Skip to main content

Advertisement

Log in

Gradient self-weighting linear collaborative discriminant regression classification for human cognitive states classification

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In recent decades, huge volumes of data are available to inspect human brain activities for disease detection. Specifically, the functional magnetic resonance imaging (fMRI) is a powerful tool to enquire the brain functions. In fMRI, identifying the active patterns of the specific cognitive state is one of the emerging concerns for neuroscientists. The high-dimensional features make fMRI data difficult for mining and classification, because if the volume of the data space increases, then the acquired data become sparse, which leads to the “curse of dimensionality” problem. To address this concern, a new feature selection and classification methodology was proposed for classifying the human cognitive states from fMRI data. Initially, the fMRI data were collected from the StarPlus and Haxby datasets. Then, k-nearest neighbors algorithm (k-NN)-based genetic algorithm was developed to choose the optimal voxels from the active region of interests. The proposed approach selects the data to feature subsets based on k-NN algorithm, so the data volume was effectively reduced and the voxel information was maintained significantly. The most informative voxels were given as the input for gradient self-weighting that produces an optimal weight value. Respective weight value was added to the projection matrix of linear collaborative discriminant regression classification for identifying the future projection matrix that reduces the error between two individual voxels in subspace. The experimental outcome shows that the proposed methodology improved the accuracy in fMRI data classification up to 0.7–23% compared to the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gotsopoulos, A., Saarimaki, H., Glerean, E., Jaaskelainen, I.P., Sams, M., Nummenmaa, L., Lampinen, J., Reproducibility of importance extraction methods in neural network based fMRI classification. bioRxiv, pp. 197–277 (2017)

  2. Ernst, M., Torrisi, S., Balderston, N., Grillon, C., Hale, E.A.: fMRI functional connectivity applied to adolescent neurodevelopment. Annu. Rev. Clin. Psychol. 11, 361–377 (2015)

    Article  Google Scholar 

  3. Chu, S.H., Parhi, K.K., Lenglet, C.: Function-specific and enhanced brain structural connectivity mapping via joint modeling of diffusion and functional MRI. Sci. Rep. 8(1), 4741 (2018)

    Article  Google Scholar 

  4. Daselaar, S.M., Veltman, D.J., Rombouts, S.A., Raaijmakers, J.G., Lazeron, R.H., Jonker, C.: Medial temporal lobe activity during semantic classification using a flexible fMRI design. Behav. Brain Res. 136(2), 399–404 (2002)

    Article  Google Scholar 

  5. Hoefle, S., Engel, A., Basilio, R., Alluri, V., Toiviainen, P., Cagy, M., Moll, J.: Identifying musical pieces from fMRI data using encoding and decoding models. Sci. Rep. 8(1), 2266 (2018)

    Article  Google Scholar 

  6. Røge, R.E., Madsen, K.H., Schmidt, M.N., Mørup, M.: Infinite von Mises–Fisher mixture modeling of whole brain fMRI data. Neural Comput. 29(10), 2712–2741 (2017)

    Article  MathSciNet  Google Scholar 

  7. Kalus, S., Sämann, P.G., Fahrmeir, L.: Classification of brain activation via spatial Bayesian variable selection in fMRI regression. Adv. Data Anal. Classif. 8(1), 63–83 (2014)

    Article  MathSciNet  Google Scholar 

  8. Huang, H., Lu, J., Wu, J., Ding, Z., Chen, S., Duan, L., Cui, J., Chen, F., Kang, D., Qi, L., Qiu, W.: Tumor tissue detection using blood-oxygen-level-dependent functional MRI based on independent component analysis. Sci. Rep. 8(1), 1223 (2018)

    Article  Google Scholar 

  9. Phinyomark, A., Ibanez-Marcelo, E., Petri, G.: Resting-state fmri functional connectivity: big data preprocessing pipelines and topological data analysis. IEEE Trans. Big Data 3(4), 415–428 (2017)

    Article  Google Scholar 

  10. Cacha, L.A., Parida, S., Dehuri, S., Cho, S.B., Poznanski, R.R.: A fuzzy integral method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification across multiple subjects. J. Integr. Neurosci. 15(4), 593–606 (2016)

    Article  Google Scholar 

  11. Afshin-Pour, B., Shams, S.M., Strother, S.: A hybrid LDA + gCCA model for fMRI data classification and visualisation. IEEE Trans. Med. Imaging 99, 1–12 (2014)

    Google Scholar 

  12. Hsieh, I.H., Fillmore, P., Rong, F., Hickok, G., Saberi, K.: FM-selective networks in human auditory cortex revealed using fMRI and multivariate pattern classification. J. Cogn. Neurosci. 24(9), 1896–1907 (2012)

    Article  Google Scholar 

  13. Kasabov, N.K., Doborjeh, M.G., Doborjeh, Z.G.: Mapping, learning, visualization, classification, and understanding of fMRI data in the NeuCube evolving spatiotemporal data machine of spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28(4), 887–899 (2017)

    Article  Google Scholar 

  14. Churchill, N.W., Yourganov, G., Strother, S.C.: Comparing within-subject classification and regularization methods in fMRI for large and small sample sizes. Hum. Brain Mapp. 35(9), 4499–4517 (2014)

    Article  Google Scholar 

  15. Arribas, J.I., Calhoun, V.D., Adali, T.: Automatic Bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from FMRI data. IEEE Trans. Biomed. Eng. 57(12), 2850–2860 (2010)

    Article  Google Scholar 

  16. Mandelkow, H., de Zwart, J.A., Duyn, J.H.: Effects of spatial fMRI resolution on the classification of naturalistic movies. NeuroImage 162, 45–55 (2017)

    Article  Google Scholar 

  17. Plumpton, C.O.: Semi-supervised ensemble update strategies for on-line classification of FMRI data. Pattern Recogn. Lett. 37, 172–177 (2014)

    Article  Google Scholar 

  18. De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., Formisano, E.: Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. Neuroimage 43(1), 44–58 (2008)

    Article  Google Scholar 

  19. Ku, S.P., Gretton, A., Macke, J., Logothetis, N.K.: Comparison of pattern recognition methods in classifying high-resolution BOLD signals obtained at high magnetic field in monkeys. Magn. Reson. Imaging 26(7), 1007–1014 (2008)

    Article  Google Scholar 

  20. Pessoa, L., Padmala, S.: Decoding near-threshold perception of fear from distributed single-trial brain activation. Cereb. Cortex 17(3), 691–701 (2006)

    Article  Google Scholar 

  21. Plumpton, C.O., Kuncheva, L.I., Oosterhof, N.N., Johnston, S.J.: Naive random subspace ensemble with linear classifiers for real-time classification of fMRI data. Pattern Recogn. 45(6), 2101–2108 (2012)

    Article  Google Scholar 

  22. Yoon, J.H., Nguyen, D.V., McVay, L.M., Deramo, P., Minzenberg, M.J., Ragland, J.D., Niendham, T., Solomon, M., Carter, C.S.: Automated classification of fMRI during cognitive control identifies more severely disorganized subjects with schizophrenia. Schizophr. Res. 135(1-3), 28–33 (2012)

    Article  Google Scholar 

  23. Etzel, J.A., Gazzola, V., Keysers, C.: An introduction to anatomical ROI-based fMRI classification analysis. Brain Res. 1282, 114–125 (2009)

    Article  Google Scholar 

  24. Sela, Y., Freiman, M., Dery, E., Edrei, Y., Safadi, R., Pappo, O., Joskowicz, L., Abramovitch, R.: fMRI-based hierarchical SVM model for the classification and grading of liver fibrosis. IEEE Trans. Biomed. Eng. 58(9), 2574–2581 (2011)

    Article  Google Scholar 

  25. Lee, J.H., Marzelli, M., Jolesz, F.A., Yoo, S.S.: Automated classification of fMRI data employing trial-based imagery tasks. Med. Image Anal. 13(3), 392–404 (2009)

    Article  Google Scholar 

  26. Riaz, A., Asad, M., Alonso, E., Slabaugh, G.: Fusion of fMRI and non-imaging data for ADHD classification. Comput. Med. Imaging Graph. 65, 115–128 (2018)

    Article  Google Scholar 

  27. Anderson, A., Dinov, I.D., Sherin, J.E., Quintana, J., Yuille, A.L., Cohen, M.S.: Classification of spatially unaligned fMRI scans. NeuroImage 49(3), 2509–2519 (2010)

    Article  Google Scholar 

  28. Pachhaiammal, M., Rajagopalan, S.P.: An efficient FMRI classification technique in cloud using multiple parallel feature selection algorithm. Cluster Computing 22, 1–9 (2018)

    Google Scholar 

  29. Formisano, E., De Martino, F., Valente, G.: Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning. Magn. Reson. Imaging 26(7), 921–934 (2008)

    Article  Google Scholar 

  30. Castro, E., Gómez-Verdejo, V., Martínez-Ramón, M., Kiehl, K.A., Calhoun, V.D.: A multiple kernel learning approach to perform classification of groups from complex-valued fMRI data analysis: application to schizophrenia. NeuroImage 87, 1–17 (2014)

    Article  Google Scholar 

  31. Lee, D., Jang, C., Park, H.J.: Multivariate detrending of fMRI signal drifts for real-time multiclass pattern classification. NeuroImage 108, 203–213 (2015)

    Article  Google Scholar 

  32. Chyzhyk, D., Graña, M.: Classification of schizophrenia patients on lattice computing resting-state fMRI features. Neurocomputing 151, 151–160 (2015)

    Article  Google Scholar 

  33. Li, X., Zeng, W., Shi, Y., Huang, S.: Resting State fMRI Data classification method based on K-means algorithm optimized by rough set. In: International Conference on Intelligence Science, pp. 84–92. Springer, Cham (2017)

  34. Vishwanath, P., Viswanatha, V.M.: Face classification using Widrow–Hoff learning parallel linear collaborative discriminant regression (WH-PLCDRC). J. Theor. Appl. Inf. Technol. 89(2), 362 (2016)

    Google Scholar 

  35. Shailaja, K., Anuradha, B.: Deep learning based adaptive linear collaborative discriminant regression classification for face recognition. In: International Conference on Next Generation Computing Technologies, pp. 675–686. Springer, Singapore (2017)

  36. Koç, M., Barkana, A.: Application of linear regression classification to low-dimensional datasets. Neurocomputing 131, 331–335 (2014)

    Article  Google Scholar 

  37. Chen, Y., Jin, Z.: Reconstructive discriminant analysis: a feature extraction method induced from linear regression classification. Neurocomputing 87, 41–50 (2012)

    Article  Google Scholar 

  38. Huang, P., Lai, Z., Gao, G., Yang, G., Yang, Z.: Adaptive linear discriminant regression classification for face recognition. Digit. Signal Proc. 55, 78–84 (2016)

    Article  Google Scholar 

  39. Qu, X., Kim, S., Cui, R., Kim, H.J.: Linear collaborative discriminant regression classification for face recognition. J. Vis. Commun. Image Represent. 31, 312–319 (2015)

    Article  Google Scholar 

  40. Carpenter, P.A., Just, M.A., Keller, T.A., Eddy, W.F., Thulborn, K.R.: Time course of fMRI-activation in language and spatial networks during sentence comprehension. Neuroimage 10(2), 216–224 (1999)

    Article  Google Scholar 

  41. Just, M., Mitchell, T.: Starplus fmri data (2001). http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www

  42. Haxby, J.V., Gobbini, M.I., Furey, M.L., Ishai, A., Schouten, J.L., Pietrini, P.: Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539), 2425–2430 (2001)

    Article  Google Scholar 

  43. Haxby dataset link. http://www.pymvpa.org/datadb/haxby2001.html

  44. Behroozi, M., Daliri, M.R.: RDLPFC area of the brain encodes sentence polarity: a study using fMRI. Brain Imaging Behav. 9(2), 178–189 (2015)

    Article  Google Scholar 

  45. Ma, X., Chou, C.A., Sayama, H., Chaovalitwongse, W.A.: Brain response pattern identification of fMRI data using a particle swarm optimization-based approach. Brain Inf. 3(3), 181–192 (2016)

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. O. Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, K.O., Chatur, P.N. Gradient self-weighting linear collaborative discriminant regression classification for human cognitive states classification. Machine Vision and Applications 31, 21 (2020). https://doi.org/10.1007/s00138-020-01070-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-020-01070-9

Keywords

Navigation