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Abstract The advent of high-throughput phenotyp-

ing installations signals a need for plant biology to

use pattern analysis and recognition techniques, es-

pecially when analysis is done via digital images.

Such installations also provide an opportunity to

computer vision.

We describe one such application at the UK Na-

tional Plant Phenomics Centre, in which historically

measurements have been made in a labour-intensive

manual manner. We develop an estimator of tiller

number in growing wheat which, when exploiting

per-day averaging, temporal interpolation and dy-

namic programming, delivers measurements of finer-

grain and no less accuracy than manually, and pro-

vides observations on plant treatments hitherto dif-

ficult or impossible to obtain.

The approach developed lends itself to reuse for any

similar imaging setup, and plants with tillering char-

acteristics similar to wheat. We consider the work a

useful exemplar for co-operation between biologists

and computer scientists in such installations.

Keywords Small grain cereals · branching · plant

development · computer vision

1 Introduction

Worldwide, there is increasing interest in applying

imaging technologies to plant phenotyping [9], and

R D Boyle · F M K Corke · J H Doonan
National Plant Phenomics Centre
IBERS, Aberystwyth University
Plas Gogerddan, SY23 3EB, U.K.
E-mail: {rob21,fic5,john.doonan}@aber.ac.uk

a growing number of installations able to perform

large scale phenotyping experiments – [1, 14, 17]

are just some examples. Usually, these are based

on automated greenhouses that can administer pre-

programmed treatments to a number of plants, of

which they likewise make regular automated mea-

surements. These installations permit large scale ex-

periments to be conducted over time within com-

plex regimes, with minimal staff input. Much can

be gained from the simplest of monitoring such as a

photograph, but a variety of other image modalities

(UV, IR, NIR, structured light), and root analysis,

are also available. Measurements of benefit to biolo-

gists can then fall into a number of categories:

1. Replication/mimicry of ‘simple’ measurements per-

formed manually. These include plant height and

projected area (which can be used to approxi-

mate mass).

2. (which can be used to approximate mass).
3. Replication/mimicry of less easily accessible mea-

surement, for example, atlas growth stages.

4. Measurements that may be of benefit that have

not been made systematically in the past.

These developments are timely as computer vision

also continues to make significant theoretical and

practical progress [23]. High throughput phenotyp-

ing installations represent very fertile territory for

many such algorithms. We might seek to develop

measurements accessible to computer extraction that

would be difficult or costly if collected manually.

Such activity has been growing in popularity in re-

cent years, for example [3, 4, 11, 19, 21, 22].

In this paper we present work in progress on one such

example: tiller counting in wheat. The architecture

of individual plants has profound implications for
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Fig. 1 The UK NPPC. Left, One of the robotic greenhouses; Right, Plants (here, maize) entering the imaging chambers.

productivity and reproductive success – tiller num-

ber is generally scored manually, often at harvest

as an end-of-life trait but availability of automated

plant phenotyping platforms holds the promise of

automating this process and allowing dynamic mea-

surements during development and in response to

environmental perturbation. We consider this appli-

cation to fall between (2) and (3) above. It is prob-

able that the approach we present would generalise

to related cereals such as rice and millet.

2 Background

2.1 Tillering in wheat

Crop domestication is often associated with archi-

tectural modification. One of the most extreme ex-

amples of domestication-associated modification has

occurred during domestication of maize where the

modern crop plant is typically comprised of a sin-

gle stem. The wild ancestor, teosinte, forms numer-

ous basal branches (referred to as tillers in the grass

family) and modification of a single gene (Teosinte

branched 1) largely suppresses this process [16] so

that the cultivated maize plant generally has a sin-

gle tiller and no tillers. This mechanism appears to

be conserved in the grasses, including rice [5], but

in other grain crops, tillering has not been so highly

modified. Nevertheless, tiller number is a key agro-

nomic trait that is thought to contribute to yield,

perhaps through canopy structure and light inter-

ception [13, 20].

The number of tillers in wheat and related crops is

determined early in the life cycle [2, 15] and is influ-

enced by genotype, water availability and nutrition

[18]. For example, the duration of tillering is influ-

enced by the ratio of red/far red light [6, 7]. Shading

regulates the extent of tillering in maize and other

grasses through the grassy tillers1 gene [24]. Over-

production of tillers can be detrimental to yield as

infertile tillers may compete with fertile ones [10],

and to quality as a crowded canopy can be more

susceptible to disease and pests [12].

Objectively quantifying variation in tiller number, or

many other architectural traits, with a view to un-

derstanding plant performance or to exploiting that

variation in breeding therefore remains a challenge.

Manual counting of any but small data sets is time-

consuming and for productive plants errors of ±2

tillers may easily be experienced. Counting is often

made at harvest as an end-of-life trait. The poten-

tial for adequate (in the sense of no-worse) automatic

estimates, coupled with day-to-day measurement, is

therefore very attractive.

Automated measurement of tiller number should fa-

cilitate the dynamic dissection of this key agronomic

trait but presents a number of challenges, notably

visual occlusion. Good quality measurements of the

tiller number statistic are not easy to obtain, espe-

cially in quantity, and no generally accepted non-

manual procedures are known for monitoring tiller

number during the life of the plant.

2.2 Imaging environment

The UK National Phenomics Centre (NPPC) has re-

cently been established at the university of Aberys-

twyth and exists to conduct large scale phenomics

experiments. The full facility is described elsewhere

[17]; it affords a variety of imaging modalities and

opportunities for controlled environments and treat-

ments. Here, it is sufficient to appreciate that up to

850 plants can be imaged in various modalities daily

under specified conditions. Imaging can include ro-

tated and birds-eye view pictures of each plant – see

Figure 1.
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Fig. 2 Three images of the same plant, rotated 0◦, 45◦, 90◦. This plant was grown under 75% field capacity and the
images acquired toward the end of the experiment (March 28th 2014).

2.3 Ribbon identification

In the images we see (for example, Figure 2), inspec-

tion suggests that tillers appear as ribbons that are

vertical or near vertical, and usually of breadth in the

range 6-10 pixels. This information alone is insuffi-

cient to distinguish them, as the leaves often have

similar properties; nevertheless, our first step was

to attempt to isolate all such features. The problem

has similarities to the location of other ribbon like

structures (for example, blood vessels and airways)

in medical images. This is a long-studied problem

in which the Frangi ‘vesselness’ filter [8] has found

much favour. The filter takes a grey level input and

at each pixel considers the evidence for it being the

mid-point of a ribbon (in 3D, a cylinder). It returns

a score of such evidence, along with a matrix record-

ing the most responsive ribbon width and a second

matrix recording direction. This is done by consid-

ering the eigenvalues of the Hessian matrix at that

pixel over the scale range defined: their relative size

and signs betray the geometry local to the pixel at

the chosen scale. ‘Scale’ determines the σ (standard

deviation) of a Gaussian convolution: the filter actu-

ally seeks ribbons of width 2σ. The filter determines

the scale (and direction) of the maximal ribbon-like

response. Figure 6 below illustrates this for a small

image.

3 Tiller number estimation in wheat

In this study a large number of 2D images were

taken of 60 plants over an 8 week period. Analysing

the basal regions of these images and identifying

tiller-like structures provides a 12-dimensional fea-

ture which we use to estimate the number of tillers

present: note this is an indirect procedure inasmuch

as we do not identify tillers explicitly, but rather

make an estimate of their number. Limited manually

acquired ground truth then permits a regression es-

timate from this feature to give the number of tillers

evident. The estimate can be improved by combining

(cheaply obtained) multiple views, after which the

time series of noisy estimates may be further im-

proved by dynamic programming to determine the

most likely development over the interval.

Spring wheat (Paragon) was sown 2 seeds/pot in

8cm square pots of Levington F2 compost and then

singled and transplanted to weighed 2.5L pots of

F2+40% grit sand. Pots were filled to a uniform

weight to allow target watering to be applied at

selected water regimes. Plants were transferred to

an automated conveyor system (Lemnatec, Aachen,

Germany) for controlled watering and imaging. Plants

were grown at 18oC (±5) day, 15oC (±3) night with

a 14 hour photoperiod. Sixty plants in total were

split over 5 watering regimes (15%, 30%, 45%, 60%

and 75% of field capacity were calculated from dry

matter and field capacity measurements on the same

growth medium); these regimes were chosen to pro-

duce plants of very different stature. Manual counts

of tillers (unambiguously present when > 2cm long,

and just becoming evident in images) were made

throughout the phase of tiller production (22-70 days

after sowing [DAS]) with destructive harvesting of

a subset of plants between 49-70 DAS. Destructive

harvesting scored the plants for fertile tiller number,

height, fresh and dry weight and harvest index.

The NPPC facility permits imaging with a variety of

modalities at many orientations: in this experiment,

only RGB (visible spectrum) was used, with 3 side

view images per day, with the plant rotated through

positions 0o, 45o and 90o. RGB images of 2456x2054
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Fig. 3 Pairs of images of three example plants, recorded at early development and after tillering is complete. At left, 1
tiller at maturity; at centre five; at right, 10 tillers.

Fig. 4 Three view of a particular plant 32 days after sowing – various ribbon like structures are evident, but the
rightmost (90◦) image self-occludes a great deal. Ground truth counting reveals 5 tillers on this plant on this day.

pixel resolution were collected with imaging occur-

ring on most days, resulting in a final number of

approximately 7500 images. A combination of man-

ufacturer and in-house software provide immediate

simple measurements such as plant height and 2D-

projected bulk, which is a good index to biomass.

Blue is an artificial colour in plant scenes and can be

readily removed from the images by segmentation,

and is therefore is used for the carriage, the plant

supports and registration points in the scene. Figure

3 illustrates three plants before and after tillers have

developed – the most populous seen during the ex-

periment had more than 16 tillers, being much more

congested than the rightmost here. Figure 4 shows

a plant with 5 tillers from the three views we take

– the ambiguity and problems of occlusion are clear.

Figure 5 (left) is a close-up of part of the leftmost

plant in Figure 2 in which the tillers are evident;

Figure 5 (right) shows the actual inspection window

used.

Determining such a sub-image automatically is triv-

ial given knowledge of the scene geometry, and pot

and frame characteristics. It was assumed that any

tillers would be evident directly above the pot and

beneath the circular ring of blue frame, and hence an

image section of dimension 200 × 300 that approxi-

mated this region was selected. Blue artefacts were

suppressed and resulting features converted to grey,

as illustrated in Figure 5. However, it is clear that

this image alone is inadequate for tiller-counting:

there is considerable occlusion, and interference from

leaves that very often have the same or very similar

local appearance as a tiller. Over time the colour

patterns of the plant move from green to yellow as

senescence develops, adding to the complexity.

Our suggested algorithm makes an estimate of the

tillers present in an image such as Figure 5. Given

such an estimate it was possible to improve on it in

two ways:

– Since there were three images taken on each day

(0o, 45o, 90o), these estimates were averaged over

the per-day estimates.

– Over the period of the experiment the plants were

growing and an assumption was made that there

would not be a decline in main tiller count. Thus

it is possible to take a series of estimates and seek
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Fig. 5 Left: A typical basal region of a wheat plant used for analysis of tiller number. This image illustrates clearly the
congestion at the plant base where near-vertical artefacts may be tillers or leaves. As the plant matures, some leaves
will fall downward compounding the confusion. Right: The actual inspection window used; blue artefacts (the support
frame) have been suppressed and the image converted to grey.

a ‘best possible’ adjustment to make it monotonic

increasing.

To determine the preliminary estimates, recall that

the Frangi filter delivers a ‘strength’ estimate for ev-

idence at various ribbon widths. It should be clear

that in a ribbon of width 2σ, while the central skele-

ton pixels will give a high response at scale σ, neigh-

bouring pixels will give lesser, but positive, responses

at neighbouring scales. These lesser, ‘ghost’ responses

can be suppressed by performing directional non-

maximal suppression [23] – this may be seen at the

right of Figure 6. For each positive response in this

skeleton the filter delivers an associated strength,

scale and direction. It is clear that the derived skele-

tons are imperfect.

Tillers by their nature are close to vertical, and so

it is reasonable to select some angle θ and erase evi-

dence at pixels which deviate from the vertical by an

angle exceeding this threshold. This results in an im-
age in which non-zero entries record locally maximal

evidence for a near-vertical ribbon, whose direction

and breadth are recorded in the companion matrices

output by the filter.

A scale range of σ = 0.5, 1.0 . . . 6.0 was used to be

sure to cover the range of tiller breadths. For each

value of σ in this range, the sum of evidence for

(near-)vertical ribbons of that width was computed.

This delivers 12 scalars which can each be considered

an estimate of total evidence for tillers of the rele-

vant width (corrupted by noise). These scalars are

taken as a 12-dimensional feature vector describing

the image – this simple feature is used to estimate

the number of tillers present. This is done by deriv-

ing a mapping from this feature space to known tiller

count in a set of images of plants for which manual

observations have been made.

In normal circumstances, images were available for

each day and so the mean of the estimates derived

from each view was used as a best-estimate of tiller

count for each plant on a given day. This resulted

for each plant in a time series of estimates, which

at times had gaps of 1 or more days if the imaging

was not complete. It is reasonable to assume that

the number of tillers was monotonic increasing, and

the last stage therefore took the time series and per-

turbed it via dynamic programming to derive a ‘best

possible’ monotonic fit to the estimated data.

Implementation specifics of the algorithm are given

in the next section – at a high level it may be sum-

marised as:

1. For an input RGB image I, segment, remove blue

artefacts, and convert to grey-scale the area di-

rectly above the pot rim, giving image J .

2. Run a Frangi filter with σ = 0.5, . . . 6, giving

strength image SJ , scale image WJ and direction
image DJ .

3. Perform a directional non-maximal suppression

of SJ with respect to DJ .

4. Erase to zero elements of SJ for which DJ is far

from vertical.

5. Set

fi =
∑

p∈(WJ=i)

SJ(p)

and

f(I) = f(J) = (f0.5, f1.0, . . . , f6)

6. From a ground-truthed training set T , determine

a best fit tiller-counting function t(f(I)). (This is

outlined in Section 4).

7. For a given plant, consider the days d1, . . . , dT
on which it has been imaged, and from which

angles θ = 00, 45o, 90o (circumstances mean that

the day series may not be consecutive, and very
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Fig. 6 Left: A part of the image at right of Figure 5, then representations of the Frangi filter response for scales
σ = 1.5, 4.5. At right, in red, the non-maximally suppressed filter output overlaid on the original, giving a skeletal
representation of the input.

occasionally particular angles are mis-processed

by the system. This is a rare event – less than

1%.). This gives an image set Id,θ, and associated

tiller estimates td,θ = t(f(Id,θ)).

8. Set td = meanθ(td,θ).

9. Consider the sequence td1 , . . . , tdT . Use dynamic

programming optimally to convert this to a mono-

tonic increasing sequence t̂d1 , . . . , t̂dT , where t̂di ≤
t̂di+1 , which has an estimate for all days in the

range [d1, dT ]. (This is outlined in Section 4).

Fig. 7 The distribution of tiller numbers in the training
set, between 22 and 70 days after sowing. It is clear that
the bulk of these come from less-developed plants, which
may be a weakness in results.

4 Implementation and results

This algorithm was applied to the 7500 images of

wheat. The Frangi algorithm was deployed, and the

‘verticalness’ threshold was set to π
4 to catch any re-

sponse closer then vertical than horizontal. Arguably

this could be stricter and may have to be adjusted

for other species or growth conditions.

The training set T was collected during the experi-

ment via manual counting on selected days: approx-

imately 12 plants were measured at intervals of 4-5

days whilst the plants were located on the conveyor.

These measurements may well be prone to error, es-

pecially in higher numbers of tillers. Further, partial

harvests were taken on 4 occasions: 2 replicates of

each treatment were taken for destructive measure-

ment. This allowed more accurate measurement. In

all, approximately 750 images were labelled with re-

liable tiller numbers. The distribution of the manu-

ally acquired tiller count information (see Figure 7)

is skewed to lower numbers since all plants passed

through this phase but some (on the more severe

drought regime) progressed no further.

There are many ways of moving from the 12D de-

scriptor to tiller number: certainly a simple correla-

tion with a ‘weight of evidence’ measure (
∑
i fi(I))

would be one, and this does indeed give usable re-

sults. A simple linear function from 12-space to scalar

was chosen to fit, in a least-squared error sense, which

performed better on the data:

t(f(I)) = b0 +

6∑
i=0.5

bifi

The actual size of tillers is then exploited in the scale

components. An informal inspection of each of the

12 features suggests that correlation of an individual

feature with tiller number exceeds 0.6 for σ ≥ 2.

We have applied this very elementary estimator to

our data: on a ‘leave one out’ basis (omitting test

data from the training set) we see a mean square

error (per plant) in tiller number in the region of

1.5. There is high variance in this observation – some

25% of estimates exceed 2 and are of questionable

value.

Averaging estimates over a day’s data was straight-

forward and leads to an immediate improvement,

with the mean square error per plant (measured sim-

ilarly) reducing to 1.05. Usually there were three

estimates per day and the variance between them
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rarely exceeded 1, although there was a fair inci-

dence of rogue images that cause significant varia-

tions. Using a median instead of mean produces in-

distinguishable results.

Given the known behaviour of plants, it is possible

to use these per-day estimates as a basis to estimate

a time series. Plants have never been observed to

develop 3 new tillers in a day, and 2 is very unusual,

so ti+1, the estimate on day i+ 1, will be at least ti,

but will not exceed it by more than 2. Thus we can

take the series of estimates td1 , . . . , tdT , interpolate

it (linearly) to give estimates on all days, then apply

dynamic programming with the assumptions

1. td1 = 1.

2. ti+1 − ti ≤ 2: the costs encourage this difference

to be 0.

These are clearly strict assumptions, but entirely

reasonable for the application.

Figure 8 illustrates just two applications of this pro-

cess on individual plants (ground truth as blue points,

estimates as red; the blue line shows the final best es-

timate of the dynamic programming) – in each case,

the estimates are made from a model derived without

using the particular plant being examined. Where

the ground truth for a particular plant was known,

results were rarely worse than that shown in the left

figure while the right Figure shows an example of a

very good fit. Note that the algorithm assumes that

tiller number for an individual plant is integral. The

root-MSE with ground truth (which itself may well

not be wholly reliable) for all data as a result of ap-

plying this algorithm was marginally more than 1.1,

suggesting that the final estimate was rarely more

than 2 away from truth. It is intriguing that this
error is slightly worse than that of the pre-DP esti-

mates – on examination, it is heavily skewed by ev-

idence from 3 plants where the ground truth seems

suspect1. Neglecting these suspect outliers, the error

reduces to 1.02.

Clearly, results for individual plants would have er-

ror bars of at least ±1, but intra-class plant variation

was already known to be greater than this. The man-

ual procedure was therefore mimicked by averaging

over all replicates for each treatment. Figure 9 illus-

trates this, with indicators of ground truth overlaid,

where it is known. The variability of this illustrates

1 For example, having tiller number decrease in time;
this is probably attributable to different, or inexperienced
observers. Especially for very well developed plants, hand
counting of tillers is far from easy and may well be 1 or
two out, depending on the observer’s convention.

intra-class variation. The overall trends are clear for

the progressively harsher treatments and indicates

that the discriminatory power of this approach is

at least similar to manually acquired data sets. It

is these per-treatment trends that such experiments

are conducted to determine, and these results vindi-

cate our approach. Furthermore, the rate of devel-

opment under the different regimes is also clear –

this is a datum that would not normally be recorded

by manual observation since collecting it during the

growth phase is very labour-intensive.

Without expensive complete ground truthing, it is

difficult to know exactly how robust these results

are. The plot overlays ground truth where the latter

is known, which suggests that in the majority these

lines are plausible. Treatment 3 (plotted in blue)

shows the greatest deviation from ground truth and

is plotted in further detail in the right of the Fig-

ure. The intra-class variation seen was well within

the bounds of expectation but the model found the

later observations hard to accommodate. This may

be due to the oversimplification of the linear estima-

tor but may equally demonstrate imprecise manual

ground truth of densely tillered plants.

5 Conclusions and further work

Tiller counting is of importance in monitoring devel-

opment of many plants, in particular wheat. Along

with many traits, it is labour intensive (and often in-

accurate) to collect manually, and the advent of high

throughput systems makes automated estimates of

tiller number attractive. We have presented such a

system which makes such estimates. In isolation, oc-

clusion and other imaging effects mean that these are

unlikely to be particularly reliable. However, when

combined with averaging over multiple views and in-

telligent interpolation over time, and consideration

of replicates of a treatment, they can deliver accept-

able approximations to this count.

Our system has used a ‘vesselness’ estimator devel-

oped for medical applications, refined for this ap-

plication: codes were developed in portable Matlab2

which the authors are happy to share on request.

Total processing time per plant on a standard Linux

desktop is measured in seconds as the Frangi filter

is very compute hungry – currently this is not an

issue as the entire dataset is processed offline, but

a low-level recoding of the filter is likely to provide

2 MATLAB is a registered trademark of The Math-
Works, Inc.
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Fig. 8 Two examples of the dynamic programming procedure being applied to plant data. Red points are the estimate
from the regression function t(f) (derived without using the plant in question), blue points are known ground truth, and
the line shows the dynamic programming result. (The code numbers, 11305 and 11402, refer to specific plants. ‘Shoot’
and ‘tiller’ are terms often used interchangeably.)

Fig. 9 Left: Averaged performance of the five different treatments. Overlaid are per-day ground truth means ±σ (∗,◦)
for days when there is more than one measurement. Right: Ground truths and estimated behaviours for treatment 3
(blue in the left graph).

an order of magnitude speedup that would obviate

any issues around processing time. Overall, our re-

sults suggest a root-MSE of approximately one tiller,

which is well within usable bounds and not signifi-

cantly different from manual scoring. Temporal in-

formation from daily imaging then permits dynamic

programming to improve day-by-day estimates sig-

nificantly.

We have reported here work in progress, which can

be developed in several directions to improve esti-

mates further:

– Further wheat experiments will allow a more elab-

orate training set to be accumulated, in particu-

lar with more instances of 8+ tillers.

– The Frangi filter is of remarkable power and its

outputs may be used in many ways: we see scope

for improving the identification of putative tillers

in these outputs. Any improvement in the per-

image estimates of tiller number would lead to

improved overall estimates.

– The regression function we use as tiller number

estimator is very probably not best possible. Im-

proving this may well be straightforward when a

fuller training set (as above) is presented.

– No use has been made of colour, which could well

assist in disambiguating tillers and leaves. Senes-

cence often develops at different rates in different

parts of the plant, affording a possible disam-

biguator.

In a high throughout automated system, measures

of this kind can prove very useful in the automated

study of various treatments and environments over

time. Measurements made are subject to errors of
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comparable magnitude to intra-class variation and

human error. In principle, this approach demonstrates

the feasibility of automatically extracting features

from images that provide a reasonable proxy for man-

ual tiller counts, and the method should be applica-

ble to any crop with similar growth habit, including

other small grain cereals such as rice, barley and

oats. The bulk of the algorithm we present is by de-

sign elementary, and may well be amenable to signifi-

cant improvement should applications require higher

performance.

While this work is of direct benefit in existing exper-

iments and high throughput installations, we see it

further as an exemplar of the practicality of apply-

ing established computer vision techniques in plant

breeding and biology. In cross-disciplinary work, it

is critical for the computer scientist to engage prop-

erly with what the domain experimenter is trying

to find out: thereafter it is possible that informa-

tion automatically extractable may be of great ben-

efit, but may not correspond directly with traditional

approaches. As illustration, this application derives

temporal behaviour which is very time consuming to

extract manually, and can simply average over high

numbers of replicates with negligible staff-time over-

head. Thereby, patterns of behaviour during growth

can be compared with reasonable accuracy – this has

not hitherto been possible.
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