arXiv:1911.08079v2 [cs.CV] 7 May 2020

Two-Stream FCNs to Balance Content and Style for Style Transfer

Duc Minh Vo*

SOKENDALI (Graduate University for Advanced Studies)

Tokyo, Japan

vmduc@nii.ac. jp

Abstract

Style transfer is to render given image contents in given
styles, and it has an important role in both computer vi-
sion fundamental research and industrial applications. Fol-
lowing the success of deep learning based approaches, this
problem has been re-launched recently, but still remains a
difficult task because of trade-off between preserving con-
tents and faithful rendering of styles. Indeed, how well-
balanced content and style are is crucial in evaluating the
quality of stylized images. In this paper, we propose an end-
to-end two-stream Fully Convolutional Networks (FCNs)
aiming at balancing the contributions of the content and the
style in rendered images. Our proposed network consists of
the encoder and decoder parts. The encoder part utilizes a
FCN for content and a FCN for style where the two FCNs
have feature injections and are independently trained to
preserve the semantic content and to learn the faithful style
representation in each. The semantic content feature and
the style representation feature are then concatenated adap-
tively and fed into the decoder to generate style-transferred
(stylized) images. In order to train our proposed network,
we employ a loss network, the pre-trained VGG-16, to com-
pute content loss and style loss, both of which are efficiently
used for the feature injection as well as the feature concate-
nation. Our intensive experiments show that our proposed
model generates more balanced stylized images in content
and style than state-of-the-art methods. Moreover, our pro-
posed network achieves efficiency in speed.

1. Introduction

How New York looks like in “The Starry Night” by Vin-
cent van Gogh is an interesting question and, at the same
time, difficult to answer. In practice, re-painting a famous
fine-art style takes much time and requires well-trained
artists. Answering this question can be stated as the prob-
lem of migrating semantic content of one image to different
styles, and it is called style transfer.

Style transfer is long-standing and has fallen into the im-

Akihiro Sugimoto
The National Institute of Informatics
Tokyo, Japan

sugimoto@nii.ac.jp

age synthesis problem which is a fundamental research in
computer vision. Style transfer has its origin from non-
photo-realistic rendering [7] and is closely related to texture
synthesis and color transfer [8, 9]. Along with the impres-
sive progress of various tasks in computer vision using deep
neural networks, this topic has recently been re-launched in
both academy and industry. [3] showed that the image rep-
resentation derived from a Convolutional Neural Network
(CNN) can be used to represent the semantic content of an
image and the style, which opened up a new trend of CNN-
based style transfer.

CNN-based approaches in style transfer fall into two
categories [10]: Image-Optimisation-Based Online Neu-
ral Methods (IOB-NST) and Model-Optimisation-Based
Offline Neural Methods (MOB-NST). The key idea of
IOB-NST is to synthesis a stylized image by directly up-
dating pixels in the image iteratively through the back-
propagation. The IOB-NST such as [3, |1, 12] starts with
a noise image and iteratively updates the image by chang-
ing the distribution of noise along with the statistics of con-
tent and style until the defined loss function is minimized.
MOB-NST such as [1,2,4,5,6,13,14,15,16, 17], on the
other hand, first optimizes a generative model through iter-
ations, and then renders the stylized image using a forward
pass. In order to optimize the generative model, MOB-NST
trains each feed-forward model for each specific style by
using the gradient descent over a large dataset. IOB-NST
is known to produce better stylized results in quality than
MOB-NST [10], while MOB-NST has more efficiency in
speed.

Although existing methods [1,2,3,4,5,6,11,12,13, 14,

, 16, 17] show the capability of rendering image contents
in different styles, generated stylized images are not always
well balanced in content and style. Such methods take care
of either the content or the style, but not both, producing
unbalanced stylized images. IOB-NST is good at faithfully
rendering the style while it tends to lose the content. MOB-
NST, on the other hand, preserves more semantic content
than the style. How to keep the balance between the con-
tent and the style in style transfer is a crucial issue to im-
prove the quality of stylized images. This is because such

)
.

SR
aps

X
N

o=, A >

Figure 1: Example of stylized results. Left-most column: content image (large) and style image (small). From left to right:
the stylized image by our method, Johnson+ [], Huang+ [2], and Gatys+ [3], Sheng+ [4], Chen+ [5], and Li+ [6]. Our results
surrounded with red rectangles are more balanced in content and style than the others.

Johnson+ Gatys+

Figure 2: Example of stylized results obtained by John-
son+ [1] and Gatys+ [3] by changing the ratio of content
and style from 1:5 to 1:1. Left-most column: content image
(large) and style image (small). In each block, from left to
right: the stylized image with various ratio of content and
style.

balance is required in many applications; for instance, font
transfer [18], realistic photo transfer [12,19]. IOB-NST and
MOB-NST have the capability of controlling the balance
between the content and the style. Namely, they allow to
manually change the ratio of content and style. However,
changing the ratio do not guarantee that network parame-
ters for stylized images changes as expected, meaning that
the contributions of the content and the style in a stylized
image are uncontrollable in reality. Fig. 2 shows examples
obtained by IOB-NST (Gatys+ [3]) and MOB-NST (John-
son+ [1]) with various settings of contributions of the con-
tent and the style. We can see although the ratio of content
and style is significantly changed, the results do not change
much.

Another important issue to address is the computational
speed. Although MOB-NST such as [1,2,4,5,6,13, 14,15,
16,17] are able to produce stylized images fast, they rely on
a strong computational power. Therefore, either [OB-NST
or MOB-NST is hard to apply to real-time applications.

We propose an end-to-end two-stream network for bal-
ancing the content and style in stylized images where con-
tributions of the content and the style are adaptively taken

into account. The encoder part of our network consists of
the content stream and the style stream where the streams
have different architectures. The two streams are connected
by adaptive feature injection and independently trained to
learn the semantic content or the style representation. The
content features and the style features are then combined
in our proposed adaptive concatenation to ensure the bal-
anced contribution of each stream. As the decoder part
of our network, we use the feed-forward model to reduce
the rendering time while we spend much time on learn-
ing like [1,2,4,5,6, 17]. Unlike other methods that train
a new model from the scratch for a yet unknown style, we
fine-tune parameters from an existing model, allowing our
network not only to accommodate fast training but also to
easily adapt new styles. Our experiments demonstrate that
our method produces more balanced stylized images in both
content and style than the state-of-the-art methods (Fig. 1).
They also show that our method runs about 22 x faster than
the state-of-the-art methods. We remark that our proposed
model is trained for one style only, but it is easy to be fine-
tuned to other styles incrementally with a low cost.

The rest of this paper is organized as follows. We briefly
review and analyze related work in Section 2. Next, we an-
alyze the semantic levels of image features for content and
style in Section 3. Then, we present the detail of our pro-
posed method in Section 4. Section 5 and Section 6 discuss
our experiments. Section 7 draws the conclusion. We re-
mark that this paper extends the work reported in [20]. Our
main extensions in this paper are building a new network
using both our proposed adaptive feature injection and con-
catenation, and adding more experiments.

2. Related work

Early work on style transfer was reported in the context
of texture synthesis. Some methods there used histogram
matching [2] and/or non-parametric sampling [8,9]. These

Original image relul_2 relu2_2 relu3_1

relu3_3 relu4_3 relus_1

relu3_2

Figure 3: Examples of the feature reconstruction for several layers from the VGG-16 pre-trained network.

Style image rel relu2_1 relu2 2

O

relu3 2 relu4 3

relu3 1 relu3 3

Figure 4: Examples of style image reconstruction for several layers from the VGG-16 pre-trained network.

methods had limited results because they relied on hand-
crafted low-level features and often failed in capturing fea-
tures in semantic levels from the content and the style.

[3] for the first time proposed a method using CNNs
and showed remarkable results. Their method trains CNNs
to learn the semantic information from content images and
matched it with the distribution of the style. It starts from
a randomly distributed noise image and iteratively updates
the image to produce an image satisfying the semantic dis-
tribution of the content image and appearance statistics of
the style. During the iteration, the weighted sum of style
loss and content loss is minimized. As follow-up work
of [3], [1] proposed a structure preservation method us-
ing Matting Laplacian for photo-realistic style transfer. [12]
utilized the screened Poisson equation to make a stylized
image more photo-realistic. [22] proposed a Laplacian loss
that computes the Euclidean distance between the Lapla-
cian filters responding to a content image and a stylized im-
age in order to keep a fine structure of the content image.
These approaches fall into the IOB-NST category, and all
face with the computational speed problem.

[1]and [23], on the other hand, took MOB-NST, propos-
ing a feed-forward CNN and used the perceptual loss func-
tion for gradient-based optimization. The perceptual loss
used there is similar to content and style loss in [3]. Their
models have only to pass the content image to a single for-
ward network to produce a stylized image, which is fast.
Their two models are different only in the network architec-
ture. [1] follows the design of [24] with their modification of
using residual blocks and fractionally strided convolutions
while [23] uses a multi-scale in their generator. [17] also
utilized the feed-forward network, and they used multiple-
generator to improve the quality of results. These methods
are fast in generating stylized images, but they are capable

of dealing with a single style only.

[25] proposed a multi-style network that introduces
shared-computation in many style images where they used
instance normalization (IN) [26] for balancing features from
the content and from the style. They also proposed an im-
provement of IN to learn a different set of affine parame-
ters for multi-styles in the batch way. However, their model
can train a limited number of styles because the network
capability is limited, meaning that the number of styles to
handle is limited. [5] proposed a method that overcomes the
limitation of the number of styles by using a patch-based
method. Their method first extracts a set of patches from
the content and style each, and then, for each content patch,
the method finds its closest style patch and swaps their ac-
tivation. In this way, their method transfers an unlimited
number of styles; however, the cost for patch extraction and
swapping increases the computational time significantly. [6]
also proposed a method for multi-style transfer using fea-
ture transformations. They first employ pre-trained VGG-
19 as their encoder to train an decoder for image recon-
struction. Then, with fixing both encoder (VGG-19) and
decoder, their model performs the style transfer through
whitening and coloring transforms on a given content im-
age and a style image. Though their method successfully
solves the multi-style transfer, it still suffers from the com-
putational cost and loses the content due to the feature trans-
formations.

[2] and [4] proposed multi-style transfer models consist-
ing of two CNN streams for content and style. [2] employed
the pre-trained VGG-16 to extract content and style features
and introduced Adaptive Instance Normalization (AIN) to
make the mean and the variance of content features simi-
lar to those of style features. [4], on the other hand, pro-
posed AvatarNet which employed the pre-trained VGG-19

relud 3

relu4_2

Figure 5: Examples of combination of content and style images from relu3_2 to relu4_3. Left-most column: content image
(large) and style image (small), From left to right: the stylized images at different combination levels by Gatys+ [3] where

the ratio of contributions of content and style is 1:1.

to extract the content and style features. These features are
matched by using style-swap [5] or AIN [2] before being
fed into the decoder. Different from [2], their models have
skip-connections from the style encoder to the decoder. [2]
and [4], however, used the same architecture for the content
CNN and for the style CNN. Having the same CNN archi-
tecture for the content and the style causes unavoidable un-
balance between the content and the style because semantic
levels extracted from the content and the style should not be
the same in style transfer. Those models require expensive
computational cost as well. Furthermore, AIN [2] assumes
the standard distribution on pixel values of images, which
is not always ensured in styles when normalizing data. In
deed, AIN [2] tends to produce a lot of artifacts; especially
they are visible on flat surfaces [16]. We remark that the
skip-connection in AvatarNet [4] weights the style contri-
bution more, causing unbalance in stylized images.

Along with using Generative Adversarial Network
(GAN) [27] in image synthesis, several GAN-based models
for style transfer are also proposed [13, 14, 16,28]. These
models also optimize the network with a large number of
content images during the training step, and thus fall in the
MOB-NST category. Though GAN-based models bring a
promising approach to improve the quality of stylized im-
ages, their results, at this time, still are less impressive [10].
Furthermore, as in common with other GAN-based ap-
proaches, their training processes are also unstable.

Different from the methods above, we take into account
the contributions of the content and the style through a two-
stream feed-forward network to balance the content and the
style in stylized images. In particular, our proposed two-
stream network is different from [2, 4] in that our network
has different depths in layer for the content and the style en-
coders to extract different semantic levels of the content and
the style. In addition, separating content and style enables
our method easy to fine-tune to other styles with a cheaper

computational cost (re-training time, required numbers of
training images) than other models possessing only one en-
coder [1,5,17]. As aresult, our method is able to easily deal
with multi-styles.

3. Semantic levels of image features for content
and style

Along with the depth, CNN is known to extract differ-
ent semantic levels of image features in layers. As demon-
strated in [!, 3], features in early layers reflect colors, tex-
tures, and common patterns of images while those in latter
layers preserve content and spatial structure of images. We,
therefore, expect that the features in lower layers work as
style features and those in higher layers do as content fea-
tures. Using appropriate semantic levels of image features
in style transfer is crucial. We thus experimentally exploit
the semantic levels of image features in VGG-16 [29] to de-
sign suitable numbers of layers in designing our network
to extract content and style features. We remark that we
refer [1, 3] in which image reconstruction is learned using
hidden features in CNN layers.

For the content image reconstruction, we randomly pre-
pare 100 images. We then feed each of the 100 images
into the VGG-16 [29] pre-trained on object recognition us-
ing ImageNet dataset [30] without any fine-tuning and ex-
tract the features at each Rectified Linear Unit (ReLU) [31].
These features are employed to reconstruct original images
using inverting technique [32]. Hereafter, we use reluX_Y
to mention a specific ReLU layer; see the definition of
VGG-16 [29] architecture for details. Fig. 3 shows some
examples of image reconstruction at several layers. We see
that at low levels, i.e., from the 2nd layer (relul_2) to the
5th layer (relu3_1), the reconstructed images are similar to
the original image, meaning that these layers successfully
keep colors, textures, and common patterns of images. At
higher levels, i.e., from the 6th layer (relu3-2) to the 10th

layer (relu4_3), the reconstructed images preserve the con-
tent and spatial structure. At even higher layers that start
from the 11th layer (relu5_1), semantic features are gradu-
ally learned; the exact shape, on the other hand, is not pre-
served.

For the style image reconstruction, we use Adam opti-
mization [33] to find an image that minimizes the style re-
construction loss (proposed in [3]). To obtain style recon-
structed images, we start from a noise image and optimize
the style loss as [3] using the VGG-16 pre-trained on Ima-
geNet. Fig. 4 shows an example of the style image recon-
struction. We see that the style of image can be obtained
until the 7th layer (relu3_3)

The above observation holds true for the images and
the styles that we evaluated. Combining the insight given
by [1,3], we may thus conclude that the low-level layers re-
flect the style of the image while the high-level layers cap-
ture the content of the image. More precisely, from the 6th
layer (relu3_-2) to the 10th layer (relud_3), the network is
capable of appropriately capturing content information in
the images. The style information, on the other hand, can
be obtained from the 2nd (relul_2) to the 7th (relu3_3) lay-
ers.

[3] pointed out that image content and style cannot be
completely disentangled. This indicates that depending on
the objective, we have to appropriately design the layer lev-
els of content and style features for their combination. We
thus further analyze effectiveness of the layers from the 6th
(relu3-2) to the 10th (relu4_3) for content matching to de-
termine the best one for combination. We follow [3] to syn-
thesize the stylized images where we set the contributions
of content and style to be equal with each other. To this end,
we fix the style matching from the 2nd (relu1_2) to the 7th
(relu3_3) layers, while performing the content matching at
every single layer from the 6th (relu3_2) to the 10th layers
(relud_3). Fig. 5 shows examples of stylized images hav-
ing different layers in combination. We see that the content
matching at the 6th and the 7th layers (relu3-2 and relu3_3)
is most reasonable to keep the balance of content and style
in stylized images.

Using above observation, we design our network to fully
exploit the characteristics of image features. We choose the
6th layer for content because it has a smaller number of pa-
rameters than the 7th layer (it is faster to learn). We choose
the 4th layer for style because it is neither too early in layer
nor marginally different from the layer used for content. In
conclusion, we use the features at the 6th layer (relu3_2)
for content and those at the 4th layer (relu2_2) for style.

4. Proposed method
4.1. Network design

Our network follows end-to-end encoder-decoder archi-
tecture for rendering of the content in a given style [1,5, 17].

The network in [1, 5, 17] possesses only one encoder to ex-
tract the semantic content and style. This means that the
extracted semantic level of the content and that of the style
are the same. When we stylize images, the role of the con-
tent should be different from that of the style because the
content gives us what exist (object shapes and locations) in
the rendered image and the style gives us the impression of
the rendered image. Accordingly, the semantic level used
for the rending should be different depending on the con-
tent or the style. Otherwise, unbalance between the content
and style remains in stylized images. We thus design a net-
work having two encoders in which their architectures are
different from each other to extract different semantic lev-
els of the content and the style. With the two encoders, our
model treats the content and the style in different ways, al-
lowing the network to be able to balance the roles of the
content and the style better than the model having only one
encoder.

Ideally, the network should be able to retain the seman-
tics of the content as well as the statistics of the style as
much as possible. The semantic content and style of an im-
age are captured at different layers in the network (see [1,3]
and Section 3): the network obtains the style at low-level
layers in depth while high-level layers become more sensi-
tive to the actual content of the image. We thus design the
encoders with different depths to retain useful information
from both the content and the style. Namely, we design a
deep encoder for the content and a shallow encoder for the
style. Moreover, in order to reflect features extracted from
the style at low-level to those from the content, we employ
the feature injection via the skip-connection technique from
the shallow encoder to the deep one. Because the content
feature and the style feature are extracted at different levels
in the network, they have different characteristics. We thus
introduce an effective concatenation to enhance the contri-
bution of these features for good performances instead of
implementing their simple ones.

4.2. Network architecture

Our proposed network consists of three Fully Convo-
lutional Network (FCNs): two encoders and one decoder
(Fig. 6). The two encoders are a deep network, the con-
tent subnet, to extract content feature ¢. from a content
image, and a shallow network, the style subnet, to extract
style feature ¢4 from a style image. The feature injection
is employed between the content subnet and the style sub-
net using the balance weight (cf. Section 4.4). This balance
weight is also used to adaptively concatenate the features ¢,
and ¢ at the top of content and style subnet before being
fed into a deep network, the generator subnet, to produce a
stylized image. We employ the VGG-16 model [29] as the
loss network in the training phase.

Our network receives the content and style images where
each image is with the size of n X n x 3 (n is the size of

Content subnet

256 x 256 x 48

128 x 128 x 64

128 x128 x 80
64 X 64 x 96

Content image
256 x 256 x 3 &

»

»
>
»

8

>(0)e

Style image @
256 x 256 x 3

S

Generator subnet

ofl & % % oo [IR i < e A \
SEEEE [vGG-16 |
HOHHEHE - loss !
x
§;8§8 1 network
SRS N R — __1__,
Stylized image |

256 x 256 x 3

128 x 128 x 64

64 x 64 x 96

B Convolution B Residual block B Deconvolution

= * Training only — (Training + Testing)

© Adaptive concatenation —> Adaptive feature injection

Figure 6: Framework of our proposed method. Our network consists of two encoders having different architectures and one
decoder. The loss network is used to train the encoders and the decoder.

image, 3 are for RGB channels), and synthesizes an stylized
image of n x n x 3. In the training phase, we use the im-
ages of 256 x 256 x 3 (n = 256). Although we train the
network on images with the size of 256 x 256 x 3, the net-
work can accept any size of images in testing (n can be 64,
128, 256, or 512). We remark that the size of the content
image and that of the style image have to be the same to en-
sure the consistency of the feature size when injecting and
concatenating the content and the style features.

4.2.1 Content subnet

The content subnet is a stack of six convolution layers with
the filter size of 3 x 3, and the padding size of 1 x 1. We use
the stride of 2 x 2 at the third, the fifth, and the sixth layers
to reduce the size of feature maps and the stride of 1 x 1
at the other layers. The numbers of the output channels are
32, 48, 64, 80, 96, and 128, respectively. Each convolution
layer is followed by a spatial instance normalization (IN)
layer [26] and a Rectified Linear Unit (ReLU) layer [31].
In order to avoid the border artifacts caused by convolution,
the reflection-padding is used instead of the zero-padding
similarly to [25].

4.2.2 Style subnet

The style subnet, which has four convolution layers, is shal-
low network (more precisely, shallower than the content

subnet). All convolution layers have the filter size of 3 x 3,
the reflection-padding of 1 x 1, and the stride of 2 x 2, ex-
cept for the first layer that employs the stride of 1 x 1. The
numbers of the output channels are 32, 64, 96, and 128,
respectively. Similarly to the content subnet, each convolu-
tion layer is also followed by an IN layer [26] and a ReLU
layer [31].

We employ feature injection from the feature ¢ at the
g-th layer in the style subnet to those ¢f at the p-th layer
in the content subnet, the size of whose feature map is the
same (Table 1). To take into account the contributions of ¢J
and ¢?, we introduce the adaptive feature injection with the
balance weight (cf. Section 4.4).

4.2.3 Generator subnet

The generator subnet consists of five residual blocks, three
deconvolution layers, and two convolution layers in this or-
der.

[1] argues that the residual block can enrich the informa-
tion involved in the input feature. We, therefore, use resid-
ual blocks to increase the impact of the balance weight in
the concatenated feature. Similarly to [1], we use five resid-
ual blocks outputting 256 channels, where each of them
has two convolution layers with the filter size of 3 x 3, the
reflection-padding of 1 x 1, the stride of 1 x 1, and a sum-
mation layer as in [34]. All convolution layers are followed
by an IN layer [26] (we use it to replace the batch normal-

Table 1: Architecture of our encoders. The arrow () indi-
cates the adaptive feature injection.

Content subnet Style subnet

No Layer Output channel No Layer Output channel
0 Content image 3 0 Style image 3
1 Convolution 32 1 Convolution 32
2 Instance normalization 32 2 Instance normalization 32
3 ReLU 32 —~ 3 ReLU 32
4 Convolution 48
5 Instance normalization 48
6 ReLU 48
7 Convolution 64 4 Convolution 64
8 Instance normalization 64 5 Instance normalization 64
9 ReLU 64 —~ 6 ReLU 64
10 Convolution 80
11 Instance normalization 80
12 ReLU 80
13 Convolution 96 7 Convolution 96
14 Instance normalization 96 8 Instance normalization 96
15 ReLU 96 ~ 9 ReLU 96
16 Convolution 128 10 Convolution 128
17 Instance normalization 128 11 Instance normalization 128
18 ReLU 128 12 ReLU 128

ization [35] in the original architecture [34]) and a ReLU
layer [31].

To upscale the feature map, we employ three deconvolu-
tion layers with the same filter size of 3 x 3, the reflection-
padding of 1 x 1, and the stride of 2 x 2, outputting 128, 96,
and 64 channels, respectively.

In order to eliminate the affect of the convolution stride,
we use two convolution layers which have the filter size of
1x1, the padding of 0 x 0, and the stride of 1 x 1, outputting
32 and 3 channels. All deconvolution layers and convolu-
tion layers are followed by an IN layer [26] and a ReLU
layer [31], except for the last convolution layer that uses the
tanh activation to guarantee that the range of the output can
be normalized to be [0, 255].

4.3. Loss function

We employ two loss functions for content loss and style
loss, which are computed from layers of the loss network.
The content loss £, computes the similarity of high-level
features between the content image and the stylized image.
The style loss L, on the other hand, computes the simi-
larity of low-level features between the style image and the
stylized image.

The overall loss is a weighted sum of the content loss
and the style loss:

E(ﬂJJC, ys) = aﬁc(gayc) + (1 - Q)Ls(?j,ys), (D

where y.,ys, and ¢ denote the content image, the style,
and the stylized image, respectively. « is the combina-
tion weight (we set @ = 0.5 in our experiments to equally
weight these two loss functions).

We obtain the content loss at M layers as follows:

1

1
)= — S ®4(5) — B lye)|o,
Lo, ye) M,C%;CMHMWk” k() — Pr(ye) 2

2

where ®,(-) denotes the normalized feature map at the k-th
layer, which has C x Hy, x W}, elements. The range of £,
is [0, 1].

The style loss is computed at N layers as follows:

L6099 = 5 S IG@(E) ~ G,)
keEN

where ||| denotes the Frobenius norm [36]. G(®x(-)) is
the Gram matrix [36] of the normalized feature map at the
k-th layer. The Gram matrix G¢, x ¢, has elements G;; =
(vi,v;) where v;,v; are features at the i-th and the j-th
channels respectively of the feature map ®(-). The range
of Lsis [0,1].

4.4. Adaptive feature injection and concatenation

In our network, we employ the feature injection between
the content features and the style features. We also concate-
nate them to feed into the generator subnet. To weight the
contributions of the content features and the style features,
we introduce the balance weight . This balance weight is
adaptively updated during the training so that it retains the
balance between the content and the style in stylized im-
ages.

At the t-th iteration in training phase, 7; is computed as
follows:

L)

T L0 + Lo(t)

where L£4(t) and L(t) are the style loss and the content
loss at the t-th iteration in the training phase. To restrict
the fluctuation of the balance weight, we compute y at ev-
ery non-overlapping 7' iterations and use it for the next T’

iterations:
1 Z
= = . 5
1= ;:1 Mt)

Using ~, we sum up the content feature at the p-th layer
@F and the style feature at the g-th layer ¢ for the feature
in adaptive feature injection as follows:

PP = (v x ¢F) + (1 =) x ¢d). (6)

Similarly, we concatenate the content feature ¢. and the
style feature ¢y in the adaptive concatenation as follows:

¢:<7X¢c)@((1_7) X(bs)' (7

The learned balance weight v ensures the balance of the
contributions of the content feature and the style feature in
both feature injection and concatenation layers. For ex-
ample, when L is smaller than £, (meaning v < 0.5 in
Eq. (5)), the contribution of style feature is increased in the
next iterations, and vice verse. Moreover, the learned bal-
ance weight y is more advantageous than the fixed balance
weight that does not concern the balance of losses.

“)

In order to explicitly control the contribution ratio of the
content and the style, we manually set the expected con-
tribution ratio in the loss function, and then introduce the
learnable weight that allows us to change stylized images as
we expect. The combination weight « takes the former role
while the learnable balance weight v does the latter role.
In other words, in our method, « sets an expected contribu-
tion ratio of content and style in stylized images through the
loss function while ~ controls the learning direction of the
network during the training to achieve the contribution ratio
specified by a. In our experiments where we set a = 0.5,
we see that v works for the equal contribution ratio of the
content and the style as expected (see Sections 6.1 and 6.2
for details). We remark that « and ~y together play the role
of the indicator for how much the content and the style are
emphasized in obtained stylized images.

5. Experimental setup
5.1. Dataset and compared methods

5.1.1 Dataset

We used in our experiments, images in the MS-COCO 2014
dataset [37] as our content images, and six famous paintings
widely used in style transfer [1,2,3], as our style images (cf.
Fig. 7).

We used the MS-COCO 2014 training set for our train-
ing, and we randomly selected 20 images from the MS-
COCO 2014 validation set for our validation. In the testing
phase, on the other hand, we randomly selected 50 images
from MS-COCO 2014 validation (different ones from the
20 images used in our validation).

5.1.2 Compared methods

We compared our method with SOTA methods: Gatys+ [3],
Johnson+ [!], Huang+ [2], Sheng+ [4], Chen+ [5], and
Li+ [6]. We note that Gatys+ is based on IOB-NST and
the others are on MOB-NST. For Gatys+, we used the re-
implementation version by J. Johnson'. For the others, we
used publicly available source codes with parameters rec-
ommended by the authors (Johnson+?, Huang+, Sheng+*,
Chen+’, Li+°). We remark that we set 1000 iterations for
Gatys+.

Uhttps://github.com/jcjohnson/neural-style
Zhttps://github.com/jcjohnson/fast-neural-style
3https://github.com/xunhuang1995/AdaIN-style
“https://github.com/LucasSheng/avatar-net
Shttps://github.com/rtqichen/style-swap
Shttps://github.com/Yijunmaverick/UniversalStyle Transfer

5.2. Implementation details
5.2.1 Implementation setup

We implemented our method in PyTorch’. We used the in-
stance incremental learning strategy for dealing with multi-
ple styles. We conducted all experiments using a PC with
CPU core i7 3.7 GHz, 12 GB of RAM, and GTX 770 GPU
(4 GB of VRAM).

We performed the adaptive feature injection from lay-
ers ¢ = 3,6,9 in the style subnet to layers p = 3,9, 15 in
the content subnet, respectively (Table 1). We adopted the
VGG-16 model [29] pre-trained on the ImageNet [30] as
the loss network without any fine-tuning. All layers after
relud_3 layer were dropped. We obtained the content loss
at M = 1 layer, e.g., relud_3, and the style loss at N = 3
layers, e.g., relul_2, relu2_2, and relu3_3 (M and N are
defined in Section 4.3).

5.2.2 Training the model

Our method addresses a one-style model to reduce compu-
tational time. For training a new yet unknown style, we fine-
tune parameters from an existing model. With this learning
strategy, our method can easily adapt a new style with a
lower cost than existing work [1,2, 3, 17]. Moreover, the
fine-tuning learning enables our method to deal with an un-
limited number of styles fast unlike existing methods such
as [5,25].

We first trained an initial model on the Starry Night style
and then incrementally fine-tuned on the other styles one
by one. We trained the network on the Starry Night style
with a batch size of 2 for 80k iterations corresponding to
2 epochs. The balance weight v in Eq. (5) is re-computed
at every 1" = 500 iterations. All the training and validation
images are resized to 256 x 256. To train the model, we used
the Adam optimizer [33] with the learning rate of 10~3, the
moments 51 = 0.9 and B> = 0.999, and the division from
zero parameter ¢ = 10~%. We did not use the learning rate
decay and the weight decay.

For the initial model, we trained all subnets simultane-
ously with independently updating the weight of each sub-
net. Validation was performed at every 100 iterations during
the training process. When observing the content loss and
the style loss on the validation set, if any loss function raises
the overfitting problem, we stopped updating the weight of
the corresponding subnet.

We incrementally fine-tuned the initial model to the other
styles one by one. 2000 images in the MS-COCO 2014
training set [37] were randomly selected as content images
for training. The network was trained for 1000 iterations
with the batch size of 2. The Adam optimizer [33] was also
used with the same parameters as the training of the initial
model. The balance weight v in Eq. (5) was re-computed at

"https://pytorch.org/

Figure 7: Styles used in experiments. From left to right: Starry Night, Mosaic, Composition VII, La Muse, The Wave, and

Feathers.

every T' = 50 iterations. The loss-based training technique
was also applied to avoid overfitting, where the validation
was performed at every 50 iterations.

5.3. Evaluation metric

In order to evaluate the quality of synthesized images,
most previous work employed user studies although they
are subjective and have ambiguity in evaluation. We, on
the other hand, evaluate stylized images by quantifying the
content and style losses. Intuitively, when the total loss is
sufficiently small, we may say that the overall quality of
stylized images is good. Furthermore, the quality of styl-
ized images also depends on how the content and the style
are reflected in them. We have to consider these two factors
in evaluating the quality of stylized images. Since the con-
tributions of the content and the style are controlled by «
(set in advance) in our method, we may see if a synthesized
image is good in quality by evaluating (i) whether its total
loss is sufficiently small, and (ii) whether the ratio between
its content and style losses consistently agrees with the pre-
set contribution ratio (i.e., combination weight o) between
the content and the style. We thus introduce a metric to
evaluate the quality of synthesized images using these two
criteria. We remind that we set « = 0.5 (for simplicity) in
our experiments to see the content and style losses converge
to almost the same values.

For each pair of content image ¢ and style image s, we
compute content loss L. and style loss L. In the 2D plane
whose coordinate system is defined by content loss and
style loss, the criterion (i) can be measured using the dis-
tance between the origin and (L., Ls). The criterion (ii), on
the other hand, can be measured by evaluating how close
(Lc, Ls) is to the line of “content loss”="style loss” (called
the balanced axis hereafter).

We assume that we have K stylized images. We normal-
ize content loss and style loss for each stylized image over
K images:

—~ 1 —~ 1
Le=——"—F L= @
1+ exp (=5) 1+ exp (==2)

c Os

where L., 0., Ls, and o5 are the mean and the standard devi-
ation of content loss and style loss over K stylized images,
respectively.

The quality of stylized images with respect to the crite-
rion (i) is measured using

length =/ Z;Q + ZQ. 9

Let w (€ [0, 7]) denote the angle between the line going

through the origin and (L., L) and the content loss axis or
the style loss axis (the smaller angle is selected):

tan~1! % if ENC > ZS

W= 1L .
m/2 — tan~ 7 otherwise

10)

Larger w indicates that (EC , ZS) is closer to the balanced
axis, meaning that the stylized image is more balanced in
content and style. This reflects the criterion (ii).

Using length and w above, we define our metric
balance:

(1)

balance concerns both the two criteria (i) and (ii). There-
fore it is a useful metric for evaluating stylized images. We
note that larger balance is better because tan(w) should be
larger and length should be smaller for better stylized im-
ages.

6. Experimental results
6.1. Qualitative evaluation

Figure 8 shows examples of the obtained results, show-
ing that the stylized images obtained by our method are
more balanced in content and style. We also see that overall
the results obtained by Gatys+ [3], Sheng+ [4], and Li+ [0]
reflect the style well, but they mostly lose content (we can-
not understand the content of stylized results using La Muse
and Feathers styles). In some styles (Starry Night, Compo-
sition VII, and The Wave), we see that Johnson+ [1] seems
to randomly select a patch in the style and paste it into the
content image. Huang+ [2] also loses the content and suf-
fers from a so-called checkerboard effect. We also see that
Chen+ [5] loses almost style and tends to keep the original
content images.

To objectively compare the obtained results, we con-
ducted three user studies, including overall quality, content

A
e

Figure 8: Visual comparison of our method against the state-of-the-art methods. Left-most column: content image (large)
and style image (small). From left to right: the stylized image by our method, Johnson+ [1], Huang+ [2], and Gatys+ [3],
Sheng+ [4], Chen+ [5], and Li+ [6]. Our results surrounded with red rectangles are more balanced in content and style than
the others. Note that all stylized images are with the size of 512 x 512.

preserving and style look-like. From the visual comparison
in Fig. 8, we see that evaluating all stylized results among
compared methods is pretty difficult. We thus picked up
three methods only for our user studies. To this end, we
investigated the quantitative comparison (Section 6.2). As
Gatys+ [3] is known to keep styles most while Johnson+ [1]
retain the content most, these methods are appropriate to
choose for our user studies. Among the remaining com-
pared methods, we see that Huang+ [2] is most balanced
(the loss distributions of Huang+ [2] appear near balanced
axis (Fig. 10)). We, therefore, chose Gatys+ [3], John-
son+ [1] and Huang+ [2] for our user studies.

For our user studies, we randomly selected 20 images
from the 50 testing images as content images and chose 5
styles by excluding The Wave style because it is simpler
than the other styles (Fig. 7). We remark that the combina-
tion of 20 content images and 5 styles results in 100 stylized
images by each method. In each user study, we presented
100 sets of images to 31 subjects where each set consists
of a content image, a style image, and four output images
obtained by our method and the three comparison meth-
ods [1,2,3]. We then asked the subjects to rank the four out-
put stylized images at each set (1st is best, and 4th is worst).
For the overall quality study, the subjects were asked to give
the ranking based on the overall quality at each set. For the
content preserving study, the subjects were asked to rank
output images in each set based on how faithfully the im-
ages preserve the content in content images. For the style
look-like study, on the other hand, the subjects ranked out-
put images in each set based on how the images look like
the style in style images. We note that four output images
are aligned in the random order in each set and that each set
was displayed for 6 seconds.

Table 2, Table 3, and Table 4 show the average of rank-
ings over the 100 sets for the overall quality, the content
preserving, and the style look-like studies, respectively. We
also computed the average of rankings in each style, which
is also illustrated in Table 2, Table 3, and Table 4.

We see that our method takes the best ranking among the
four methods in overall quality (Table 2). Looking into the
results in more detail, we see that our method is ranked in
the first place at the Mosaic style, and in the second place
at others (except for Composition VII style). This indi-
cates that our method performs stably well in overall qual-
ity in accordance with human cognition. We remark that
the Composition VII style is rather complex (Fig. 7) and,
the results for this style are difficult to evaluate. We also
remark that the single-style models (ours, Gatys+ [3], and
Johnson+ [1]) performed better than the multi-style model
(Huang+ [2]).

For the content preserving (Table 3) and the style look-
like (Table 4) studies, our method takes the second best
ranking. Note that the scores in these studies more largely
distributed than those in the overall quality study. As MOB-

Table 2: Average of rankings in the overall quality study.
The best and the second best results are given in red and
blue, respectively.

Style Ours Johnson+ Huang+ Gatys+
[(2] (3]
Starry Night 212 272 3.14 2.01
Mosaic 2.21 2.25 291 2.63
Composition VII| 2.47 2.95 24 2.18
La Muse 238 2.28 2.82 2.51
Feathers 2.15 1.82 3.28 2.74
All together 227 240 291 241

Table 3: Average of rankings in the content preserving
study. The best and the second best results are given in red
and blue, respectively.

Style Ours Johnson+ Huang+ Gatys+
[] (2] (4]

Starry Night 253 196 267 284

Mosaic 213 1.60 3.05 3.22
Composition VII| 3.02 1.81 2.50 2.67
La Muse 199 1.82 3.06 3.13
Feathers 2.02 1.81 2.50 2.67
All together | 2.34 1.80 287 2.99

NST is known to perform better in content preserving than
IOB-NST [10]; Johnson+ [!], which is MOB-NST, takes
the best ranking in the content preserving study. Gatys+ [3],
on the other hand, which is IOB-NST, takes the best rank-
ing in the style look-like study. In contrast, our method is
ranked in the second place for all styles in the content pre-
serving study (except for Composition VII style) (Table 3)
and in the style look-like study (except for Feathers style)
(Table 4). These indicate that our method stably produces
stylized images balanced in content and style for almost
all the styles. We remark that in the case of the Feathers
style, the two best methods for the look-like study follow
the MOB-NST approach. As MOB-NST is known not to
keep styles well [10], this suggests that the Feathers style is
a difficult style for users to evaluate stylized images.

6.2. Quantitative evaluation

In order to quantitatively evaluate the obtained results,
we computed the averages of length’s and balance’s over
300 (= 50 contents x 6 styles) sets for each method (Ta-
ble 5). We see that our method performs best both in length
and balance. We also computed the averages of length’s
and balance’s in each style, which is illustrated in Fig. 9.
Fig. 9 shows that our method performs best in length and
best in balance for all the styles.

0.8

0.4
. 1
0.2
0
Starry night ~ Mosaic ~ Composition La muse The wave Feathers Starry night Mosaic ~ Composition La muse The wave Feathers
Vil Vil
®Ours = Johnson+ ®Huang+ & Gatys+ ®Sheng+ ®Chen+ ®Li+ mOurs ®Johnson+ mHuang+ = Gatys+ ®Sheng+ mChen+ mLi+
(a) length ({}). (b) balance ().
Figure 9: Averages of length and balance in each style.
1 + 1+ 1+
.
+ -
+ o
8 o 8 2 [
++
s Jadsye. o 2 S| oi.
> > > e
(7] (7] 2] HLt+ + e
Fen T
*
0 0 0
0 1 0 1 0 1
Content loss Content loss Content loss
+Ours 4 Johnson+ * Huang+ Gatys+ +Ours 4 Johnson+ x Huang+ Gatys+ +Ours 4 Johnson+ * Huang+ Gatys+
®Sheng+ + Chen+ - Li+ o Sheng+ +Chen+ - Li+ o Sheng+ + Chen+ - Li+
(a) Starry Night style. (b) Mosaic style. (c) Composition VII style.
1 + 1+ 1 +
+
¥
i
N *$ ++ +
E 2 2
2 *]]
>
7] o+ ggliiad g g ot
+}+ o+ (J = * +
. o
m ety h;n-» or . " R :;,f‘
& o . s@é‘% Koo
»"”ﬁw % ° >
0 0 0
0 1 0 1 0 1
Content loss Content loss Content loss
+Ours 4 Johnson+ * Huang+ Gatys+ + Ours + Johnson+ * Huang+ Gatys+ + Ours 4 Johnson+ * Huang+ Gatys+
®Sheng+ + Chen+ - Li+ ®Sheng+ + Chen+ - Li+ © Sheng+ +Chen+ - Li+
(d) La Muse style. (e) The Wave style. (f) Feathers style.

Figure 10: Loss distribution in each style. Red lines denote the balanced axis. Our method has the distributions nearer the

balanced axis than the other methods.

To look into the results in more detail, we show the loss
distribution of 50 stylized images in each style (Fig. 10).
We see that (1) the content loss and the style loss (for each
stylized result) in our method are similar with each other
and that (2) loss distributions in our method appear densely
near the balanced axis for all the styles while those in the
other methods do not.

6.3. Computational speed

We measured the running time for generating 300 styl-
ized images with the sizes of 256 x 256 and 512 x 512 by
each method and compared the average for generating one
stylized image by each method.

Table 6 illustrates the average of the running time in

Table 4: Average of rankings in the style look-like study.
The best and the second best results are given in red and
blue, respectively.

Style Ours Johnson+ Huang+ Gatys+
(1] [2] (3]

Starry Night 227 277 3.34 1.61

Mosaic 226 2.66 2.94 2.13
Composition VII| 2.49 2.96 2.65 1.90
La Muse 2.71 2.81 2.81 1.67
Feathers 1.69 234 3.42 2.55
All together | 228 271 303 197

Table 5: Averages of length (smaller is better) and balance
(larger is better).

Method ‘ length () balance ()
Ours 0.37 2.95
Johnson+ [1] 0.54 1.60
Huang+ [2] 0.45 1.23
Gatys+ [3] 0.45 1.36
Sheng+ [4] 0.52 1.21
Chen+ [5] 0.59 0.72
Li+ [6] 0.49 1.40

Table 6: The average wall-clock time in second for produc-
ing one stylized image.

Image size Implemented framework
Method 256 x 256 512 x 512
Ours 0.05 0.18 PyTorch
Johnson+ [1] 1.12 3.79 Torch
Huang+ [2] 1.98 6.78 Torch
Gatys+ [3] 74.12 269.74 Torch
Sheng+ [4] 3.04 10.67 TensorFlow
Chen+ [5] 2.74 9.33 Torch
Li+ [6] 3.53 9.42 Torch

generating one stylized image. As we see, our method is
the fastest and speeds up 22 times for the image size of
256 x 256 and 21 times for that of 512 x 512 when compared
with the fastest state-of-the-arts [1]. We can thus conclude
that our method is promising for real-time applications.

6.4. More detailed analysis
6.4.1 Behavior of balance weight v during the training

We investigate the behavior of balance weight v to ver-
ify that v is adaptively updated to converge to an expected
value.

Figure 11 illustrates how balance weight v changes dur-
ing the training on the Starry Night style. We see that v is

1.0

1 40k 80k
Number of iterations

Figure 11: Behavior of v during the training on the Starry
Night style.

adaptively updated corresponding to the content and style
losses. We remark that since we set & = 0.5 in the loss
function, v is expected to be close to 0.5 after the train-
ing. At the beginning of training, the style loss L is far
larger than the content loss L., resulting in + far larger than
0.5 (close to 1.0). As the training proceeds, the network is
gradually optimized, resulting 7y close to 0.5 in the end of
the training.

We observe that v quickly decreases after one epoch
(about 40k iterations). This can be explained as follows.
After one epoch, the overfitting problem on the style im-
age occurs since our network is trained using a single style
image. Hence, the style loss quickly drops. As a result,
the behavior of « becomes different. Indeed, we observed
that the style loss raised the overfitting problem through the
validation phase. We thus stopped the training of the style
subnet while kept updating the weights of the other subnets.
As a result, the content loss decreased more quickly than
the style loss. Then, v was gradually recovered; its value
became close to 0.5 in the end of training.

This evaluation confirms that ~ gradually adapts to
achieve the equal contributions of content and style in styl-
ized images during the training thanks to our adaptive fea-
ture injection and concatenation. We remark that we ob-
served similar behaviors of ~y for other styles.

6.4.2 Effectiveness of feature injection

In this section, we evaluate the effectiveness of the intro-
duction to the adaptive feature injection between the content
subnet and the style subnet.

We compared our complete model with the model w/o
feature injection (i.e., the model that disabled only the adap-
tive feature injection), which is shown in Fig. 12. Fig. 12
shows that the stylized images obtained by the complete
model are in general more balanced in content and style
than those by the model w/o feature injection. However, we

Figure 12: Visual comparison of the complete model and the model w/o feature injection. In each block, from left to right, a
content image (large one) with a style (small one) is followed by outputs by the complete model and the model w/o feature
injection. Note that all stylized images are with the size of 512 x 512.

1 1
| |
| |
[§
2 o 8 . 2
S L'y kel L k]
@ L] @ [" @
2| = E iy £
7 & @»
e,
e .
I. Fe o D)
Py .
‘0
0 0 0
0 1 0 1 0 1
Content loss Content loss Content loss
+ w/ adaptive feature injection + w/ adaptive feature injection + W/ adaptive feature injection
= w/o adaptive feature injection = W/o adaptive feature injection = W/o adaptive feature injection
(a) Starry Night style. (b) Mosaic style. (c) Composition VII style.
1 1 1
g g g
e 2 2
> > >
7] & &
etn m
*
0 0 0
0 1 0 1 0 1

Content loss

+ w/ adaptive feature injection
= w/o adaptive feature injection

(d) La Muse style.

Content loss

+ w/ adaptive skip-connection
= w/o adaptive skip-connection

(e) The Wave style.

Content loss

+ w/ adaptive feature injection
= W/o adaptive feature injection

(f) Feathers style.

Figure 13: Loss distribution in each style obtained by the complete model and the model w/o feature injection. Red lines

denote the balanced axis.

can see roughly global structure appearing in the synthe-
sized images in Fig. 12 upper set (in particular, the leftmost
which is with Starry Night style). This can be explained as
follows. In general, the model w/o feature injection tends to
preserve more content than style while the complete model
does more style than content. This is because the feature

injection from the style subnet to the content subnet tries to
reduce the style loss (see below). The feature injection at
multiple layers employed in the content and style subnets
helps to keep both global and local structure in rendering.
As a result, global structure in stylized images such as the
stroke in the Starry Night may sometimes become impres-

Table 7: Averages of length (smaller is better) and balance
(larger is better) in the complete model (denoted by com-
plete) and the model w/o feature injection (denoted by w/o
injection).

Style length ({}) balance ()

Y complete w/o injection complete w/o injection
Starry Night 0.34 0.46 2.12 1.35
Mosaic 0.45 0.57 1.80 1.03
Composition VII 0.21 0.26 3.61 3.21
La Muse 0.30 0.27 1.72 2.54
The Wave 0.15 0.24 5.39 3.15
Feathers 0.23 0.28 3.71 3.20
All together | 0.28 0.35 3.06 2.41

sive.

We also compared the length and balance of stylized
images (Table 7). We see that the complete model per-
forms better both in length and balance than the model w/o
feature injection. Table 7 also shows that employing adap-
tive feature injection improves both length and balance for
each style (except for La Muse style). This indicates that
adaptive feature injection is effective to improve not only
the quality but also the balance in content and style of styl-
ized images. With respect to the La Muse style, length of
the complete model is comparable to that of model w/o fea-
ture injection, however balance is not the case. This can be
explained as follows. The La Muse style follows Cubism
and thus it is very unique. Because of this, the adaptive
feature injection tends to keep more style to reflect the im-
pression of this style.

Finally, we compare the loss distributions of 50 stylized
images in each style (Fig. 13). We see that for all styles (ex-
cept for the La Muse style) the loss distributions of the com-
plete model appears more densely near the balanced axis
and is closer to the origin than those of the model w/o fea-
ture injection for all styles. In the case of the Starry Night
style (Fig. 13a), we see that the model w/o feature injection
preserves much more content than the style because the loss
distribution appears far above the balanced axis. This ob-
servation also holds true for the Mosaic style (Fig. 13b), the
Composition VII (Fig. 13c), and the La Muse (Fig. 13d).
By using adaptive feature injection, the complete model is
able to reduce the style loss in stylized images (e.g., the
Starry Night, the Mosaic, the Composition VII, the La Muse
styles), compared to the model w/o feature injection. These
observations indicate that the adaptive feature injection ef-
fectively improves to keep the balance in content and style
of stylized images.

6.4.3 Effectiveness of combination weight o and bal-
ance weight

Here, we evaluate the necessity of combination weight v in
Eq. (1) and balance weight v in Eq. (4). In particular, we
evaluate whether « plays the role of explicitly controlling
the contribution ratio of the content and the style.

We generated stylized images using different values of
a: o = 0.1,0.3,0.7,0.9. The results are illustrated in
Fig. 14 where the complete model denotes the model us-
ing o and ~y together while the model w/o v denotes the
model using « only (i.e., 7y is disabled). Ideally, for smaller
a, the style is more emphasized and results become more
similar to those by Gatys+ [3]. For larger «, on the other
hand, the content is more emphasized and results become
more similar to those by Johnson+ [1]. We observe these in
Fig. 14 and see that a of the complete model indeed con-
trols the contribution ratio of the content and the style as we
expected. However, we see that the model w/o v is not the
case. This observation suggests the necessity of both o and

Y-

7. Conclusion

We presented an end-to-end two-stream network for bal-
ancing the content and style in stylized images. Our pro-
posed method utilizes a deep FCN to preserve the semantic
content and a shallow FCN to faithfully learn the style rep-
resentation, whose outputs are adaptively feature injected
and concatenated using the balance weight and fed into the
decoder to generate stylized images. Our intensive exper-
iments using six famous styles widely used in style trans-
fer demonstrate the effectiveness of our proposed method
against state-of-the-art methods in terms of balancing con-
tent and style. Furthermore, our proposed method outper-
forms the state-of-the-art methods in speed.

Our proposed method requires fine-tuning of parameters
from an existing model to deal with different styles. This
limits the applicability of our proposed method to multi-
style transfer. Extending our proposed method so that it can
deal with a large style dataset such as Wikiart or unseen
styles is left for future work.

As an extension of image style transfer, the real-time
video stylization methods are currently proposed [38, 39,

]. Since our proposed method runs fast, we believe that it
can be useful for real-time video stylization. Though video
stylization is out of the scope of this paper, we applied our
method in the frame-by-frame manner to several videos for
video stylization demonstration. Fig. 15 shows some exam-
ples of stylized frames from a video. Our approach was able
to stylize videos in real-time with the resolution 480 x 640
at 30 FPS or more. As we see, our method produces rea-
sonable results for consecutive frames with varying appear-
ance, meaning that the usage of our method for real-time
video stylization is promising. We remark that we did not

Complete model

% 1 ’ﬁ» 23 e

Model w/o y Gatys+ Johnson+

Figure 14: Example of stylized images by changing o from 0.1 to 0.9. Left-most column: the content image (large) and
the style image (small). From left to right: the stylized image using various . The last column shows results obtained by

Gatys+ [3] and Johnson+ [] for the reference.

Figure 15: Examples of stylized video in real-time using the
”Starry night” style. We use the video of Eadweard Muy-
bridge “The horse in motion” (1878) as the content input.
Our model processes every frame independently without
any post-processing. Video resolution is 480 x 640 at 30
FPS.

use either temporal regularization or post-processing. Dif-
ferent from image style transfer, real-time video stylization
needs to pay attentions to the temporal consistency among
adjacent video frames. Incorporating the temporal consis-
tency into our method for real-time video stylization is left
for our future work.

Acknowledgements

This is a pre-print of an article published in Machine
Vision and Applications. The final authenticated version
is available online at: https://doi.org/10.1007/s00138-020-
01086-1

This work was in part supported by JST CREST (Grant
No. JPMICR14D1). The authors are thankful to Dr. Trung-

Nghia Le for his valuable comments on this work.

References

[1] J. Johnson, A. Alahi, and L. Fei-Fei, “Percep-
tual losses for real-time style transfer and super-
resolution,” in ECCV, 2016. 1, 2, 3,4, 5, 6, 8, 9, 10,
11,13, 15,16

[2] X. Huang and S. Belongie, “Arbitrary style transfer
in real-time with adaptive instance normalization,” in
ICCV,2017. 1,2,3,4,8,9,10, 11, 13

[3] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image
style transfer using convolutional neural networks,” in
CVPR, 2016. 1,2,3,4,5,8,9,10, 11, 13, 15, 16

[4] L. Sheng, Z. Lin, J. Shao, and X. Wang, “Avatar-net:
Multi-scale zero-shot style transfer by feature decora-
tion,” in CVPR, 2018. 1,2, 3,4, 8,9, 10, 13

[5] T. Q. Chen and M. Schmidt, “Fast patch-based style
transfer of arbitrary style,” in NIPS, 2016. 1, 2, 3, 4,
5,8,9,10,13

[6] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-
H. Yang, “Universal style transfer via feature trans-
forms,” in NIPS, 2017. 1, 2,3, 8,9, 10, 13

[7] J. E. Kyprianidis, J. Collomosse, T. Wang, and T. Isen-
berg, “State of the art”: A taxonomy of artistic

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

[19]

(20]

(21]

[22]

stylization techniques for images and video,” IEEE
Transactions on Visualization and Computer Graph-
ics,2013. 1

M. Ashikhmin, “Synthesizing natural textures,” in
Symposium on Interactive 3D Graphics, 2001. 1,2

A. A. Efros and W. T. Freeman, “Image quilting for
texture synthesis and transfer,” in SIGGRAPH, 2001.
1,2

Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song,
“Neural style transfer: A review,” IEEE Transactions

on Visualization and Computer Graphics, 2019. 1, 4,
11

F. Luan, S. Paris, E. Shechtman, and K. Bala, “Deep
photo style transfer,” in CVPR, 2017. 1, 3

R. Mechrez, E. Shechtman, and L. Zelnik-Manor,
“Photorealistic style transfer with screened poisson
equation,” in BMVC, 2017. 1,2, 3

S. Azadi, M. Fisher, V. Kim, Z. Wang, E. Shechtman,
and T. Darrell, “Multi-content gan for few-shot font
style transfer,” in CVPR, 2018. 1,2, 4

D. Kotovenko, A. Sanakoyeu, P. Ma, S. Lang, and
B. Ommer, “A content transformation block for image
style transfer,” in CVPR, 2019. 1, 2,4

D. Y. Park and K. H. Lee, “Arbitrary style transfer with
style-attentional networks,” in CVPR, 2019. 1, 2

A. Sanakoyeu, D. Kotovenko, S. Lang, and B. Om-
mer, “A style-aware content loss for real-time hd style
transfer,” in ECCV, 2018. 1,2, 4

X. Wang, G. Oxholm, D. Zhang, and Y.-F. Wang,
“Multimodal transfer: A hierarchical deep convolu-
tional neural network for fast artistic style transfer,”
in CVPR,2017. 1,2,3,4,5,8

Y. Zhang, Y. Zhang, and W. Cai, “Separating style and
content for generalized style transfer,” in CVPR, 2018.
2

Y. Li, M.-Y. Liu, X. Li, M.-H. Yang, and J. Kautz, “A
closed-form solution to photorealistic image styliza-
tion,” in ECCV, 2018. 2

D. M. Vo, T. N. Le, and A. Sugimoto, “Balancing con-
tent and style with two-stream fcns for style transfer,”
in WACV, 2018. 2

D. J. Heeger and J. R. Bergen, “Pyramid-based texture
analysis/synthesis,” in SIGGRAPH, 1995. 2

S. Li, X. Xu, L. Nie, and T.-S. Chua, “Laplacian-
steered neural style transfer,” in ACM-MM, 2017. 3

[23]

[26]

D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lem-
pitsky, “Texture networks: Feed-forward synthesis of
textures and stylized images,” in ICML, 2016. 3

A. Radford, L. Metz, and S. Chintala, “Unsupervised
representation learning with deep convolutional gen-
erative adversarial networks,” in ICLR, 2016. 3

V. Dumoulin, J. Shlens, and M. Kudlur, “A learned
representation for artistic style,” in /CLR, 2017. 3, 6,
8

D. Ulyanov, A. Vedaldi, and V. S. Lempitsky, “In-
stance normalization: The missing ingredient for fast
stylization,” in ICML, 2016. 3, 6,7

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio, “Generative adversarial nets,” in NIPS, 2014. 4

C. Li and M. Wand, “Precomputed real-time texture
synthesis with markovian generative adversarial net-
works,” in ECCV, 2016. 4

K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” in
ICLR, 2015. 4,5, 8

O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. S. Bernstein, A. C. Berg, and F. Li, “Imagenet
large scale visual recognition challenge,” Interna-
tional Journal of Computer Vision, 2015. 4, 8

V. Nair and G. E. Hinton, “Rectified linear units im-
prove restricted boltzmann machines,” in ICML, 2010.
4,6,7

A. Mahendran and A. Vedaldi, “Understanding deep
image representations by inverting them,” in CVPR,
2015. 4

D. P. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” in ICLR, 2015. 5, 8

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in CVPR, 2016. 6

S. Toffe and C. Szegedy, “Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift,” in ICML, 2015. 6

R. A. Horn and C. R. Johnson, Matrix Analysis,
2nd ed. New York, NY, USA: Cambridge Univer-
sity Press, 2012. 7

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollr, and C. L. Zitnick, “Microsoft
coco: Common objects in context,” in ECCV, 2014. 8

(38]

(39]

(40]

C. Gao, D. Gu, F. Zhang, and Y. Yu, “Reconet: Real-
time coherent video style transfer network,” in ACCV,
2018. 15

H. Huang, H. Wang, W. Luo, L. Ma, W. Jiang, X. Zhu,
Z.Li, and W. Liu, “Real-time neural style transfer for
videos,” in CVPR, 2017. 15

W.Li, L. Wen, X. Bian, and S. Lyu, “Evolvement con-
strained adversarial learning for video style transfer,”
in ACCV, 2018. 15

