Skip to main content
Log in

Epipolar geometry for prism-based single-lens stereovision

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In order to simplify the design and implementation of a stereo vision system, prism has been used to capture stereo images with a single camera. This kind of system not only provides advantages over traditional two-camera stereo, but also reduces the complexity and cost of acquiring stereoscopic image. This paper investigated the characteristics of epipolar geometry for a single-lens prism-based stereovision. The prism was considered as a single optical lens. By analyzing each plane individually and then combining them together, an affine transformation matrix which can express the relationship between an object point and its image was derived. Then, the homography between object point and its image was established. Finally, the epipolar geometry as well as the epipolar rectification method was proposed. Experimental results verify that rectification of the image pair based on our proposed model can achieve better performance with much less geometric distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhang, Z.Y.: Determining the epipolar geometry and its uncertainty: a review. Int. J. Comput. Vis. 27(2), 161–195 (1998)

    Article  Google Scholar 

  2. Kumar, S., Micheloni, C., Piciarelli, C.: Stereo rectification of uncalibrated and heterogeneous images. Pattern Recognit. Lett. 31(11), 1445–1452 (2010)

    Article  Google Scholar 

  3. Wan, D.R., Zhou, J.: Self-calibration of spherical rectification for a PTZ-stereo system. Image Vis. Comput. 28(3), 367–375 (2010)

    Article  MathSciNet  Google Scholar 

  4. Zhao, M.J., Lim, K.B., Kee, W.L.: Geometrical-analysis-based algorithm for stereo matching of single-lens binocular and multi-ocular stereovision system. J. Electron. Sci. Technol. 10(2), 107–112 (2012)

    Google Scholar 

  5. Lim, K.B., Kee, W.L., Wang, D.L.: Virtual camera calibration and stereo correspondence of single-lens bi-prism stereovision system using geometrical approach. Sig. Process.-Image Commun. 28, 1059–1071 (2013)

    Article  Google Scholar 

  6. Cui, X.Y., Lim, K.H., Guo, Q.Y., Wang, D.L.: Accurate geometrical optics model for single-lens stereovision system using a prism. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 29(9), 1828–1837 (2012)

    Article  Google Scholar 

  7. Fusiello, A., Trucco, E., Verri, A.: A compact algorithm for rectification of stereo pairs. Mach. Vis. Appl. 12(1), 16–22 (2000)

    Article  Google Scholar 

  8. Fusiello, A., Irsara, L.: Quasi-Euclidean epipolar rectification of uncalibrated images. Mach. Vis. Appl. 22(4), 663–670 (2011)

    Article  Google Scholar 

  9. Mendonca, P., Wong, K., Cipolla, R.: Epipolar geometry from profiles under circular motion. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 604–616 (2001)

    Article  Google Scholar 

  10. Habib, A.F., Morgan, M.F., Jeong, S.: Epipolar geometry of line cameras moving with constant velocity and attitude. ETRI J. 27(2), 172–180 (2005)

    Article  Google Scholar 

  11. Habib, A.F., Morgan, M.F., Jeong, S.: Analysis of epipolar geometry in linear array scanner scenes. Photogramm. Rec. 20(109), 27–47 (2005)

    Article  Google Scholar 

  12. Svoboda, T., Pajdla, T.: Epipolar geometry for central catadioptric cameras. Int. J. Comput. Vis. 49(1), 23–37 (2002)

    Article  MATH  Google Scholar 

  13. Huang, H., Lee, M.T., Weng, P.K.: Epipolar geometry of catadioptric stereo systems with planar mirrors. Image Vis. Comput. 27(8), 1047–1061 (2009)

    Article  Google Scholar 

  14. Negahdaripour, S.: Epipolar geometry of opti-acoustic stereo imaging. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1776–1788 (2007)

    Article  Google Scholar 

  15. Nishimura, E., Xu, G., Tsuji, S.: Motion segmentation and correspondence using epipolar constraint. In: Proc. 1st Asian Conf. Computer Vision, pp. 199–204 (1993)

  16. Kee, W.L., Lim, K.B., Tun, Z.L.: New understanding on the effects of angle and position of biprism on single-lens biprism stereovision system. J. Electron. Imaging 23(3), 033005 (2014)

    Article  Google Scholar 

  17. Lee, D.H., Kweon, I.: A novel stereo camera system by a biprism. IEEE Trans. Robot. Autom. 16(5), 528–541 (2000)

    Article  Google Scholar 

  18. Lim, K.B., Xiao, Y.: Virtual stereovision system: new understanding on single-lens stereovision using a biprism. J. Electron. Imaging 14(4), 41–52 (2005)

    Article  Google Scholar 

  19. Chen, C.Y., Yang, T.T., Sun, W.S.: Optics system design applying a micro-prism array of a single lens stereo image pair. Opt. Express 16(20), 15495–15505 (2008)

    Article  Google Scholar 

  20. Sun, W.S., Tien, C.L., Chen, C.Y.: Single-lens camera based on a pyramid prism array to capture four images. Opt. Rev. 20(2), 145–152 (2013)

    Article  Google Scholar 

  21. Genovese, K., Casaletto, L., Rayas, J.A., Flores, V., Martinez, A.: Stereo-digital image correlation (DIC) measurements with a single camera using a biprism. Opt. Lasers Eng. 51(3), 278–285 (2013)

    Article  Google Scholar 

  22. Maeda, V., Miyazaki, D., Mukai, T.: Volumetric display using a rotating prism sheet as an optical image scanner. Appl. Opt. 52(1), 182–187 (2013)

    Article  Google Scholar 

  23. Cui, X.Y., Lim, K.B., Zhao, Y.: Single-lens stereovision system using a prism: position estimation of a multi-ocular prism. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 31(5), 1074–1082 (2014)

    Article  Google Scholar 

  24. Wu, L.F., Zhu, J.G., Xie, H.M.: A modified virtual point model of the 3D DIC technique using a single camera and a bi-prism. Meas. Sci. Technol. 25(11), 115008(1–14) (2014)

    Article  Google Scholar 

  25. Wang, D.L., Lim, K.B., Kee, W.L.: Geometrical approach for rectification of single-lens stereovision system with a triprism. Mach. Vis. Appl. 24, 821–833 (2013)

    Article  Google Scholar 

  26. Zhang, Z.Y.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (61501101, 61605025), the General Program of the education Department of Liaoning Province (L2014086) and the Science Commonweal Foundation of Liaoning Province (2015005007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Fan, H., Chen, H. et al. Epipolar geometry for prism-based single-lens stereovision. Machine Vision and Applications 28, 313–326 (2017). https://doi.org/10.1007/s00138-017-0822-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-017-0822-x

Keywords

Navigation