Skip to main content
Log in

Measurement and inspection of electrical discharge machined steel surfaces using deep neural networks

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

We propose an industrial measurement and inspection system for steel workpieces eroded by electrical discharge machining, which uses deep neural networks for surface roughness estimation and defect detection. Specifically, a convolutional neural network (CNN) is used as a regressor in order to obtain steel surface roughness and a CNN based on spatial pooling pyramid is applied for defect classification. In addition, a new method for the region of interest selection based on morphological reconstruction and mean shift filtering is proposed for defect detection and localization. The regressor and classifier based on deep neural networks proposed here outperform state-of-the-art methods using handcrafted feature extraction. We achieve a mean absolute percentage error of 7.32% on roughness estimation; on defect detection, our approach yields an accuracy of 97.26% and an area under the ROC curve metric of 99.09%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jameson, E.C.: Electrical Discharge Machining. SME, Dearborn, Michigan (2001)

    Google Scholar 

  2. Sun, W., Yao, B., Chen, B., He, Y., Cao, X., Zhou, T., Liu, H.: Noncontact surface roughness estimation using 2D complex wavelet enhanced ResNet for intelligent evaluation of milled metal surface quality. Appl. Sci. 8(381), 1–24 (2018)

    Google Scholar 

  3. Wang, J., Sanchez, J., Iturrioz, J., Ayesta, I.: Geometrical defect detection in the wire electrical discharge machining of fir-tree slots using deep learning techniques. Appl. Sci. 9(90), 1–8 (2018)

    Google Scholar 

  4. Sun, X., Gu, J., Tang, S., Li, J.: Research progress of visual inspection technology of steel products—a review. Appl. Sci. 8(2195), 1–25 (2018)

    Google Scholar 

  5. Luk, F., Huynh, V.: A vision system for in-process surface quality assessment. In: Proceedings of the Vision, SME Conference, Detroit, Michigan, pp. 1243 (1987)

  6. Bradley, C., Bohlmann, J., Kurada, S.: A fiber optic sensor for surface roughness measurement. J. Manuf. Sci. Eng. 120, 359–367 (1998)

    Article  Google Scholar 

  7. Hisyoshi, S., Masanori, O.: Surface roughness measurement by scanning electron microscope. Ann. CIRP 31, 457–462 (1982)

    Article  Google Scholar 

  8. Bjuggren, M., Krummenacher, L., Mattsson, L.: Non contact surface roughness measurement of engineering surface by total integrated infrared scattering. Precis. Eng. 20, 33–45 (1997)

    Article  Google Scholar 

  9. Khan, M.A.R., Rahman, M.M., Kadirgama, K.: Neural network modeling and analysis for surface characteristics in electrical discharge machining. Procedia Eng. 90, 631–636 (2014)

    Article  Google Scholar 

  10. Pour, M.: Determining surface roughness of machining process types using a hybrid algorithm based on time series analysis and wavelet transform. Int. J. Adv. Manuf. Technol. 97, 2603–2619 (2018)

    Article  Google Scholar 

  11. Samtaş, G.: Measurement and evaluation of surface roughness based on optic system using image processing and artificial neural network. Int. J. Adv. Manuf. Technol. 73, 1–4 (2014)

    Article  Google Scholar 

  12. Atieh, A.M., Rawashdeh, N.A., AlHazaa, A.N.: Evaluation of surface roughness by image processing of a shot-peened, TIG-welded aluminum 6061–T6 alloy: an experimental case study. Materials 11(5), 1–18 (2018)

    Article  Google Scholar 

  13. Hoy, D.E.P., Yu, F.: Surface quality assessment using computer vision methods. J. Mater. Process. Technol. 28(1–2), 265–274 (1991)

    Article  Google Scholar 

  14. Raju, R.S.U., Ramesh, R., Raju, V.R., Mohammad, S.: Curvelet transforms and flower pollination algorithm based machine vision system for roughness estimation. J. Opt. 47(2), 243–250 (2018)

    Article  Google Scholar 

  15. Zhou, L. et al: Study on brittle graphite surface roughness detection based on gray-level co-occurrence matrix. In: Proceedings of the 3rd International Conference on Mechanical, Control and Computer Engineering (2018)

  16. Ghodrati, S., Kandi, S.G., Mohseni, M.: A histogram-based image processing method for visual and actual roughness prediction of sandpaper. In: Proceedings of the 6th International Congress on Color and Coatings (2015)

  17. Majumdar, A., Bhushan, B.: Role of fractal geometry in roughness characterisation and contact mechanics of surface. J. Tri. ASME 112, 205–216 (1990)

    Article  Google Scholar 

  18. Saeedi, J., Faez, K., Moradi, M.H.: Hybrid fractal-wavelet method for multi-channel EEG signal compression. Circuits Syst. Signal Process. 33(8), 2583–2604 (2014)

    Article  Google Scholar 

  19. Fadare, D.A., Oni, A.O.: Development and application of a machine vision system for measurement of surface roughness. J. Eng. Appl. Sci. 4(5), 30–37 (2009)

    Google Scholar 

  20. Morala-Argüello, P., Barreiro, J., Alegre, E.: A evaluation of surface roughness classes by computer vision using wavelet transform in the frequency domain. Int. J. Adv. Manuf. Technol. 59, 213–220 (2012)

    Article  Google Scholar 

  21. Tsai, D.M., Chen, J.J., Chen, J.F.: A vision system for surface roughness assessment using neural networks. Int. J. Adv. Manufac. Technol. 14, 412–422 (1998)

    Article  Google Scholar 

  22. Luo, S., Yang, J., Gao, Q., Zhou, S., Zhan, C.A.: The edge detectors suitable for retinal OCT image segmentation. J. Healthcare Eng. 3978410, 1–13 (2017)

    Google Scholar 

  23. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–165 (2004)

    Article  Google Scholar 

  24. Sathya, B., Manavalan, R.: Image segmentation by clustering methods: performance analysis. Int. J. Comput. Appl. 29(11), 27–32 (2011)

    Google Scholar 

  25. Yi, L., Li, G., Jiang, M.: An end-to-end steel strip surface defects recognition system based on convolutional neural networks. Steel Res. Int. 88, 176–187 (2016)

    Google Scholar 

  26. Masci, J., Meier, U., Ciresan, D., Schmidhuber, J.: Steel defect classification with max-pooling convolutional neural networks. In: International Joint Conference on Neural Networks, Brisbane, QLD, Australia. IEEE, Piscataway, NJ, USA, vol. 20, pp. 1–6 (2012)

  27. Saeedi, J., Faez, K.: A classification and fuzzy-based approach for digital multi-focus image fusion. Pattern Anal. Appl. 16(3), 365–379 (2013)

    Article  MathSciNet  Google Scholar 

  28. Saeedi, J.: Image fusion in the multi-scale transforms domain using fuzzy logic and particle swarm optimization. Master dissertation, Amirkabir University of technology (2010)

  29. ISO 4287 Geometrical Product Specifications (GPS)—Surface texture: Profile method—Terms, definitions and surface texture parameters (1997)

  30. Boccadoro, M., Giusti, A., Gambardella, L.M.: Method for machining and inspecting of workpieces. European Patent No. EP3326749 B1 (2016)

  31. You, Q., Pang, R., Cao, L., Luo, J.: Image-based appraisal of real estate properties. IEEE Trans. Multimedia 19(12), 2751–2759 (2017)

    Article  Google Scholar 

  32. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  33. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2012)

    Article  Google Scholar 

  34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2015)

  35. Andrew, G.H. et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861 (2017)

  36. He, K., Zhang, X., Ren, S. Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp. 770–778 (2016)

  37. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807 (2017)

  38. Chollet, F.: Deep Learning with Python. Manning Publications Co, Shelter Island (2017)

    Google Scholar 

  39. Maradia, U., Scuderi, M., Knaak, R., Boccadoro, M., Beltrami, I., Stirnimann, J., Wegener, K.: Super-finished surfaces using Meso-micro EDM. In: Proceedings of the 17th CIRP Conference on Electro Physical and Chemical Machining (ISEM), pp. 157–162 (2013)

  40. Vincent, L.: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans. Image Process. 2(2), 176–201 (1993)

    Article  Google Scholar 

  41. Dorin, C., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  42. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  43. Grauman, K., Darrell, T.: The pyramid match kernel: discriminative classification with sets of image features. In: 10th IEEE International Conference on Computer Vision, vol. 1, pp. 1458–1465 (2005)

  44. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2169–2178 (2006)

  45. Ojala, T., Pietikinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  46. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. Int. Conf. Comput. Vis. Pattern Recogn. 1, 886–893 (2005)

    Google Scholar 

  47. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2001)

  48. Cortes, C., Vapnik, V.N.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  49. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. ArXiv e-prints (2016)

  50. Ho, T.K.: Random decision forests. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, pp. 278–282 (1995)

  51. Neogi, N., Mohanta, D.K., Dutta, P.K.: Review of vision-based steel surface inspection systems. J. Image Video Proc. 50, 1–19 (2014)

    Google Scholar 

  52. Sun, Y., Wang, X., Tang, X.: Deeply learned face representations are sparse, selective, and robust. arXiv preprint arXiv:1412.1265 (2014)

  53. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Commission for Technology and Innovation (Project 27359.1 PFIW-IW) and the Canton of Ticino (Switzerland) through the SUPSI EDM Competence Centre. The authors would like to thank the anonymous reviewers for their helpful and constructive comments that significantly contributed to improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jamal Saeedi or Alessandro Giusti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeedi, J., Dotta, M., Galli, A. et al. Measurement and inspection of electrical discharge machined steel surfaces using deep neural networks. Machine Vision and Applications 32, 21 (2021). https://doi.org/10.1007/s00138-020-01142-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-020-01142-w

Keywords

Navigation