Skip to main content
Log in

A maximum likelihood filter using non-local information for despeckling of ultrasound images

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This work presents a new ultrasound image despeckling method based on the maximum likelihood principle that effectively exploits non-local information for estimating noise-free pixels. First, a new maximum likelihood filter is proposed which uses neighborhood information to despeckle images. For this purpose, the general speckle model is used in the log-likelihood function and despeckled pixels are obtained by maximizing this function. Second, the proposed filter is developed to use non-local information such that the distribution of each noisy pixel is weighted according to the statistical distance between the patch of the noisy pixel and that of the target pixel. Because it is optimally designed for ultrasound images, the Pearson distance is used to measure the statistical distance between the patches. A series of experiments are conducted on three different ultrasound images and one synthetic image. Subjective evaluations show that the proposed method is able to preserve edges and structural details of the image and objective evaluations using equivalent number of looks, natural image quality evaluator, peak signal-to-noise ratio, mean preservation, and structural similarity confirm that the proposed method can achieve superior performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mittal, D., Kumar, V., Saxena, S.C., Khandelwal, N., Kalra, N.: Enhancement of the ultrasound images by modified anisotropic diffusion method. Med. Biol. Eng. Comput. 48(12), 1281–1291 (2010)

    Article  Google Scholar 

  2. Gupta, D., Anand, R.S., Tyagi, B.: Ripplet domain non-linear filtering for speckle reduction in ultrasound medical images. Biomed. Signal Process. Control 10, 79–91 (2014)

    Article  Google Scholar 

  3. Sudeep, P.V., Palanisamy, P., Rajan, J., Baradaran, H., Saba, L., Gupta, A., Suri, J.S.: Speckle reduction in medical ultrasound images using an unbiased non-local means method. Biomed. Signal Process. Control 28, 1–8 (2016)

    Article  Google Scholar 

  4. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shahdoosti, H.R., Hazavei, S.M.: Image denoising in dual contourlet domain using hidden Markov tree models. Digit. Signal Proc. 67, 17–29 (2017)

    Article  Google Scholar 

  6. Coupé, P., Hellier, P., Kervrann, C., Barillot, C.: Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans. Image Process. 18(10), 2221–2229 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lee, J.S.: Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2, 165–168 (1980)

    Article  Google Scholar 

  8. Frost, V.S., Stiles, J.A., Shanmugan, K.S., Holtzman, J.C.: A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 2, 157–166 (1982)

    Article  Google Scholar 

  9. Kuan, D.T., Sawchuk, A.A., Strand, T.C., Chavel, P.: Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans. Pattern Anal. Mach. Intell. 2, 165–177 (1985)

    Article  Google Scholar 

  10. Lopes, A., Touzi, R., Nezry, E.: Adaptive speckle filters and scene heterogeneity. IEEE Trans. Geosci. Remote Sens. 28(6), 992–1000 (1990)

    Article  Google Scholar 

  11. Qiu, F., Berglund, J., Jensen, J.R., Thakkar, P., Ren, D.: Speckle noise reduction in SAR imagery using a local adaptive median filter. GISci. Remote Sens. 41(3), 244–266 (2004)

    Article  Google Scholar 

  12. Vanithamani, R., Umamaheswari, G., Ezhilarasi, M.: Modified hybrid median filter for effective speckle reduction in ultrasound images. In: Recent Advances in Networking, VLSI and Signal Processing, pp. 166–171 (2010)

  13. Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11), 1260–1270 (2002)

    Article  MathSciNet  Google Scholar 

  14. Aja-Fernández, S., Alberola-López, C.: On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans. Image Process. 15(9), 2694–2701 (2006)

    Article  Google Scholar 

  15. Vegas-Sánchez-Ferrero, G., Aja-Fernández, S., Martín-Fernández, M., Frangi, A.F., Palencia, C.: Probabilistic-driven oriented speckle reducing anisotropic diffusion with application to cardiac ultrasonic images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 518–525. Springer, Berlin (2010)

  16. Bini, A.A., Bhat, M.S.: Despeckling low SNR, low contrast ultrasound images via anisotropic level set diffusion. Multidimens. Syst. Signal Process. 25(1), 41–65 (2014)

    Article  MATH  Google Scholar 

  17. Shao, D., Zhou, T., Liu, F., Yi, S., Xiang, Y., Ma, L., Xiong, X., He, J.: Ultrasound speckle reduction based on fractional order differentiation. J. Med. Ultrason. 44(3), 227–237 (2017)

    Article  Google Scholar 

  18. Wang, S., Huang, T.Z., Zhao, X.L., Mei, J.J., Huang, J.: Speckle noise removal in ultrasound images by first-and second-order total variation. Numer. Algorithms 1–21 (2017)

  19. Singh, C., Ranade, S.K., Singh, K.: Invariant moments and transform-based unbiased nonlocal means for denoising of MR images. Biomed. Signal Process. Control 30, 13–24 (2016)

    Article  Google Scholar 

  20. Coupé, P., Hellier, P., Kervrann, C., Barillot, C.: May. Bayesian non local means-based speckle filtering. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008, pp. 1291–1294. IEEE (2008)

  21. Baselice, F.: Ultrasound image despeckling based on statistical similarity. Ultrasound Med. Biol. 43(9), 2065–2078 (2017)

    Article  Google Scholar 

  22. Ni, W., Gao, X.: Despeckling of SAR image using generalized guided filter with Bayesian nonlocal means. IEEE Trans. Geosci. Remote Sens. 54(1), 567–579 (2016)

    Article  MathSciNet  Google Scholar 

  23. Mingliang, X., Pei, L., Mingyuan, L., Hao, F., Hongling, Z., Bing, Z., Yusong, L., Liwei, Z.: Medical image denoising by parallel non-local means. Neurocomputing 195, 117–122 (2016)

    Article  Google Scholar 

  24. Wang, G., Xu, J., Pan, Z., Diao, Z.: Ultrasound image denoising using backward diffusion and framelet regularization. Biomed. Signal Process. Control 13, 212–217 (2014)

    Article  Google Scholar 

  25. Gupta, D., Anand, R.S., Tyagi, B.: Despeckling of ultrasound medical images using nonlinear adaptive anisotropic diffusion in nonsubsampled shearlet domain. Biomed. Signal Process. Control 14, 55–65 (2014)

    Article  Google Scholar 

  26. Fu, X., Wang, Y., Chen, L., Tian, J.: An image despeckling approach using quantum-inspired statistics in dual-tree complex wavelet domain. Biomed. Signal Process. Control 18, 30–35 (2015)

    Article  Google Scholar 

  27. Singh, K., Ranade, S.K., Singh, C.: A hybrid algorithm for speckle noise reduction of ultrasound images. Comput. Methods Programs Biomed. 148, 55–69 (2017)

    Article  Google Scholar 

  28. Loupas, T., McDicken, W.N., Allan, P.L.: An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Trans. Circuits Syst. 36(1), 129–135 (1989)

    Article  Google Scholar 

  29. Wagner, R.F., Smith, S.W., Sandrik, J.M., Lopez, H.: Statistics of speckle in ultrasound B-scans. IEEE Trans. Sonics Ultrasonics 30(3), 156–163 (1983)

    Article  Google Scholar 

  30. Kumar, B.S.: Image denoising based on non-local means filter and its method noise thresholding. SIViP 7(6), 1211–1227 (2013)

    Article  Google Scholar 

  31. Shahdoosti, H.R., Hazavei, S.M.: Combined ripplet and total variation image denoising methods using twin support vector machines. Multimed. Tools Appl. 77(6), 7013–7031 (2018)

    Article  Google Scholar 

  32. Shahdoosti, H.R.: Two-stage image denoising considering interscale and intrascale dependencies. J. Electron. Imaging 26(6), 063029 (2017)

    MathSciNet  Google Scholar 

  33. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)

    Article  Google Scholar 

  34. Bhuiyan, M.I.H., Ahmad, M.O., Swamy, M.N.S.: Spatially adaptive thresholding in wavelet domain for despeckling of ultrasound images. IET Image Proc. 3(3), 147–162 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Shahdoosti.

Appendix

Appendix

Firstly, the derivation of equation (14) is described. Substituting Eq. (12) into (13) and setting the derivative of Eq. (13) equal to zero yield:

$$\begin{aligned}&-\frac{\left( {2t_2 +1} \right) ^{2}}{\hat{{\sigma }}_u }+\frac{\hat{{\sigma }}_u^{\left( {1/\gamma } \right) -3} }{\gamma \sigma _n^{1/\gamma } }\sum _{p=1}^{\left( {2t_2 +1} \right) ^{2}} {\left( {u^{(p)}(x)-(\hat{{\sigma }}_u /\sigma _n )^{\frac{1}{\gamma }}} \right) } \nonumber \\&\quad +\frac{1}{\hat{{\sigma }}_u^3 }\sum _{p=1}^{\left( {2t_2 +1} \right) ^{2}} {\left( {u^{(p)}(x)-(\hat{{\sigma }}_u /\sigma _n )^{\frac{1}{\gamma }}} \right) ^{2}} =0 \end{aligned}$$
(A.1)

As already mentioned, the parameter \(\gamma \) should be set to 0.5. After some manipulations, we obtain:

$$\begin{aligned}&\frac{\left( {2t_2 +1} \right) ^{2}}{\sigma _n^4 }\hat{{\sigma }}_u^4 +\left( {2t_2 +1} \right) ^{2}\hat{{\sigma }}_u^2 \nonumber \\&\quad -\sum _{p=1}^{\left( {2t_2 +1} \right) ^{2}} {\left( {u^{(p)}} \right) ^{2}(x)} =0 \end{aligned}$$
(A.2)

which is a quadratic function of \(\sigma _u^2 \). Equation (A.2) has two solutions:

$$\begin{aligned} \hat{{\sigma }}_u^2 =\frac{\sigma _n^4 }{2}.\left( {\pm \sqrt{1+4\frac{\sum _{p=1}^{\left( {2t_2 +1} \right) ^{2}} {\left( {u^{(p)}} \right) ^{2}(x)} }{\left( {2t_2 +1} \right) ^{2}\sigma _n^4 }}-1} \right) \end{aligned}$$
(A.3)

Note that \(\hat{{\sigma }}_u^2 \) is always a negative (positive) value for the minus (plus) sign. For the plus sign, Eq. (A.3) is equal to Eq. (14).

Secondly, the derivation of equation (17) is explained. Considering Eq. (16), we should maximize the log-likelihood function:

$$\begin{aligned} \hat{{\sigma }}_u= & {} \arg \mathop {\max }_{\sigma _{u(r)} } \left( {\ln \left( {L\left( {\sigma _u |u(x)} \right) } \right) } \right) \nonumber \\= & {} \arg \mathop {\max }_{\sigma _{u(r)} } \left( {\sum _{\forall x\in \Omega } {\alpha (x)\ln \left( {p_{u(r)} (u(x))} \right) } } \right) \end{aligned}$$
(A.4)

Substituting \(p_{u(r)} (u(x))\) yields (the parameter \(\gamma \) is set to 0.5):

$$\begin{aligned}&\sum _{\forall x\in \Omega } {\alpha (x)\ln \left( {\frac{1}{\sqrt{2\pi }\hat{{\sigma }}_{u(r)} }} \right) } \nonumber \\&\quad -\frac{1}{2\hat{{\sigma }}_{u(r)}^2 }\sum _{\forall x\in \Omega } {\alpha (x)\left( {u(x)-(\hat{{\sigma }}_{u(r)} /\sigma _n )^{2}} \right) ^{2}} \end{aligned}$$
(A.5)

Setting the derivative of Eq. (A.5) equal to zero yields:

$$\begin{aligned}&\frac{\sum _{\forall x\in \Omega } {\alpha (x)} }{\sigma _n^4 }\hat{{\sigma }}_u^4 +\sum _{\forall x\in \Omega } {\alpha (x)} \hat{{\sigma }}_u^2 \nonumber \\&\quad -\sum _{\forall x\in \Omega } {\alpha (x)u^{2}(x)} =0 \end{aligned}$$
(A.6)

Equation (A.6) has two solutions:

$$\begin{aligned} \hat{{\sigma }}_{u(r)}^2 =\frac{\sigma _n^4 }{2}.\left( {\pm \sqrt{1+4\frac{1}{\sigma _n^4 }\frac{\left( {\sum _{\forall x\in \Omega } {\alpha (x)u^{2}(x)} } \right) }{\left( {\sum _{\forall x\in \Omega } {\alpha (x)} } \right) }}-1} \right) \nonumber \\ \end{aligned}$$
(A.7)

To obtain a positive value for \(\hat{{\sigma }}_{u(r)}^2 \), the plus sign is selected [see Eq. (17)].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahdoosti, H.R., Rahemi, Z. A maximum likelihood filter using non-local information for despeckling of ultrasound images. Machine Vision and Applications 29, 689–702 (2018). https://doi.org/10.1007/s00138-018-0929-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-018-0929-8

Keywords

Navigation