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Abstract This paper presents a novel stereo visual odome-
try (VO) framework based on structure from motion, where
a robust keypoint tracking and matching is combined with
an effective keyframe selection strategy. In order to track
and find correct feature correspondences a robust loop chain
matching scheme on two consecutive stereo pairs is intro-
duced. Keyframe selection is based on the proportion of
features with high temporal disparity. This criterion relies
on the observation that the error in the pose estimation
propagates from the uncertainty of 3D points—higher for
distant points, that have low 2D motion. Comparative results
based on three VO datasets show that the proposed solution
is remarkably effective and robust even for very long path
lengths.

Keywords Visual odometry - Structure from motion -
RANSAC - Feature matching - Keyframe selection

1 Introduction

The real-time estimation of the camera trajectory and the con-
struction of a 3D map of the scene, based on images acquired
in an unknown environment, has received an increasing inter-
est in the computer vision community during the last few
years. This task is usually referred to as visual simultaneous
localization and mapping (VSLAM) [7]. VSLAM systems
typically include a visual odometry (VO) module [26,30],
aimed at the incremental estimation of the camera path using
local information. Optimization algorithms over the whole
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estimated path and map can also be present, so as to enforce

global consistency when revisiting part of the scene [15].
Related work on camera path estimation—which is the

main topic addressed in this paper—is discussed hereafter.

1.1 Related work

Methods for real-time camera tracking are mainly based
either on probabilistic frameworks [7,23] or on the SfM par-
adigm [24,26]. In the former case they employ Bayesian
filtering techniques, such as the extended Kalman filter
(EKF), to couple together in the same process camera posi-
tions and 3D points, incrementally updated. On the other
side, the latter approaches exploit the epipolar geometry
constraints [14] to compute the camera positions and the
3D map through robust estimators, such as the random
sample consensus (RANSAC) [9]. Successive refinement
steps are usually applied by iterative nonlinear optimiza-
tion techniques—such as bundle adjustment [35]—over a
selected subset of frames (keyframes).

Both kinds of approaches have their drawbacks. In the
Bayesian frameworks, points have to be added and discarded
as the estimation proceeds, since the 3D map cannot grow
excessively for computational limits, thus resulting in a loss
of estimation accuracy. On the other hand, in order to achieve
real-time operation, keyframe-based approaches can perform
local optimizations only occasionally. Nevertheless, accord-
ing to [33], keyframe-based solutions outperform Bayesian
approaches, due to their ability to maintain more 3D points
in the estimation procedure.

Stereo configurations have been widely used [11,20,22,
26,27]. In general, stereo systems provide better solutions
than single camera setups, since the rigid calibration of the
cameras increases the accuracy of the 3D map and provides
more robust matches. This avoids issues such as the delayed
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3D feature initialization [23] (i.e., when a point is seen for
the first time) and the scale factor uncertainty [34].

Camera tracking systems can also be characterized by
the feature matching strategy adopted to detect and track
keypoints across the image frames [6,11,17,18,25,29]. In
addition to the classical keypoint matching and tracking
methods [17], solutions robust to high degrees of blur [29],
relying on edges [18], with hierarchical pose refinement [32],
or exploiting the high computational power offered by mod-
ern GPUs through a dense approach [25] have been proposed.
Effective stereo matching strategies [11] and sequentially
overlapping 3D maps [8] have also been employed.

1.2 Our contribution

The main idea of the proposed system, named SSLAM, is
to use only highly reliable data in the estimation process,
as reflected mainly in the feature matching scheme and the
choice of good frames.

The feature matching process is the main source of noise
in a camera tracking system. Wrong matches can lead to
erroneous estimates, which can be only partially corrected
using robust outlier rejection strategies. To limit as much
as possible the introduction of errors in early processing
stages, we choose to employ an accurate and relatively slow
matching strategy instead of less accurate solutions. In par-
ticular, a robust loop chain matching scheme is adopted,
improving upon VISO2-S [11], for using a more robust
detector—descriptor pair. The adopted robust matching strat-
egy avoids upfront the introduction of strong noise and thus
the need of further global optimization steps. In addition,
this strategy can find correspondences also in images with
high spatial and/or temporal disparity—a critical issue for
any approach based on tracking [20].

The other aspect characterizing our system is the selection
of the keyframes used as base references for the measure-
ment of the 3D landmark positions for the camera trajectory
computations. Keyframes are selected only if a strong fea-
ture temporal disparity is detected. This idea arises from
the observation that errors may propagate also from the
uncertainty of the 3D points, which is higher for distant
points corresponding to low temporal flow matches in the
images. The proposed strategy can be more stable and effec-
tive with respect to using a threshold on the average temporal
disparity [19] or a constant keyframe interleaving [26]. More-
over, evaluating 2D measures such as the feature temporal
flow leads to a more robust keyframe selection compared to
approaches that evaluate the distance among frames in 3D
space [11].

This paper significantly extends our previous work [2], by
providing a detailed description of the proposed method in
Sect. 2, followed by a comprehensive evaluation and com-
parison on the KITTI [10], New College [31] and New
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Fig. 1 Pipeline of the proposed method

Tsukuba [21] datasets in Sect. 3. Conclusions and final
remarks are given in Sect. 4.

2 Method overview

Given a calibrated and rectified stereo sequence S = { f;},
where the frame f, = (I', I") is composed by the left I/
and right /] input images taken at time t € N, SSLAM
alternates between two main steps (see Fig. 1). The first step
matches keypoints between the last keyframe f; and the cur-
rent frame f;, while the second estimates the relative camera
pose P; j = [R; jIt; ;] € R3*4, where R;; € R3*3 is the
rotation matrix and t; ; € R? is the translation vector. If
the new pose is successfully estimated and sufficient tempo-
ral disparity is detected between f; and f;, the frame f; is
updated as the new keyframe.

Assuming that R;; = T'and t;; = 0 (where I and 0
are respectively the identity matrix and the null vector) the
absolute pose at time n is defined as P, = Py . P, can be
computed by concatenating the poses Po o, Po i ..., P jPj s,
where time steps 0 < k < --- < i < j belong to accepted
keyframes and n > j is the current frame.

2.1 Loop chain matching

The proposed loop chain matching draws inspiration from
the circle match of VISO2-S [11], as the candidate cor-
respondences should be consistent among the four image
pairs (Iil, 1), (Il.l, Ij’.), 7, I;), (IJI., 1;). However differently
from [11], instead of a less accurate keypoint detector and
descriptor based on simple image filters, a robust detector and
descriptor pair is used. This also avoids using the two-step
matching strategy employed by VISO2-S to further refine
correspondences and permits achieving longer and more sta-
ble keypoint tracks, crucial for the pose estimation, without
re-initialization issues and keypoint losses occurring with
tracking strategies such as KLT [20].

In particular, the HarrisZ detector [3], which provides
results comparable to other state-of-the-art detectors, is used
to extract robust and stable corner features in the affine scale-
space on the images 1!, I, I, 1 /’ The sGLOH descriptor

ity

with the sCOr nearest neighbor matching [4] on the L dis-
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P;; = [Rijlti ;]

Time

Fig. 2 (Best viewed in color) Keypoint matches between the keyframe
fi and the new frame f; must satisfy the spatial constraint imposed by
the epipolar rectification (yellow band) as well as the temporal flow
restriction (orange cone). Furthermore, the four matching points must

form a loop chain C (dotted line). In the ideal case, points le x’/. in

tance is used instead to obtain the candidate correspondences
between image pairs (Il.l, 1), (Il.l, I;), 7, I;), (Ijl., Ijr.) after
spatial and temporal constraints have been imposed to refine
the candidates matches (see hereafter).

Letx¢ = [x4, yIT € R%, d e {I,r}, s € {i,j} be a
point in the image I¢. A spatial match (x., x!) between the
images on the same frame is computed by the stereo epipolar
constraints imposed by the calibration

|xé—xsr|<8x (1)

lys = ¥l <8y @)

where §y is the error band allowed by epipolar rectification
and &y is the maximum allowed disparity (i.e., the corre-
sponding stereo point must lie inside a 28, x 23, rectangular
window). In the case of a femporal match (de, X;l) between
corresponding images at different frames, the flow restriction

I x{ — x4 ||< 3)

is taken into account, where §; is the maximum flow dis-
placement (i.e., the corresponding point in the next frame
must lie inside a circular window of radius §,). Only matches
that form a loop chain

Cc= ((xﬁ,x;), &, xh), (X0, (x{,x;)) (4)

are retained (see Fig. 2); however, some outliers can still be
present. For this reason, each matching pair of the loop chain
C is further filtered by RANSAC to refine the matches. These
four RANSAC runs have an almost immediate convergence

frame f; must coincide with the projections ’)Zl/ 'i; of X; ; obtained by

triangulation of xf ,X; in f; in order for the chain C to be consistent with
the pose P; ;. However, due to data noise, in the real case it is required
that the distances || ié - X]j || and || i; — x;. || are minimal

due to the high presence of inliers. Only loop chains whose
all pair matches survive to the four RANSACs are finally
collected into the set C; ; € {C}.

2.2 Robust pose estimation

The relative pose P; ; between f; and f; is estimated in the
second step of the SSLAM approach (see again Fig. 2). The
3D point X ; corresponding to the match pair (xf, X;) in
keyframe f; can be estimated by triangulation [14], since the
intrinsic and extrinsic calibration parameters of the system
are known—in particular, we use the iterative linear triangu-
lation method described in [13].

Let X. and i; be the projections of X; ; onto frame f;,
according to the estimated relative pose P; ; = [R; j|t; ;1.
The distance

DPj)= .

C;,j<C.de{l,r}

Ix4— x4 )

among the matches of the chain set C; ; must be minimized,
in order for the estimate pose P; ; to be consistent with the
data. Due to the presence of outliers in C; ;, a RANSAC test
is run, where the number Dg (P; ;) of outliers chain matches
over C; ; exceeding a threshold value 6, is minimized so that
pose P; ; be consistent with data:

Dr(Pj) = > T (14 = x4 11> ). ©)

Ci,j

In Eq. 6,d € {l, r}, and the indicator function T; (P (d)) is 1
if the predicate P(d) is true for all the admissible values of
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d, and 0 otherwise. The final pose estimation P; ; between
frames f; and f; is chosen as

Pi,j = argmin DR (Pi,j)- (7)
P;

At each iteration RANSAC estimates a candidate pose P; ;
using a minimal set of matches, i.e., 3 matches, in order to
be robust to outliers [9]. The candidate matches used to build
the pose model P; ; are sampled from the set of candidate
matches C; ;. The pose P; ; is validated against the whole
set of candidate matches C; ; according to (6), and the best
model found so far is retained. The process stops when the
probability to get a better model is below some user-defined
threshold value, and the final pose 1_3,-, ;j is refined [16] on the
set Gp, ; of inlier matches where

Gr,, ={C e Cij 1 Ta (1% = x4 1< 81) | ®)

for a generic pose P; ;.

With respect to the pose estimation method described
above, SSLAM filters the frame sequence according to the
observation that the image resolution provides a lower bound
to the uncertainty of the position of the keypoints used in
the matching process, although subpixel precision is used.
Matches are triangulated to get the corresponding 3D point
and eventually estimate the relative pose between two tem-
poral frames. Close frame matches have a low temporal
disparity and the associated 3D point position has a high
uncertainty with respect to distant frames, due to the error
propagation from the matches on the image planes. Only
points with sufficient displacement can give information
about both the translational and rotational motion, as shown
in Fig. 3. This idea is a straight generalization of the well-
known baseline length issues related to the trade-off between
reliable correspondence matching and accurate point trian-
gulation [14].

Exploiting this idea, SSLAM defines two subsets F; ; and
F; ; of the set of chain matches C; ; for f; and f; which
respectively include fixed and non-fixed points with respect
to the temporal flow, i.e.,

Fij={CeCij|Ta(lx{ —xI |<5p), and ©)

Fij=Cij\Fj, (10

for a given threshold 6 ;. In order for frame f; to be accepted
as new keyframe, the number of non-fixed matches between
frames f; and f; must be sufficient according to a threshold
Sm:

| Fi

YA
|Ci,jl

> 8. (1)
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Fig. 3 (Best viewed in color) The uncertainty of matches in the image
planes is lower bounded by the image resolution (red), and it is prop-
agated to the 3D points. In order to estimate the 3D point X; ;, by
using close frames f; and f;, a low temporal disparity is present in the
image planes, and the 3D point location X; ; can assume a higher range
X, j of values (dark gray quadrilateral). In the case of distant frames
fi and f,, the possible locations X; ,, are more circumscribed (blue
quadrilateral), for the same resolution limits

Indeed, if the estimation fails due to wrong matches or high
noisy data, which practically leads to a final small RANSAC
consensus set Gﬁ,j’ the frame f; is discarded and the next
frame f;11 is tested. We also tried to verify whether the use of
only non-fixed matches as input to RANSAC pose estimation
can lead to better results, but no improvements were found,
so the proportion of fixed and non-fixed points is only used
for keyframe selection. This means that, while all matches
are used to estimate the camera position, in the presence of
enough non-fixed matches, a higher accuracy can be achieved
by limiting bad solutions. Note that for determining fixed and
non-fixed matches flow vectors are considered, so that in the
case of strong rotations and weak translations, even if points
are far, their higher flow would lead to better measurements
and accuracy with respect to the minimal measuring unit, i.e.,
a pixel.

Examples of fixed point estimations are shown in Fig. 4.
With respect to the average flow threshold commonly
employed by other systems such as [19], our strategy is more
stable and can handle better keyframe drops. As an example,
referring to Fig. 4, the average flow in the top configuration
is considerably higher than that of the bottom one. Lower-
ing the threshold, to accept the bottom frame, would also
include very low disparity frames (just consider to replace
in the bottom frame the unfixed light blue matches by twice
the matches with half disparity). In this sense, our measure
is more robust, so that both the frames shown in the figure
are retained as keyframes. In analogy, our frame selection
resembles RANSAC while the average flow is close to the
least-square approach.
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Fig. 4 (Best viewed in color) Examples of successive keyframes
retained according to the temporal flow for two different sequences
of the KITTI dataset. The two temporal keyframes involved are super-
imposed as for anaglyphs, only images for the left cameras are shown.
Good fixed and unfixed matches are shown in blue and light blue, respec-
tively, while wrong correspondences are reported in cyan

Finally, we add a pose smoothing constraint between
frames, so that the current relative pose estimation P;, j can-
not abruptly vary from the previous P, ;, z < i < j. This
is achieved by imposing that the relative rotation around the
origin between the two incremental rotations R, ; and R; ; is
bounded

arccos (uTRiT’ij,iu) < by, (12)

where u = %[1 1117, Optionally, in the case of strong con-
strained movement, like that of a car, a further constraint on
the corresponding translation directions t;; and t; ; can be
added

T
it

arccos| ——————— ) < 8y (13)
(II tij Itz II) ’

This last constraint can also resolve issues in the case of
no camera movement or when moving objects crossing the
camera path cover the scene.

3 Experimental evaluation

The KITTI vision benchmark suite [10], the New College
sequence [31] and the New Tsukuba stereo dataset [21] were
used to evaluate our SSLAM system.

Recently, the KITTI dataset has become a reference eval-
uation framework for VO systems. The dataset provides
sequences recorded from car driving sessions on highways,
rural areas and inside cities with vehicle speed up to 80 km/h.
The benchmark consists of 22 rectified stereo sequences
from 500m to S5km, taken at 10fps with a resolution of

Fig. 5 Example frames of the New Tsukuba stereo dataset: a fluores-
cent, b daylight, c flashlight, d lamps

1241 x 376 pixels. Recorded scenes are not static, as mov-
ing vehicles in opposite direction or crossing the road are
present. In order to train the parameters of the methods,
ground truth trajectories are available only for the first 11
sequences. Results for the remaining sequences should be
submitted online to get a final ranking. Translation and rota-
tion errors normalized with respect to path length and speed
are computed in order to rank the methods.

The New College dataset is made up of a very long
sequence of 2.2km for more than 50000 stereo rectified
frames taken inside the Oxford New College campus using
a Segway. Data were recorded at 20 fps with a resolution of
512 x 384 pixels. Although no reliable ground truth is avail-
able, the sequence consists of several different loops which
can be used to qualitatively compare VO methods by visual
inspection of estimated paths. Unlike the KITTI dataset, data
are recorded at a lower speed and the camera movements are
less constrained, i.e., strong camera shakes are present.

The New Tsukuba dataset is a virtual sequence that navi-
gates into a laboratory reconstructed manually by computer
graphics. Images with a resolution of 640 x 480 pixels are
recorded at 30fps for one minute while accurate ground
truth positions are registered and provided to the users. The
sequence is rendered with four different illuminations from
the most classical fluorescent to the more challenging flash-
light and lamps—see Fig. 5.

Unless otherwise specified, for SSLAM we set §y =
55px, 6m = 5%, 89, = 15° (see Sect. 2.2). About the spa-
tial and temporal constraints, the triplet (,, éx, dy) is set
to (500, 300, 12) px in the case of the KITTI dataset and
to (100, 100, 12) px for the New College and New Tsukuba
dataset, since these videos are taken at lower resolutions and
baselines. In the rest of the evaluation we will mainly com-
pare SSLAM against VISO2-S as it is the only method whose
authors have kindly replied to our request to provide us their
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Fig. 6 (Best viewed in color) Average error on the first 11 sequences of the KITTI dataset. Plots a, b refer to the average translation and rotation
error for increasing path length, respectively, while plots ¢, d refer to increasing speed

full code. Note that, for the sake of comparison, VISO2-S
(8r, dx, 8y) values are chosen as (200, 200, 3) px (default val-
ues) for KITTI and (100, 100, 3) in the New College dataset,
where the latter values perform better than the default val-
ues. The translation constraint is 89, = 10° for the KITTI
dataset, while it is not used for New College—due to high
camera shakes—and for the New Tsukuba sequences.
Furthermore, we tested SSLAM using keypoints detected
at full- and half-resolution videos; in the latter case, the
notation SSLAMT is used. In the case of SSLAM less accu-
rate keypoints are found, with bigger (normalized) feature
patches, more sensitive to fast camera movements. Note also
that more keypoints are found in full-resolution SSLAM
implementation than with SSLAMT. Nevertheless, different
image resolutions do not affect the other parameters of the
methods since keypoint positions are rescaled at the full res-
olution before the constrained matching in both cases.

3.1 SSLAM parameter analysis

We compared different versions of our SSLAM system, cor-
responding to the successive improvements of the pipeline
proposed in Sect. 2, in particular we analyzed different ver-
sions of the more challenging SSLAM'. We indicated by
SSLAM™ the first version which only includes the loop chain
matching described in Sect. 2.1, while the adaptive keyframe
selection is incorporated in the default SSLAMT.

In order to analyze the robustness and the effectiveness
of the proposed method, the SSLAM' system was tested
with a different number of RANSAC iterations for the pose
estimation. In particular, results of SSLAM™ with 500, 15
(set as default) and 3 RANSAC iterations, and SSLAM™
with 500 iterations are presented, indicated respectively by
SSLAM'/500, SSLAM /15, SSLAM/3 and SSLAM*/500.

Figure 6 shows the average translation and rotation errors
of the different SSLAMT variants for increasing path length
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and speed, according to the first 11 sequences of the KITTI
dataset [10]; we verified that similar results hold in the case
of full-resolution SSLAM.

The chain loop matching scheme together with the chosen
keypoint detector and descriptor is robust even for long paths,
without bundle adjustment or loop closure detection. SSLAM
improves on the standard pose estimation without keyframes
selection, allowing to track longer paths and confirming that
the proposed keyframe selection strategy is effective.

Moreover, results for SSLAM/15 and SSLAM/500 are
equivalent, while SSLAM/3 obtains inferior results but sim-
ilar to those obtained by SSLAM /500, giving an evidence
of the robustness of the proposed matching selection strategy
and pose estimation.

A further test aiming at investigating the fixed point thresh-
old § s used to accept a frame as keyframe was also done. This
is the parameter that mainly affects the results, since selected
keyframes decrease as § ¢ increases, while we verified that
the computation is stable with respect to the choice of the
other parameters. Note that increasing 4,, can be considered
similar to require a higher 87 for a lower §,, value. In par-
ticular, we run SSLAM for different values of 6 7 = 30, 50
(default), 80 px on KITTI and New College datasets. In the
case of 6y = 30 slightly inaccurate paths are present with
respectto 6 ; = 50 on both datasets, while for § = 80 higher
pose errors are found.

Figure 7 shows the behavior of SSLAM for the different
values of 6  on the New College sequence. Clearly the default
set ¢ = 50 px provides better results since even after a
long path loops are correctly closed. This results confirm
the observation that avoiding close keyframes improves the
results, but this choice must be balanced with the tracking
capability of the system. Moreover, if the system is unable
to estimate the pose due to a low number of matches and
tracking loss, a recovery method must be implemented as for
any other VO methods.
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Fig. 7 SSLAM estimated paths for the New College video sequence with § 7 = 30px (a), 6y = 50px (b) and 6y = 80px (c)

Table 1 Average number of frames between two consecutive
keyframes and the corresponding standard deviations for different val-
ues of the threshold 6 ¢

8 Average Std
35 55 85 35 55 85
KITTI 1 2 3 1 1 2
New College 5 10 32 8 13 39
F 9
L 4 )
450 P ’(/
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350 DR b
300} AN . . . g
550l P ,lv ' v., — Y E
# 3 R 5 \ o
7 \ 37 2
200} e 2 \ \ g
” ” r" - Li
150 ’\ A : "‘" ) B ~ Q
. S Sp—
100 \\ « <« g
L N 3 Z
50 ~
0 e .
‘ ‘ ‘ ; SO 4 ‘ ‘ 0
-400 -300 -200 -100 0 100 200

Fig. 8 (Best viewed in color) An example of keyframe distribution
along the Sequence 00 of the KITTI dataset for SSLAM (default § ;=50
px). At each estimated camera position the number of keyframes that
fall inside a window of 10 frames centered at the camera location is
shown according to the colorbar gradation

Table 1 shows the average number of frames between
two consecutive keyframes and the corresponding standard
deviations. Average keyframe rate depends upon 6 ¢ and §,,
but also on the camera speed and the video frame rate.
Slower camera speed and/or higher frame rate imply a lower
keyframe rate, but on the other hand § s and §,, depend also
on the scene. According to Table 1, the average keyframe
rate is lower for the New College dataset than for the KITTI
dataset, due to their different camera speeds. Furthermore,
as it can be noted in Fig. 8, the keyframe distribution is not
uniform but it is denser near camera turns and accelerations.

3.2 Evaluation on the KITTI dataset

We report hereafter the results on the KITTI odometry bench-
mark for stereo methods only (more details are available
online [10]) excluding methods that rely on laser data. Fig-
ure 9 shows the average translation and rotation errors of
the different methods for increasing path length and speed.
SSLAM and SSLAM'—ranked among the first positions of
the KITTI benchmark—obtain respectively a mean transla-
tion error of 1.57 % and 2.14 % w.r.t. the sequence length
and a rotation error of 0.0044 and 0.0059 deg/m. These rank
placements show the robustness of the proposed method-
ology. Note, however, that the benchmark provides partial
results, since these error metrics cannot take into account
all the properties of a VO system. In particular, referring to
Fig. 10 where two sample tracks of the KITTI dataset are
shown, it can be seen that while both MFI and VoBa (respec-
tively ranked in 1st and 4th positions) provide slightly better
results than SSLAM in terms of KITTI metrics, on long paths
SSLAMT (12th ranked) clearly improves on the 7th ranked
eVO method. This can also be observed in the relative trans-
lation error for an increasing path length in Fig. 9a, where
SSLAM plot remains stable when compared to the increas-
ing error of eVO. Additionally, evaluation on the KITTI
sequence shows that our approach is robust in the case of
non-static scenes for common situations with other objects
traveling in other directions. In particular, the 8, constraint
(see Eq. 13) allows to “remember” the recent past camera
tracking data, thus avoiding to fall into wrong configura-
tions in the case of Sequence 07 around frame 700, where
a huge truck occupying nearly the whole scene crosses the
road while the camera stands still.

Table 2 shows the input matches and the found inliers
in the RANSAC pose estimation by SSLAM, SSLAMT and
VISO2-S. As it can be noted, while SSLAM" outputs a com-
parable number of initial matches with VISO2-S, only 50 %
of these are inliers for VISO2-S: This implies that our match-
ing strategy is more robust. Note also that the spatial and
temporal flow constraints of VISO2-S are stricter, which
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Fig. 9 (Best viewed in color) Average error on the KITTI benchmark.
Plots a, b refer to the average translation and rotation error for increasing
path length, respectively, while plots ¢, d refer to increasing speed

would lead theoretically to a higher number of matches since
the probability to make an accidental wrong match is higher
for SSLAM and SSLAM (except for the epipolar constraint
dy, the other thresholds are about equal to the minimal image
size). Yet, as it can be seen from Table 2, the opposite holds, in
favor of the robustness and stability of the proposed method-

ology.

3.3 Evaluation on the New College dataset

We tested SSLAM and SSLAM' versus VISO2-S not only
on the whole sequence but also on the two subsequences
corresponding to the small and large loops present in the
sequence. This is done to analyze the behavior of the meth-
ods at different starting points. Figure 11 shows the obtained
tracks. While VISO2-S diverges as the sequence grows, both
SSLAM and SSLAMT maintain the correct paths, closing the
loops, without the need of bundle adjustment and loop clo-
sure techniques. In particular, full-resolution SSLAM works
slightly better than SSLAM?. This becomes noticeable only
at the end of the last part of the video sequence.
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Fig. 10 (Best viewed in color) Trajectories on the sequences 13 (a)
and 15 (b) of the KITTI dataset

Table 2 Average number of input matches before the RANSAC pose
estimation and final inlier ratios

KITTI New College

pts inl (%) pts inl (%)
SSLAM 766 98 780 99
SSLAM 222 96 201 97
VISO2-S 245 50 156 84

The New College video sequence seems more reliable than
the KITTI sequences, since as it can be seen from Table 2,
all methods achieve a higher number of tracked keypoints
but also inliers, maybe due to slower camera movements.
Anyway, VISO2-S still obtains a lower number of matches
and inliers with respect to SSLAM and SSLAM. Note also
that the absence of the optionally translation constraint dp,
in this sequence does not affect the quality of the results.
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Fig. 11 (Best viewed in color) Estimated paths for the New College
video sequence. The plots a—c refer respectively to first subsequence
(from frame O to frame 18,400), to the last subsequence (from frame
18,400 to frame 52,479) and to the whole sequence. Note that to achieve
the best top view, each sequence was rotated so that the displayed axes
correspond to the major directions of the autocorrelation matrix of the
point positions, i.e., to the two greatest eigenvectors
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Fig. 12 (Best viewed in color) Trajectories estimated by SSLAM on
the New Tsukuba sequence for all available illuminations
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Fig. 13 (Best viewed in color) Average translation a and rotation b
error for increasing path length for all New Tsukuba sequence illumi-
nations

3.4 Evaluation on the New Tsukuba dataset

In order to investigate further into the robustness of our
method, we tested SSLAM on the New Tsukuba sequence
for all the available illuminations. In Fig. 12 estimated tra-
jectories are reported together with the ground truth: Even if
slight misalignments are present—especially in the first part
of the flashlight sequence—SSLAM tracks well the camera
movements for all illuminations. This is also clear by observ-
ing the translation and rotation errors in Fig. 13—computed
using the KITTI metrics. For all illuminations, similar per-
formance is obtained.

Asalready done for the KITTI and New College sequences,
also for the New Tsukuba dataset we tested SSLAM on half-
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Fig. 14 (Best viewed in color) Trajectories estimated using full (fluo-
rescent, red track)- and half (fluorescent’, blue track)-resolution images
of the New Tsukuba fluorescent sequence

resolution images obtaining approximately the same errors
reported for the full-resolution tests. In Fig. 14 are shown
trajectories of both the full- and half-resolution input for the
fluorescent sequence; similar results are obtained for all the
other illuminations.

It’s worth noting that the fluorescent sequence of the New
Tsukuba dataset was also used in [1] to evaluate the MFI
method. Apart from a visual comparison between the tra-
jectories estimated by MFI and SSLAM, from which no
particular differences emerge, it is not possible to make a
quantitative evaluation, since in [1] only relative accuracy
improvements w.r.t. a base method are reported.

3.5 Running times

The SSLAM approach is implemented in C/C++ non-
optimized multithreaded code, for which the download is
available.! As it can be seen in Table 3, where the aver-
age running times for a single frame are reported, SSLAM
scales with the resolution. By taking into account that
only keyframes are required by SSLAM, real-time per-
formance is achieved when the keyframe computational
time is less than f/f,, where f; is the keyframe rate
and f, is the frame rate of the video sequences ([ fi, fv]
are respectively for the KITTI, New College and New
Tsukuba datasets equal to [2, 10], [10,20] and [5, 30]).
This implies that the time to estimate a single keyframe
must not exceed 0.20, 0.50 and 0.17 s, respectively, for the
KITTI, New College and New Tsukuba sequences. Although
only SSLAMT can run almost in real time, code optimiza-
tion using GPU acceleration is planned to improve the

1 htps://drive.google.com/open?id=0B_3Nh0OK9BCIMOISVCIjNndTSTA.
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Table 3 Average computational time for a single frame on a Intel-i7
3.50GHz CPU, 8 cores are used

SSLAM (s) SSLAMT (s)
KITTI 3.85 0.55
New College 0.95 0.20
New Tsukuba 0.87 0.24

running times. Furthermore, we found that the main bottle-
neck of the method is represented by the large size kernel
convolutions employed by the accurate feature detector.
Under this observation, further speed improvements should
be achieved from fast and approximate convolution algo-
rithms [12].

4 Conclusion

In this paper a new stereo VO system was presented. The
approach achieves a low drift error even for long paths, is
local and does not rely on loop closure or bundle adjustment.
A robust loop chain matching scheme for tracking keypoints
is provided, sided by a frame discarding system to improve
pose estimation. According to the experimental results, drop-
ping low temporal disparity frames for discarding highly
uncertain models is an effective strategy to reduce error prop-
agation from matches, but it must be balanced to avoid the
loss of keypoint tracks across the video sequence. Results val-
idated on the KITTT, New College and New Tsukuba datasets
show the effectiveness of the system, which is robust even
with an extremely small number of RANSAC iterations and
able to work in various scenarios under different illumina-
tions.

Future work will include an efficient optimized code to
improve real-time performance and possible integrations
with information from other sensors to improve the accuracy
of the localization. Our work mainly focuses on strengthen-
ing the data retrieving and filtering phases and relies on a
well-known and simple pose estimation method [11]. Fur-
ther future work will be addressed to extend and improve
our VO pipeline by including novel numerical optimiza-
tion techniques exploiting long tracks based on local bundle
adjustment [5,28] and tracking recovery mechanism to
increase the SSLAM reliability.
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