This is strong evidence that fitting
a low-dimensional homography is highly advantageous as
the noise in the raw reference map is averaged out, leading to
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Fig. 8 Generated complete model for a Buddha figurine

improved accuracy. Table 1 also shows error measures for the
reconstruction of the unknown plane in three other positions.
These reconstructions were performed using four reference
planes along with the fundamental matrix. The individual
estimates using two reference planes at a time are averaged.
The RMS error is observed to be on the order of one-tenth
of a millimetre for each of these scans. We reiterate that we
did not use any smoothing at either the pre-processing or the
post-processing stage for the plane fitting evaluation.

In another experiment, we evaluated the accuracy of 3D
estimation for the panchamukhi Hanuman model described
earlier. We physically measured a set of five distances using
Vernier Callipers with a precision of 0.05 mm (see Fig. 9).
To account for human error, each distance was measured ten
times and its average value was used for comparison. Mea-
sured distances spanned across all three Euclidean dimen-
sions. The same set of distances was estimated from the
reconstructed model by carefully locating the end points and
the comparison is presented in Table 2. The absolute dif-
ferences in the estimated distances are observed to be on
the order of 0.1 mm providing further evidence for the high
accuracy of our reconstructions.

To study the impact of inaccuracies in calibrating the sys-
tem using our approach, we performed multiple reconstruc-
tions of the same surface using different pairs of reference
planes and then estimating the variance of the depth esti-
mates. If we use n reference planes, we have as many as(n

2

) = n(n−1)
2 reference pairs, each of which gives us a 3D

estimate. This variance is a measure of the uncertainty of
our individual 3D estimates and arises due to (a) inaccura-
cies in calibrating the individual reference planes and (b)
inaccuracies in homography estimation. The computed vari-
ance statistics for Ganesh and Hanuman idols using different
pairs from a set of n = 5 reference planes are presented in
Table 3. The median value for standard deviation for each
of these scans is about half a millimetre, implying that our
method gives consistently good results independent of the
placement of the reference planes during calibration.

Table 1 Error measures for planar surfaces with different methods/conditions

Plane 1 Plane 2 Plane 3 Plane 4

(a) (b) (c) (d) (e) (f)

Mean depth 1100.50 1191.70 1004.32 959.12

Median |Error| 0.0988 0.0979 0.0974 0.0980 0.0979 0.0977 0.073 0.047 0.085

Max |Error| 0.6593 0.4463 0.4444 0.4470 0.4482 0.4468 0.783 0.323 0.592

RMS error 0.1426 0.1266 0.1264 0.1262 0.1262 0.1259 0.110 0.071 0.125

For Plane 1, (a) represents basic cross-ratio method using three complete reference phase maps (no homographies). (b) is for method with three
reference maps represented using homographies; (c)–(f) used 2–5 reference map homographies along with epipolar geometry. For Planes 2–4 four
reference map homographies along with epipolar geometry were used. All units are in (mm)
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Table 2 Distances measured physically and from reconstructed model
for Hanuman idol are shown along with absolute errors

Source Distance measured

D1 D2 D3 D4 D5

Physical Object 128.515 168.415 161.540 69.565 137.290

Reconstructed
Model

128.625 168.386 161.421 69.407 137.312

|Error| 0.110 0.029 0.119 0.158 0.022

D1 is from rightmost head’s eye to leftmost head’s eye, D2 is from left
eye to the tip of rightmost hand’s thumb, D3 is from tip of the head mark
to centre of the flower at base, D4 is from a key point on abdominal
ornament to tip of the rightmost groove at base, D5 is from centre of
the necklace to tip of the rightmost groove at base (see Fig. 9). Average
depth for the surface is 1091.79 mm. All units below are in (mm)

Table 3 Error statistics for non-parametric surfaces

Error measure (mm) Ganesh idol Hanuman idol

Minimum σ 0.277 0.084

Maximum σ 1.111 1.334

Median of σ 0.546 0.439

Point wise standard deviation id computed from multiple estimates for
each surface using five reference planes

We remark here that although [9] also uses projective geo-
metric relationships like us, the qualitative accuracy of our
results in Figs. 5, 6, 7 and 8 is visibly much higher than the
3D reconstruction presented in [9]. Also, accuracy of our
reconstruction of planar surfaces, as presented in Table 1, is
comparable to the accuracy of Moreno and Taubin’s method,
as presented in Table I I I and Figure 8 in [8]. We note again
that our approach avoids the computational complexities of
their method pertaining to non-linear minimization for pro-
jector calibration, computation of numerous local homogra-
phies and decoding graycode maps for each calibration plane
position. We also avoid the acquisition of a multitude of cali-
bration plane images when the calibration plane is projected
with a series of coded patterns for each position, specifically
to calibrate the projector.

Having demonstrated the effectiveness of our geometric
calibration, we now describe the effects of radiometric non-
linearities and develop our solution for correcting the radio-
metric and geometric non-linearities present.

7 Radiometric correction

Since phase-shifted sinusoidal patterns are an example of
temporal codification [17], they have the advantage of encod-
ing each projector pixel independently. This avoids the dif-
ficulties associated with spatial encoding schemes where
neighbourhood regions get distorted due to perspective pro-

Fig. 9 Hanuman figurine with different distances marked. See Table 2
and text for details

jection and/or occlusion [17]. Furthermore, sinusoidal codi-
fication requires fewer patterns than other temporal schemes
to encode the view-space. However, most digital projectors
have a non-linear radiometric behaviour known as gamma
distortion which introduces errors in the output intensities
which lead to errors in the recovered reference phase maps
and consequently in the correspondences. Other factors such
as camera aperture size, exposure time and optical blur also
contribute to the overall distortion of the intensities mea-
sured by the camera. Under gamma distortion, the output
luminance Lop of a digital projector is not linearly related to
input gray-level Iip but obeys the form,

Lop = Lmax

(
Iip

Imax

)γ

. (14)

Here, Imax is the maximum possible input gray level, Lmax is
the maximum possible output luminance and γ is the gamma
distortion which is often greater than 1. As we can see in
Eq. 2, the accuracy of the estimated phase �̂(p) depends on
the correctness of the intensities I k(p) observed by the cam-
era. In the presence of gamma distortion, an error is intro-
duced into the recovered phase which translates into an error
in the estimated 3D locations in the point cloud recovered.
When the number of encoding phase-shifted sinusoids used
(N ) is large, the radiometric error introduced into the indi-
vidual intensities Ik tends to cancel out and the overall effect
of gamma distortion is negligible. However, this implies that
the data acquisition during the scanning process takes longer
since many phase-shifted sinusoids need to be projected and
imaged by the camera. When a lower number of phase-shifted
sinusoids are used, while the acquisition time is reduced, the
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gamma distortion becomes pronounced and manifests as an
artefact of a wave-like structure superimposed on the recov-
ered 3D object shape. See Fig. 12a for an example of the
recovered shape of a planar object that demonstrates this
effect. Apart from such radiometric distortion, the overall
calibration is also affected by geometric errors like radial
distortion, errors in the estimation of the induced homog-
raphy and noise in the intensity observations. Thus, in all,
the observed reference phase map can be described as being
composed of a linear projective map given by the homogra-
phy which is distorted by the above-mentioned radiometric
and geometric non-linearities.

To model the non-linear radiometric and residual geomet-
ric errors that present themselves as systematic variations in
the reference phase map, we need a model that can capture
smooth variations while avoiding over-fitting. This require-
ment is well satisfied by a cubic spline as it fits the data
using control points while ensuring that the first and second
derivatives of the fitted function is continuous over the entire
domain. In the following, we use cubic splines to model the
systematic variation. By placing a reference plane at an arbi-
trary orientation we obtain a raw phase map �orig(p′) in the
projected images. Subsequently, we decode the phase in the
image plane to get the corresponding reference phase map.
Now, using our estimated homography H, we map the cam-
era phase map onto the projector plane which we denote
�est(p′). Here, we use enough observations to estimate H
independent of the non-linearities.

The resultant difference �err = �orig − �est represents
the error introduced by radiometric distortion and geometric
errors. Unlike the radiometric errors which are periodic, the
geometric errors (largely due to radial distortion) are ape-
riodic and exhibit a slow variation across the projector’s
columns. To eliminate this geometric error in �est we use
a moving average filter with a window size equal to that of a
projected sinusoid’s period, i.e. C�. Let us denote this mov-
ing average estimate of geometric error as �MA. Finally, we
define the residual error map as �re = �orig −�est −�MA.
To model the errors induced by radiometric distortion, we
wrap �re over the phase period of 2π . Using this wrapped
residual error map, we define control points that are uni-
formly distributed (in our case, at an empirically defined
interval of 0.03π ) and a cubic spline function is then esti-
mated to pass through these control points. Figure 10 illus-
trates the spline fitting for a real-world reference plane.
This estimated spline function provides a direct mapping
between an estimated phase value and the expected system-
atic error due to radiometric distortion. During 3D estimation
for an unknown surface, we simply subtract the expected
systematic error given by the fitted cubic spline function
from the estimated phase value. This approach has the abil-
ity to significantly reduce the effect of radiometric distor-
tion that would otherwise be quite pronounced in the case

Fig. 10 Fitting cubic spline on systematic errors for a real-world ref-
erence plane

Fig. 11 Plane fitting error

when we use a few phase-shifted sinusoids in the scanning
process.

8 Radiometric correction experiments

In this section, we describe the experiments carried out
to evaluate our approach to radiometric correction. For
this evaluation, we used the cross-ratio based 3D estima-
tion using homographies induced by a set of three refer-
ence planes. Thus, estimating the Fundamental Matrix was
avoided. As mentioned earlier, to evaluate the geometric cal-
ibration approach we used a large number of phase shifts
(N = 32) which also provides a baseline for evaluating our
radiometric correction method. In the experiments of this sec-
tion, we used N = 4 phase shifts. Using such a low number
of phase shifts results in a significant impact of radiometric
non-linearities which are corrected for using our radiometric
correction approach.

In all, we used four different methods for quantitative
comparisons. Method A is a basic system that uses three com-
plete reference phase maps (i.e. without using homographies)
and the basic cross-ratio approach for reconstruction. In con-
trast, Method B uses the estimated homographies induced by
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three reference planes along with cross-ratios for 3D recon-
struction. Method C is our implementation of the approach
proposed in [7] that is presented for comparison with our
approach. Finally, Method D uses our proposed algorithm
to rectify the phase map, i.e. Method D is our radiometric
correction applied to the phase map generated by Method
B. Five planar surfaces were reconstructed using all the four
methods. The same set of images of the target planes and ref-

Fig. 12 Plane reconstructed using different methods

Fig. 13 Reconstruction of geometric surfaces

erence planes was used by all the methods. Decoded phase
maps for all target and reference planes were processed using
the same low-pass Gaussian filter in all methods. For each
reconstructed plane, a parametric plane was fitted and the
RMS error for the different methods are shown in Fig. 11.
For all cases, Method A shows a high amount of errors since
it does not use any parametric model for calibration. Method
B improves upon Method A by fitting a homography model
for representation of reference phase maps. However, it does
not model the radiometric non-linearities present due to the
low number of phase-shifted patterns used. Method C of
[7] greatly improves the results by modelling non-linearities
using a method to compute cross-ratios along an arbitrary
line in the one of the reference phase maps instead of pro-
jector’s display plane. Our proposed method, i.e. Method D
gives results that are comparable or better than that of Method
C. In particular, for planes 3 and 4 where there are high errors
in the target plane’s phase estimation (due to the acute ori-
entation of the reference plane), our approach does better
by avoiding the interpolation errors that are present in the
approach of [7] in Method C. Figure 12 shows the first plane
in our quantitative evaluation as reconstructed by all four
methods. Clearly, it can be seen by comparing Fig. 12a, d
that our approach removes systematic artefacts effectively.

We also scanned some objects using method Method B
and our radiometric correction proposal Method D and the
results are presented in Fig. 13. In addition, the panchmukhi
Hanuman idol of Fig. 7 was reconstructed using Method B
with N = 32 and N = 4 phase shifts and the corresponding
results are shown in Fig. 14a, b, respectively. Using the same
set of images for N = 4 phase shifts, we show the results
using our proposed approach, i.e. Method D in Fig. 14c. Our
approach to radiometric correction can be seen to effectively
remove systematic visual artefacts that arise due to the use of

Fig. 14 Reconstruction of the panchmukhi Hanuman idol. Notice that in c our radiometric correction method can effectively correct for the errors
observed in b
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only four phase shifts. Thus, our results adequately demon-
strate that our radiometric correction approach can deal with
significant distortion effects.

9 Conclusion

In this paper, we have presented a new approach to solve for
geometric calibration and 3D estimation in structured-light
scanners. By exploiting the homography induced by a plane
in the calibration step, we developed a low-dimensional para-
metric representation of the phase map between the camera
and projector planes. This leads to improved accuracy in esti-
mating the reference phase maps since the low-dimensional
representation averages out the errors in individual observa-
tions. Our approach, in its minimal form, needs projection of
a single (grid) pattern on only two reference (camera calibra-
tion) planes instead of multiple sinusoidal patterns, thereby
speeding up the system calibration process. Our approach is
highly flexible and does not need precise placement of refer-
ence planes. Further, we also use the projective invariance of
the cross-ratio to solve for 3D point location in the scanning
phase. The results presented demonstrate the accuracy of the
approach for geometric calibration. In addition, we intro-
duced a cubic spline-based approach to model the geometric
error induced in the 3D reconstruction due to radiometric
non-linearities of the projector. The utility of our approach
to radiometric correction is effectively demonstrated on real
data.
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