Skip to main content
Log in

Survey on zoom-lens calibration methods and techniques

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper surveys zoom-lens calibration approaches, such as pattern-based calibration, self-calibration, and hybrid (or semiautomatic) calibration. We describe the characteristics and applications of various calibration methods employed in zoom-lens calibration and offer a novel classification model for zoom-lens calibration approaches in both single and stereo cameras. We elaborate on these calibration techniques to discuss their common characteristics and attributes. Finally, we present a comparative analysis of zoom-lens calibration approaches, highlighting the advantages and disadvantages of each approach. Furthermore, we compare the linear and nonlinear camera models proposed for zoom-lens calibration and enlist the different techniques used to model the camera’s parameters for zoom (or focus) settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cyganek, B., Paul Siebert, J.: An Introduction to 3D Computer Vision Techniques and Algorithms. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  2. Kim, M.Y.: Adaptive 3D sensing system based on variable magnification using stereo vision and structured light. Opt. Lasers Eng. 55, 113–127 (2014)

    Article  Google Scholar 

  3. Wan, D., Zhou, J.: Stereo vision using two PTZ cameras. Comput. Vis. Image Underst. 112(2), 184–194 (2008)

    Article  Google Scholar 

  4. Tsai, T.-H., Fan, K.-C., Mou, J.-I.: A variable-resolution optical profile measurement system. Meas. Sci. Technol. 13(2), 190 (2002)

    Article  Google Scholar 

  5. Peddigari, V., Kehtarnavaz, N.: A relational approach to zoom tracking for digital still cameras. IEEE Trans. Consum. Electron. 51(4), 1051–1059 (2005)

    Article  Google Scholar 

  6. Tapper, M., McKerrow, P.J., Abrantes, J.: Problems encountered in the implementation of Tsai’s algorithm for camera calibration. In: Proc. 2002 Australasian Conference on Robotics and Automation, Auckland (2002)

  7. Sturm, P.: Critical motion sequences for the self-calibration of cameras and stereo systems with variable focal length. In: The 10th British Machine Vision Conference (BMVC’99) (1999)

  8. Sturm, P.: Critical motion sequences for the self-calibration of cameras and stereo systems with variable focal length. Image Vis. Comput. 20(5), 415–426 (2002)

    Article  Google Scholar 

  9. Sarkis, M. Senft, C.T., Diepold, K.: Partitioned moving least-squares modeling of an automatic zoom lens camera. In: Control, Automation and Systems, 2007. ICCAS’07. International Conference on IEEE (2007)

  10. Sarkis, M., Senft, C.T., Diepold, K.: Calibrating an automatic zoom camera with moving least squares. Autom. Sci. Eng. IEEE Trans. 6(3), 492–503 (2009)

    Article  Google Scholar 

  11. Oh, J., Sohn, K.: Semiautomatic zoom lens calibration based on the camera’s rotation. J. Electron. Imaging 20(2), 023006 (2011)

    Article  Google Scholar 

  12. Sturm, P.: Self-calibration of a moving zoom-lens camera by pre-calibration. Image Vis. Comput. 15(8), 583–589 (1997)

    Article  Google Scholar 

  13. Liu, P., Willis, A., et al.: Stereoscopic 3D reconstruction using motorized zoom lenses within an embedded system. Proc. SPIE 7251, 72510W (2009)

    Article  Google Scholar 

  14. Agapito, L., Hayman, E., Reid, I.: Self-calibration of rotating and zooming cameras. Int. J. Comput. Vis. 45(2), 107–127 (2001)

    Article  MATH  Google Scholar 

  15. Ahmed, M., Farag, A.: A neural approach to zoom-lens camera calibration from data with outliers. Image Vis. Comput. 20(9), 619–630 (2002)

    Article  Google Scholar 

  16. Sudipta, S.N., Pollefeys, M.: Pan–tilt–zoom camera calibration and high-resolution mosaic generation. Comput. Vis. Image Underst. 103(3), 170–183 (2006)

    Article  Google Scholar 

  17. Wu, Z., Radke, R.J.: Keeping a pan-tilt-zoom camera calibrated. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1994–2007 (2013)

    Article  Google Scholar 

  18. Hayman, E., Murray, D.W.: The effects of translational misalignment when self-calibrating rotating and zooming cameras. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1015–1020 (2003)

    Article  Google Scholar 

  19. Richard, H., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  20. Liebowitz, D. Zisserman, A.: Metric rectification for perspective images of planes. In: Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE (1998)

  21. Gurdjos, P., Crouzil, A., Payrissat, R.: Another way of looking at plane-based calibration: the centre circle constraint. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) Computer Vision–ECCV 2002. Lecture Notes in Computer Science, vol. 2353. Springer, Berlin (2002)

  22. Fei, Q., et al.: Camera calibration with one-dimensional objects moving under gravity. Pattern Recogn. 40(1), 343–345 (2007)

    Article  MATH  Google Scholar 

  23. Fei, Q., et al.: Constraints on general motions for camera calibration with one-dimensional objects. Pattern Recogn. 40(6), 1785–1792 (2007)

    Article  MATH  Google Scholar 

  24. Zhang, Z.: Camera calibration with one-dimensional objects. IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 892–899 (2004)

    Article  Google Scholar 

  25. Hammarstedt, P. Sturm, P., Heyden, A.: Degenerate cases and closed-form solutions for camera calibration with one-dimensional objects. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol. 1. IEEE (2005)

  26. Wu, F.C., Hu, Z.Y., Zhu, H.J.: Camera calibration with moving one-dimensional objects. Pattern Recogn. 38(5), 755–765 (2005)

    Article  Google Scholar 

  27. Sturm, P.F., Maybank, S.J.: On plane-based camera calibration: a general algorithm, singularities, applications. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, vol. 1. IEEE (1999)

  28. Meng, X., Zhanyi, H.: A new easy camera calibration technique based on circular points. Pattern Recogn. 36(5), 1155–1164 (2003)

    Article  MATH  Google Scholar 

  29. Matsunaga, C., Kanatani, K.: Calibration of a moving camera using a planar pattern: Optimal computation, reliability evaluation, and stabilization by model selection. In: Vernon, D. (ed.) Computer Vision–ECCV 2000. Lecture Notes in Computer Science, vol. 1843. Springer, Berlin (2000)

  30. Huang, L., Zhang, Q., Asundi, A.: Flexible camera calibration using not-measured imperfect target. Appl. Opt. 52(25), 6278–6286 (2013)

    Article  Google Scholar 

  31. Remondino, F., Fraser, C.: Digital camera calibration methods: considerations and comparisons. Int. Arch. Photogramm. Remote Sens. Spat. Inform. Sci. 36(5), 266–272 (2006)

    Google Scholar 

  32. Salvi, J., Armangué, X., Batlle, J.: A comparative review of camera calibrating methods with accuracy evaluation. Pattern Recogn. 35(7), 1617–1635 (2002)

    Article  MATH  Google Scholar 

  33. Fraser, C.S., Al-Ajlouni, S.: Zoom-dependent camera calibration in digital close-range photogrammetry. Photogramm. Eng. Remote Sens. 72(9), 1017 (2006)

    Article  Google Scholar 

  34. Hemayed, E.E: A survey of camera self-calibration. In: Proceedings. IEEE Conference on Advanced Video and Signal Based Surveillance, IEEE (2003)

  35. Hartley, R.I.: Self-calibration of stationary cameras. Int. J. Comput. Vis. 22(1), 5–23 (1997)

    Article  Google Scholar 

  36. Seo, Y, Hong, K.S.: About the self-calibration of a rotating and zooming camera: theory and practice. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, vol. 1. IEEE (1999)

  37. Ji, Q., Dai, S.: Self-calibration of a rotating camera with a translational offset. Robot. Autom IEEE Trans. 20(1), 1–14 (2004)

    Article  Google Scholar 

  38. Du, F. Brady, M.: Self-calibration of the intrinsic parameters of cameras for active vision systems. In: Proceedings CVPR’93., 1993 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1993. IEEE (1993)

  39. Stein, G.P.: Accurate internal camera calibration using rotation, with analysis of sources of error. In: Proceedings., Fifth International Conference on Computer Vision, 1995. IEEE (1995)

  40. Köhler, D.I.F.T, Westermann, R.: Comparison of self-calibration algorithms for moving cameras (2010)

  41. Cho, H.: Optomechatronics: Fusion of Optical and Mechatronic Engineering. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  42. Bradski, G., Kaehler, A.: Computer Vision with the OpenCV Library. O’reilly, Learning OpenCV, Newton (2008)

    Google Scholar 

  43. Willson, R.G., Shafer, S.A.: Perspective projection camera model for zoom lenses. In: Optical 3D Measurement Techniques II: Applications in Inspection, Quality Control, and Robotics, International Society for Optics and Photonics (1994)

  44. Willson, R.G.: Modeling and calibration of automated zoom lenses. In: International Society for Optics and Photonics, Photonics for Industrial Applications (1994)

  45. Tsai, R.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344 (1987)

    Article  Google Scholar 

  46. Mengxiang, L., Lavest, J.-M.: Some aspects of zoom lens camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 18(11), 1105–1110 (1996)

    Article  Google Scholar 

  47. Wentao, Z., et al.: A high-precision camera operation parameter measurement system and its application to image motion inferring. IEEE Trans. Broadcast. 47(1), 46–55 (2001)

    Article  Google Scholar 

  48. Yong-Sheng, C., et al.: Simple and efficient method of calibrating a motorized zoom lens. Image Vis. Comput. 19(14), 1099–1110 (2001)

    Article  Google Scholar 

  49. Weng, J., Cohen, P., Herniou, M.: Camera calibration with distortion models and accuracy evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 14(10), 965–980 (1992)

    Article  Google Scholar 

  50. Atienza, R. Zelinsky, A.: A practical zoom camera calibration technique: an application on active vision for human-robot interaction. In: Proc. Australian Conference on Robotics and Automation (2001)

  51. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  52. Xian, T., Park, S.-Y., Subbarao, M.: New dynamic zoom calibration technique for a stereo-vision-based multiview 3D modeling system. Optics East. International Society for Optics and Photonics (2004)

  53. Figl, M., et al.: A fully automated calibration method for an optical see-through head-mounted operating microscope with variable zoom and focus. IEEE Trans. Med. Imaging 24(11), 1492–1499 (2005)

    Article  Google Scholar 

  54. Garcia, J., et al.: Calibration of a surgical microscope with automated zoom lenses using an active optical tracker. Int. J. Med. Robot. Comput. Assist. Surg. 4(1), 87–93 (2008)

    Article  Google Scholar 

  55. Heikkila, J.: Geometric camera calibration using circular control points. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1066–1077 (2000)

    Article  Google Scholar 

  56. Bouguet, J.-Y.: Camera calibration tool-box for matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/ (2002). Accessed 15 Jan 2017

  57. Schaffer, M., Grosse, M., Kowarschik, R.: High-speed pattern projection for three-dimensional shape measurement using laser speckles. Appl. Opt. 49(18), 3622–3629 (2010)

    Article  Google Scholar 

  58. Joaquim, S., et al.: A state of the art in structured light patterns for surface profilometry. Pattern Recogn. 43(8), 2666–2680 (2010)

    Article  MATH  Google Scholar 

  59. Faugeras, O.D., Luong, Q.-T., Maybank, S.J.: Camera self-calibration: theory and experiments. In: Sandini, G. (ed.) Computer Vision—ECCV’92. Lecture Notes in Computer Science, vol. 588, pp. 563–578. Springer, Berlin (1992)

  60. Pollefeys, M., Koch, R., Gool, L.V.: Self-calibration and metric reconstruction inspite of varying and unknown intrinsic camera parameters. Int. J. Comput. Vis. 32(1), 7–25 (1999)

    Article  Google Scholar 

  61. Faugeras, O., Luong, Q.-T.: The Geometry of Multiple Images: The Laws that Govern the Formation of Multiple Images of a Scene and Some of Their Applications. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  62. De Agapito, L., Hartley, R.I., Hayman, E.: Linear self-calibration of a rotating and zooming camera. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, vol. 1. IEEE (1999)

  63. De Agapito, L., Hayman, E., Reid, I.D.: Self-calibration of a rotating camera with varying intrinsic parameters. In: Proc. BMVC, pp. 105–114 (1998)

  64. Robert T., Collins, Tsin, Yanghai: Calibration of an outdoor active camera system. In: Baldwin, T., Sipple, R.S. (eds.) IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, vol. 1. IEEE (1999)

  65. Heikkila, J. Silvén, O.: A four-step camera calibration procedure with implicit image correction. In: Proceedings., 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997. IEEE (1997)

  66. Shih, S.-W.: Kinematic and camera calibration of reconfigurable binocular vision systems. Dissertation, Ph. D. Thesis, National Taiwan University (1995)

  67. Elamvazuthi, I., et al.: Enhancement of auto image zooming using fuzzy set theory. In: Proc. 2nd International Conference on Control, Instrumentation and Mechatronics, pp. 424–428 (2009)

  68. Burner, A.W.: Zoom lens calibration for wind tunnel measurements. In: Photonics East’95. International Society for Optics and Photonics (1995)

  69. Abdullah, J., Martinez, K.: Camera self-calibration for the ARToolKit. In: Augmented Reality Toolkit, the First IEEE International Workshop, Darmstadt, Germany, 29 September 2002. IEEE, p. 5 (2002)

Download references

Acknowledgements

This work was supported by ICT R&D program of MSIP/IITP. (R7124-16-0004, Development of Intelligent Interaction Technology Based on Context Awareness and Human Intention Understanding).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Young Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayaz, S.M., Kim, M.Y. & Park, J. Survey on zoom-lens calibration methods and techniques. Machine Vision and Applications 28, 803–818 (2017). https://doi.org/10.1007/s00138-017-0863-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-017-0863-1

Keywords

Navigation