Skip to main content
Log in

Characterization of mountain drainage patterns for GPS-denied UAS navigation augmentation

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

We present a novel approach to use mountain drainage patterns for GPS-denied navigation of small unmanned aerial systems, such as the ScanEagle, utilizing a down-looking fixed focus monocular imager. Our proposal allows for extension of GPS-denied missions in mountain areas, with no assumption of human-made geographic objects. We leverage the analogy between mountain drainage patterns, human aeteriograms, and human fingerprints, to match local drainage patterns to parallax occlusion maps of geo-registered radar returns (GRRR). The GRRR data may be loaded on-board the aircraft pre-mission to avoid the need for a scanning aperture radar during the mission. For recognition purpose, we represent a given mountain area with a set of spatially distributed mountain minutiae, i.e., details found in the drainage patterns, so that conventional minutiae-based fingerprint matching approaches can be used to match real-time camera images against template images in the training set. We use medical arteriography processing technique to extract the patterns. The minutiae-based representation of mountains is achieved by first exposing mountain ridges and valleys with a series of filters and then extracting mountain minutiae from these ridges/valleys. Our results are experimentally validated on actual terrain data and show the effectiveness of minutiae-based mountain representation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Celik, K., Somani, A.K., Schnaufer, B., Hwang, P.Y., McGraw, G.A., Nadke, J.: Meta-image navigation augmenters for unmanned aircraft systems (MINA for UAS). In: Proc. SPIE 8713, Airborne intelligence, surveillance, reconnaissance (ISR) systems and applications X. pp. 1-15 (2013)

  2. Vaneck, T.W.: Fuzzy guidance controller for an autonomous boat. IEEE Control Syst. Mag. 17(2), 43–51 (1997)

    Article  Google Scholar 

  3. Golden, J.P.: Terrain contour matching (TERCOM): a cruise missile guidance aid. In: Proc: SPIE 0238, image processing for missile guidance (1980). doi:10.1117/12.959127

  4. Fountain, J.R.: Digital terrain systems. In: Proc. IEE colloquium on airborne navigation systems workshop (1997). doi:10.1049/ic:19970909

  5. Rodriguez, J.J., Aggarwal, J.K.: Matching aerial images to 3-D terrain maps. IEEE Trans. Pattern Anal. Mach. Intell. 12(12), 1138–1149 (1990)

    Article  Google Scholar 

  6. Sim, D.G., Park, R.H., Kim, R.C., Lee, S.U.: Integrated position estimation using aerial image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 1–18 (2002)

  7. Michaelsen, E., Jaeger, K.: A google-earth based test bed for structural image-based UAV navigation. In: Proc. Int’l Conf. Information Fusion, pp. 340–346 (2009)

  8. Michaelsen, E., Jaeger, K., Roschkowski, D., Doktorski, L., Arens, M.: Object-oriented landmark recognition for UAV-navigation. Pattern Recogn. Image Anal. 21(2), 152–155 (2011)

    Article  Google Scholar 

  9. Merhav, S.J., Bresler, Y.: On-line motion estimation from visual terrain information, part I: recursive image registration. IEEE Trans. Aerosp. Electron. Syst. 22(5), 583–587 (1986)

    Article  Google Scholar 

  10. Bresler, Y., Merhav, S.J.: On-line motion estimation from visual terrain information, part II: ground velocity and position estimation. IEEE Trans. Aerosp. Electron. Syst. 22(5), 588–604 (1986)

    Article  Google Scholar 

  11. Lerner, R., Rivlin, E., Rotstein, P.H.: Error analysis for a navigation algorithm based on optical-flow and a digital terrain map. In: Proc. IEEE Int’l Conf. computer vision and pattern recognition (2004). doi:10.1109/CVPR.2004.1315087

  12. Kim, J., Sukkarieh, S.: Autonomous airborne navigation in unknown terrain environments. IEEE Trans. Aerosp. Electron. Syst. 40(3), 1031–1045 (2004)

    Article  Google Scholar 

  13. Chen, Z., Samarabandu, J.: Using multiple view geometry within extended Kalman filter framework for simultaneous localization and map-building. In: Proc. IEEE Int’l Conf. Mechatronics and automation, vol. 2, pp. 695–700 (2005)

  14. Celik, K., Chung, S.J., Clausman, M., Somani, A.K.: Monocular vision SLAM for indoor aerial vehicles. In: Proc. IEEE Int’l Conf. intelligent robots and systems (2009). doi:10.1109/IROS.2009.5354050

  15. Zhang, J., Wu, Y., Liu, W., Chen, X.: Novel approach to position and orientation estimation in vision-based UAV navigation. IEEE Trans. Aerosp. Electron. Syst. 46(2), 687–700 (2010)

    Article  MathSciNet  Google Scholar 

  16. Gonzalez, R.C., Woods, R.E.: Digital image processing. Prentice Hall, New Jersey (2002)

    Google Scholar 

  17. Sole, A.F., Lopez, A., Sapiro, G.: Crease enhancement diffusion. Comput. Vis. Image Underst. 84, 41–248 (2001)

    Article  Google Scholar 

  18. Weickert, J.: Anisotropic diffusion in image processing. B.G. Teubner Stuttgart (2008)

  19. Lopez, A.M., Lloret, D., Serrat, J., Villanueva, J.J.: Multilocal creaseness based on the level-set extrinsic curvature. Comput. Vis. Image Underst. 77, 111–144 (2000)

    Article  Google Scholar 

  20. Thai, R.: Fingerprint enhancement and minutiae extraction. Technical Report, The University of Western Australia (2003)

  21. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using gabor filters. Pattern Recogn. 24(12), 1167–1186 (1991)

    Article  Google Scholar 

  22. Tico, M., Kuosmanen, P.: Fingerprint matching using an orientation-based minutiae descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1009–1014 (2003)

  23. Abramham, J., Kwan, P., Gao, J.: State of art in biometrics. InTech (2011)

  24. Sudiro, S.A., Paindavoine, M., Kusuma, T.M.: Simple fingerprint minutiae extraction algorithm using crossing number on valley structure. In: Proc. IEEE Automatic identification advanced technologies workshop (2007). doi:10.1109/AUTOID.2007.380590

  25. Celik, K., Somani, A.K.: Wandless realtime autocalibration of tactical monocular cameras. Proc. IPCV 1, 186–193 (2012)

    Google Scholar 

  26. Bunnell, M.: Per-pixel displacement mapping with distance functions. http://developer.nvidia.com/GPUGems2/gpugems2_chapter08.html

Download references

Acknowledgments

The research reported in this paper was in part funded by Rockwell Collins Advanced Technology Center, and Jerry R. Junkins Chair Endowment at Iowa State University (ISU). The authors would like to acknowledge the invaluable support and feedback from Dependable Computing and Networking Laboratory members at ISU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Celik, K. & Somani, A.K. Characterization of mountain drainage patterns for GPS-denied UAS navigation augmentation. Machine Vision and Applications 27, 87–101 (2016). https://doi.org/10.1007/s00138-015-0723-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-015-0723-9

Keywords

Navigation