Skip to main content
Log in

Instance-based object recognition in 3D point clouds using discriminative shape primitives

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

3D local shapes are a critical cue for object recognition in 3D point clouds. This paper presents an instance-based 3D object recognition method via informative and discriminative shape primitives. We propose a shape primitive model that measures geometrical informativity and discriminativity of 3D local shapes of an object. Discriminative shape primitives of the object are extracted automatically by model parameter optimization. We achieve object recognition from 2.5/3D scenes via shape primitive classification and recover the 3D poses of the identified objects simultaneously. The effectiveness and the robustness of the proposed method were verified on popular instance-based 3D object recognition datasets. The experimental results show that the proposed method outperforms some existing instance-based 3D object recognition pipelines in the presence of noise, varying resolutions, clutter and occlusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cheng, H.N., Chung, S.M.: Orthogonal moment-based descriptors for pose shape query on 3D point cloud patches. Pattern Recognit. 52, 397–409 (2016)

    Article  Google Scholar 

  2. Chahooki, M.A.Z., Charkari, N.M.: Learning the shape manifold to improve object recognition. Mach Vis. Appl. 24(1), 33–46 (2013)

    Article  Google Scholar 

  3. Fan, H.J., Yang, C., Tang, Y.D.: Object detection based on scale-invariant partial shape matching. Mach. Vis. Appl. 26(6), 711–721 (2015)

    Article  Google Scholar 

  4. Yu, T.H., Woodford, O.J., Cipolla, R.: A performance evaluation of volumetric 3D interest point detectors. Int. J. Comput. Vis. 102, 180–197 (2013)

    Article  Google Scholar 

  5. Guo, Y.L., Bennamoun, M., Sohel, F., Lu, M., Wan, J.W., Kwok, N.M.: A comprehensive performance evaluation of 3D local feature descriptors. Int. J. Comput. Vis. 116, 66–89 (2016)

    Article  MathSciNet  Google Scholar 

  6. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao J.: 3D shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920. IEEE (2015)

  7. Kalogerakis, E., Chaudhuri, S., Koller, D., Koltun, V.: A probabilistic model for component-based shape synthesis. ACM Trans. Graph. 31, 55 (2012)

    Google Scholar 

  8. Song, S., Xiao, J.: Sliding shapes for 3D object detection in depth images. In: Proceedings of the 13th European Conference on Computer Vision (ECCV), pp. 634–651 (2014)

  9. Singh, S., Gupta, A., Efros, A.A.: Unsupervised discovery of mid-Level discriminative patches. In: Proceedings of the European Conference on Computer Vision, vol. 7573, pp. 73–86. IEEE (2012)

  10. Doersch, C., Gupta, A., Efros, A.A.: Mid-level visual element discovery as discriminative mode seeking. In: proceedings of the International Conference on Neural Information Processing Systems, vol. 1, pp. 494–502 (2013)

  11. Li, Q., Wu, J., Tul, Z.: Harvesting mid-level visual concepts from large-scale internet images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 851–858. IEEE (2013)

  12. Sun, J., Ponce, J.: Learning discriminative part detectors for image classification and cosegmentation. In: Proceedings of the International Conference on Computer Vision, pp. 3400–3407. IEEE (2013)

  13. Fernando, B., Fromont, E., Tuytelaars, T.: Mining mid-level features for image classification. Int. J. Comput. Vis. 108, 186–203 (2014)

    Article  MathSciNet  Google Scholar 

  14. Juneja, M., Vedaldi, A., Jawahar, C.V., Zisserman, A.: Blocks shout: distinctive parts for scene classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 923–930. IEEE (2013)

  15. Raptis, M., Kokkinos I., Soatto, S.: Discovering discriminative action parts from mid-Level video representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1242–1249. IEEE (2012)

  16. Jain, A., Gupta, A., Rodriguez, M., Davis, L.S.: Representing videos using mid-level discriminative patches. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2571–2578. IEEE (2013)

  17. Aubry, M., Russell, B.C., Sivic, J.: Painting-to-3D model alignment via discriminative visual elements. ACM Trans. Graph. 28, 1–12 (2013)

    Google Scholar 

  18. Aubry, M., Maturana, D., Efros, A.A., Russell, B.C., Sivic, J.: Seeing 3D chairs: exemplar part-based 2D-3D alignment using a large dataset of CAD models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3762-3769. IEEE (2014)

  19. Fouhey, D.F., Guptaand A., Hebert, M.: Data-driven 3D primitives for single image understanding. In: Proceedings of the International Conference on Computer Vision, pp. 3392–3399. IEEE (2013)

  20. Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3D models. ACM Trans. Graph. 22, 83–105 (2003)

    Article  Google Scholar 

  21. Lucchese, L., Doretto, G., Cortelazzo, G.M.: A frequency domain technique for range data registration. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1468–1484 (2002)

    Article  Google Scholar 

  22. Drost, B., Ulrich, M., Navab, N., et al.: Model globally, match locally: efficient and robust 3D object recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 998–1005. IEEE (2010)

  23. Birdal, T., Ilic, S.: Point pair features based object detection and pose estimation revisited. In: International Conference on 3D Vision (3DV), pp. 527-535. IEEE (2015)

  24. Salti, S., Tombari, F., Di Stefano, L.: SHOT: Unique signatures of histograms for surface and texture description. Comput. Vis. Image Understand. 125, 251–264 (2014)

    Article  Google Scholar 

  25. Guo, Y., Sohel, F., Bennamoun, M., Lu, M., Wan, J.: Rotational projection statistics for 3D local surface description and object recognition. Int. J. Comput. Vis. 105, 63–86 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21, 433–449 (1999)

    Article  Google Scholar 

  27. Hetzel, G., Leibe, B., Levi P., Schiele, B.: 3D object recognition from range images using local feature histograms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, no. II, pp. 394. IEEE (2001)

  28. Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int. J. Comput. Vis. 89, 348–361 (2010)

    Article  Google Scholar 

  29. Malisiewicz, T., Gupta A., Efros, A.A.: Ensemble of exemplar-SVMs for object detection and beyond. In: Proceedings of the International Conference on Computer Vision, pp. 89–96. IEEE (2011)

  30. Gharbi, M.T.M.: A Gaussian approximation of feature space for fast image similarity. CSAIL, MIT, Technical Report. MIT-CSAIL-TR-2012-032 (2012)

  31. Bariya, P., Novatnack, J., Schwartz, G., et al.: 3D geometric scale variability in range images: features and descriptors. Int. J. Comput. Vis. 99(2), 232–255 (2012)

    Article  MathSciNet  Google Scholar 

  32. Taati, B., Bondy, M., Jasbedzki, P., Greenspan M.: Variable dimensional local shape descriptors for object recognition in range data. In: Proceedings of the International Conference on Computer Vision, pp. 1–8. IEEE (2007)

  33. Queens Range Image and 3-D Model Database (2009). http://rcvlab.ece.queensu.ca/~qridb/

  34. Hinterstoisser, S., Lepetit, V., Ilic, S., et al.: Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes. In: Asian conference on computer vision, pp. 548–562. Springer, Berlin, Heidelberg (2012)

  35. Taati, T., Greenspan, M.: Local shape descriptor selection for object recognition in range data. Comput. Vis. Image Understand. 115, 681–694 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank those institutions: Bologna University for the 3D Scene Dataset; University of Western Australia for the UWA Dataset; Robotics and Computer Vision Lab at Queens University for the Queens Range Image and 3-D Model Dataset. This work was supported by National Science Foundation (NSF) (61275162); the Innovation Foundation of BUAA for Ph.D Graduates; China Scholarship Council funding (201606020087). Thanks for the valuable comments from reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Sun, J. Instance-based object recognition in 3D point clouds using discriminative shape primitives. Machine Vision and Applications 29, 285–297 (2018). https://doi.org/10.1007/s00138-017-0885-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-017-0885-8

Keywords

Navigation