Skip to main content
Log in

Photo-realistic dehazing via contextual generative adversarial networks

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Single image dehazing is a challenging task due to its ambiguous nature. In this paper we present a new model based on generative adversarial networks (GANs) for single image dehazing, called as dehazing GAN. In contrast to estimating the transmission map and the atmospheric light separately as most existing deep learning methods, dehazing GAN restores the corresponding hazy-free image directly from a hazy image via a generative adversarial network. Extensive experimental results on both synthetic dataset and real-world images show our model outperforms the state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Berman, D., Avidan, S., et al.: Non-local image dehazing. In: CVPR (2016)

  2. Berman, D., Treibitz, T., Avidan, S.: Air-light estimation using haze-lines. In: ICCP (2017)

  3. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. TIP 25(11), 5187–5198 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Chen, C., Do, M.N., Wang, J.: Robust image and video dehazing with visual artifact suppression via gradient residual minimization. In: ECCV (2016)

  5. Fattal, R.: Single image dehazing. TOG 27(3), 72 (2008)

    Article  Google Scholar 

  6. Fattal, R.: Dehazing using color-lines. TOG 34(1), 13 (2014)

    Article  Google Scholar 

  7. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

  8. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: CVPR (2009)

  9. Hou, N., He, F., Zhou, Y., Chen, Y.: An efficient gpu-based parallel tabu search algorithm for hardware/software co-design. Front Comput Sci 14(5), 145,316 (2020)

    Article  Google Scholar 

  10. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2016)

  11. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: An all-in-one network for dehazing and beyond. In: ICCV (2017)

  12. Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., Wang, Z.: Benchmarking single image dehazing and beyond. TIP 28, 492–505 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Li, H., He, F., Liang, Y., Quan, Q.: A dividing-based many-objectives evolutionary algorithm for large-scale feature selection. Soft Comput 24(9), 6851–6870 (2020)

    Article  Google Scholar 

  14. Liu, F., Shen, C., Lin, G., Reid, I.: Learning depth from single monocular images using deep convolutional neural fields. TPAMI 38(10), 2024–2039 (2016)

    Article  Google Scholar 

  15. Luo, J., He, F., Yong, J.: An efficient and robust bat algorithm with fusion of opposition-based learning and whale optimization algorithm. Intell Data Anal 24(3), 1–19 (2020)

    Article  Google Scholar 

  16. Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder–decoder networks with symmetric skip connections. In: NIPS (2016)

  17. Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary constraint and contextual regularization. In: ICCV (2013)

  18. Nair, D., Kumar, P.A., Sankaran, P.: An effective surround filter for image dehazing. In: Proceedings of the 2014 international conference on interdisciplinary advances in applied computing, p. 20 (2014)

  19. Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. Int J Comput Vis 48(3), 233–254 (2002)

    Article  Google Scholar 

  20. Nishino, K., Kratz, L., Lombardi, S.: Bayesian defogging. IJCV 98(3), 263–278 (2012)

    Article  MathSciNet  Google Scholar 

  21. Pan, Y., He, F., Yu, H.: Learning social representations with deep autoencoder for recommender system. World Wide Web (2020). https://doi.org/10.1007/s11280-020-00793-z

    Article  Google Scholar 

  22. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR (2016)

  23. Quan, Q., He, F., Li, H.: A multi-phase blending method with incrementalintensity for training detection networks. Vis Comput (2020). https://doi.org/10.1007/s00371-020-01796-7

    Article  Google Scholar 

  24. Ren, W., Cao, X.: Deep video dehazing. In: Pacific-Rim Conference on Multimedia (2017)

  25. Ren, W., Liu, S., Ma, L., Xu, Q., Xu, X., Cao, X., Du, J., Yang, M.H.: Low-light image enhancement via a deep hybrid network. IEEE Trans Image Process 28(9), 4364–4375 (2019)

    Article  MathSciNet  Google Scholar 

  26. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.H.: Single image dehazing via multi-scale convolutional neural networks. In: ECCV (2016)

  27. Ren, W., Ma, L., Zhang, J., Pan, J., Cao, X., Liu, W., Yang, M.H.: Gated fusion network for single image dehazing. In: CVPR (2018)

  28. Ren, W., Zhang, J., Ma, L., Pan, J., Cao, X., Zuo, W., Liu, W., Yang, M.H.: Deep non-blind deconvolution via generalized low-rank approximation. In: Advances in neural information processing systems, pp. 297–307 (2018)

  29. Ruder, S.: An overview of gradient descent optimization algorithms (2016). arXiv:1609.04747

  30. Sulami, M., Glatzer, I., Fattal, R., Werman, M.: Automatic recovery of the atmospheric light in hazy images. In: ICCP (2014)

  31. Tan, R.T.: Visibility in bad weather from a single image. In: CVPR (2008)

  32. Tan, X., Zhu, H., Shao, Z., Hou, X., Hao, Y., Ma, L.: Saliency detection by deep network with boundary refinement and global context. In: 2018 IEEE international conference on multimedia and expo (ICME), pp. 1–6. IEEE (2018)

  33. Tang, K., Yang, J., Wang, J.: Investigating haze-relevant features in a learning framework for image dehazing. In: CVPR, pp. 2995–3000 (2014)

  34. Tarel, J.P., Hautiere, N.: Fast visibility restoration from a single color or gray level image. In: ICCV (2009)

  35. Yan, Y., Ren, W., Cao, X.: Recolored image detection via a deep discriminative model. IEEE Trans Inf Forensics Secur 14(1), 5–17 (2018)

    Article  Google Scholar 

  36. Yang, D., Sun, J.: Proximal dehaze-net: a prior learning-based deep network for single image dehazing. In: ECCV, pp. 702–717 (2018)

  37. Yeh, R.A., Chen, C., Lim, T.Y., Schwing, A.G., Hasegawa-Johnson, M., Do, M.N.: Semantic image inpainting with deep generative models. In: CVPR, pp. 5485–5493 (2017)

  38. Yong, J., He, F., Li, H., Zhou, W.: A novel bat algorithm based on cross boundary learning and uniform explosion strategy. Appl Math A J Chin Univ 34, 482–504 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions (2015). arXiv:1511.07122

  40. Yu, F., Koltun, V., Funkhouser, T.A.: Dilated residual networks. In: CVPR, vol. 2, p. 3 (2017)

  41. Yu, H., He, F.: A scalable region-based level set method using adaptive bilateral filter for noisy image segmentation. Multimed. Tools Appl. 79, 5743–5765 (2020)

    Article  Google Scholar 

  42. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: CVPR (2018)

  43. Zhang, J., He, F.: A new haze removal approach for sky/river alike scenes based on external and internal clues. Multimed Tools Appl 79, 2085–2107 (2020)

    Article  Google Scholar 

  44. Zhang, S., He, F.: Drcdn: learning deep residual convolutional dehazing networks. Vis Comput (2019). https://doi.org/10.1007/s00371-019-01774-8

    Article  Google Scholar 

  45. Zhang, S., He, F., Ren, W., Yao, J.: Joint learning of image detail and transmission map for single image dehazing. Vis Comput 2, 305–316 (2020)

    Article  Google Scholar 

  46. Zhang, S., He, F., Yao, J.: Single image dehazing using deep convolution neural networks. In: Pacific rim conference on multimedia, pp. 315–325. Springer (2017)

  47. Zhang, S., Ren, W., Yao, J.: Feed-net: fully end-to-end dehazing. In: ICME (2018)

  48. Zhang, S., Yao, J.: Single image dehazing using fixed points and nearest-neighbor regularization. In: Asian conference on computer vision, pp. 18–33 (2016)

  49. Zhang, S., Yao, J., Garcia, E.B.: Single image dehazing via image generating. In: Pacific-Rim symposium on image and video technology, pp. 123–136. Springer (2017)

  50. Zhang, Y., Ding, L., Sharma, G.: Hazerd: an outdoor scene dataset and benchmark for single image dehazing. In: ICIP, pp. 3205–3209. IEEE (2017)

  51. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. TIP 24(11), 3522–3533 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key R&D Program of China (Grant No. 2017YFB0503004), National Natural Science Foundation of China (Grant No. 41571436) and China Postdoctoral Science Foundation (Grant No. 2019M662709).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazhi He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., He, F. & Ren, W. Photo-realistic dehazing via contextual generative adversarial networks. Machine Vision and Applications 31, 33 (2020). https://doi.org/10.1007/s00138-020-01082-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-020-01082-5

Keywords

Navigation