Skip to main content
Log in

Soft decision optimization method for robust fundamental matrix estimation

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

It is easy to show that in computer vision, there is the closely coupled relation between feature matching and fundamental matrix estimation. The widely used robust methods such as RANSAC and its improved versions separately deal with feature matching and fundamental matrix estimation. Although these methods are simple to implement, their performance may be relatively low in the presence of gross outliers. By exploiting such coupled relation, the soft decision optimization method is proposed in this paper to estimate the fundamental matrix and find the inlier correspondence set together. Combing feature matching and fundamental matrix estimation, a soft decision objective function is developed to automatically remove the interference of the outliers in the candidate correspondence set. Moreover, an efficient expectation–maximization algorithm is established to find the solution to the fundamental matrix and the inlier correspondence set. Experiments on both synthesized data and real images show that the proposed method can cope with large noise and high ratio of outliers and is superior to some state-of-the-art robust methods in precision, recall, and residual error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3(3), 177–280 (2008)

    Article  Google Scholar 

  3. Simonyan, K., Vedaldi, A., Zisserman, A.: Learning local feature descriptors using convex optimisation. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1573–1585 (2014)

    Article  Google Scholar 

  4. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  5. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: Proceedings of ECCV, 2006, pp. 404–417. Springer, Berlin (2006)

  6. Calonder, M., Lepetit, V., Strecha, C., et al.: BRIEF: Binary robust independent elementary features. In: Proceedings of ECCV, pp. 778–792 (2010)

  7. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: Binary robust invariant scalable keypoints. In: Proceedings of ICCV, pp. 2548–2555 (2011)

  8. Rublee, E., Rabaud, V., Konolige, K., et al.: Orb: An efficient alternative to sift or surf. In: Proceedings of ICCV, pp. 2564–2571 (2011)

  9. Muja, M., Lowe, D.G.: Fast matching of binary features. In: Proceedings of Computer and Robot Vision (CRV), pp. 404–410 (2012)

  10. Jagadish, H.V., Beng, C.O., Kian, L.T., et al.: iDistance: An adaptive B + tree based indexing method for nearest neighbor search. ACM Trans. Data Base Syst. 30(2), 364–397 (2005)

    Article  Google Scholar 

  11. Shakhnarovich, G., Indyk, P., Darrell, T.: Nearest-Neighbor Methods in Learning and Vision: Theory and Practice. MIT Press, Cambridge (2006)

    Book  Google Scholar 

  12. Beis, J.S., Lowe, D.G.: Indexing without invariants in 3D object recognition. IEEE Trans. Pattern Anal. Mach. Intell. 21(10), 1000–1015 (1999)

    Article  Google Scholar 

  13. Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approx. Reason. 50(7), 969–978 (2009)

    Article  Google Scholar 

  14. Silpa-Anan, C., Hartley, R.: Optimised KD-trees for fast image descriptor matching. In: Proceedings of CVPR, pp. 1–8 (2008)

  15. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: International Conference on Computer Vision Theory and Application, pp. 331–340 (2009)

  16. Zhang, Z.: Determining the epipolar geometry and its uncertainty: a review. Int. J. Comput. Vis. 27(2), 161–195 (1998)

    Article  Google Scholar 

  17. Luong, Q.T., Faugeras, O.D.: The fundamental matrix: theory, algorithms, and stability analysis. Int. J. Comput. Vis. 17(1), 43–75 (1996)

    Article  Google Scholar 

  18. Armangué, X., Salvi, J.: Overall view regarding fundamental matrix estimation. Image Vis. Comput. 21(2), 205–220 (2003)

    Article  Google Scholar 

  19. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  20. Torr, P.H., Zisserman, A.: MLESAC: A new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. 78(1), 138–156 (2000)

    Article  Google Scholar 

  21. Torr, P.H.S.: Bayesian model estimation and selection for epipolar geometry and generic manifold fitting. Int. J. Comput. Vis. 50(1), 35–61 (2002)

    Article  MATH  Google Scholar 

  22. Tordoff, B.J., Murray, D.W.: Guided-MLESAC: faster image transform estimation by using matching priors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1523–1535 (2005)

    Article  Google Scholar 

  23. Chum, O., Matas, J.: Matching with PROSAC-progressive sample consensus. In: Proceedings of CVPR, vol. 1, pp. 220–226 (2005)

  24. Chum, O., Matas, J.: Randomized RANSAC with Td,d test. In: Proceedings of BMVC, vol. 2, pp. 448–457 (2002)

  25. Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Proceedings of 25th DAGM Symposium, pp. 236–243. Springer, Berlin (2003)

  26. Nistér, D.: Preemptive RANSAC for live structure and motion estimation. Mach. Vis. Appl. 16(5), 321–329 (2005)

    Article  Google Scholar 

  27. Vedaldi, A., Jin, H., Favaro, P., et al.: KALMANSAC: Robust filtering by consensus. In: Proceedings of ICCV, vol. 1, pp. 633–640 (2005)

  28. Raguram, R., Frahm, J.-M., Pollefeys, M.: Exploiting uncertainty in random sample consensus. In: Proceedings of ICCV, pp. 2074–2081 (2009)

  29. Wu, Y., Ma, W., Gong, M., et al.: A novel point-matching algorithm based on fast sample consensus for image registration. IEEE Geosci. Remote Sens. Lett. 12(1), 43–47 (2015)

    Article  Google Scholar 

  30. Zach, C.: Robust bundle adjustment revisited. In: Proceedings of ECCV, pp. 772–787 (2014)

  31. Choi, S., Kim, T., Yu, W.: Performance evaluation of RANSAC family. In: Proceedings of BMVC, pp. 1–12 (2009)

  32. Hast, A., Nysjö, J., Marchetti, A.: Optimal RANSAC-towards a repeatable algorithm for finding the optimal set. J. WSCG 21(1), 21–30 (2013)

    Google Scholar 

  33. Le, H., Chin, T.J., Suter, D.: An exact penalty method for locally convergent maximum consensus. In: Proceedings of CVPR, pp. 79–387 (2017)

  34. Chin, T.J., Yang, H.K., Eriksson, A., et al.: Guaranteed outlier removal with mixed integer linear programs. In: Proceedings of CVPR, pp. 5858–5866 (2016)

  35. Chin, T.J., Purkait, P., Eriksson, A., et al.: Efficient globally optimal consensus maximisation with tree search. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 758 (2017)

    Article  Google Scholar 

  36. Espuny, F., Monasse, P., Moisan, L.: A new a contrario approach for the robust determination of the fundamental matrix. image and video technology—PSIVT 2013 workshops, Springer, Berlin, pp. 181–192 (2014)

  37. Cheng, Y., Lopez, J.A., Camps, O., et al.: A convex optimization approach to robust fundamental matrix estimation. In: Proceedings of CVPR, pp. 2170–2178 (2015)

  38. Wang, L., Liu, Z., Zhang, Z.: Efficient image features selection and weighting for fundamental matrix estimation. IET Comput. Vis. 10(1), 67–78 (2016)

    Article  Google Scholar 

  39. Yang, J., Li, H., Jia, Y.: Optimal essential matrix estimation via inlier-set maximization. In: Proceedings of ECCV, pp. 111–126. Springer, Cham (2014)

  40. Bazin, J., Li, H., Kweon, I.S., et al.: A branch-and-bound approach to correspondence and grouping problems. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1565–1576 (2013)

    Article  Google Scholar 

  41. Zheng, Y., Sugimoto, S., Okutomi, M.: A branch and contract algorithm for globally optimal fundamental matrix estimation. In: Proceedings of CVPR, pp. 2953–2960 (2011)

  42. Fathy, M.E., Hussein, A.S., Tolba, M.F.: Fundamental matrix estimation: a study of error criteria. Pattern Recogn. Lett. 32(2), 383–391 (2011)

    Article  Google Scholar 

  43. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  44. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China (61271293).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Zheng Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, CB., Feng, DZ. & Yuan, MD. Soft decision optimization method for robust fundamental matrix estimation. Machine Vision and Applications 30, 657–669 (2019). https://doi.org/10.1007/s00138-019-01019-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-019-01019-7

Keywords

Navigation