Skip to main content
Log in

Research on 3D model reconstruction based on a sequence of cross-sectional images

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

It is often difficult to obtain the high-precision inner cavity contour size and 3D model of parts and components in reverse engineering. This paper proposes a method that uses a sequence of section images of a part to reconstruct their 3D models. This method cuts the part layer by layer to obtain the sectional images and extracts the 3D information of the sectional image contours to generate point clouds. These point clouds are then used to reconstruct a 3D model of the part. High contrast material is used to embed the target part for pre-processing. A machining centre was used to mill the part layer by layer vertically to acquire high precision section profile images. The improved Canny edge detection operator was combined with the spatial moment sub-pixel subdivision algorithm to improve the edge detection accuracy. The camera imaging model algorithm transforms the coordinates of the image edge position to obtain a high-precision 3D point cloud of the part. The 3D solid model of the target part was obtained using NURBS surface reconstruction. The results show that the 3D model reconstruction method using the profile sequence of the cross-sectional images is independent of the complexity of the part’s structure and the complete internal structure of the part can be obtained. The proposed edge detection algorithm significantly refines the edge position of the contours in the cross-sectional image and the measurement accuracy was improved. This method improves the minimum deviation to 50 μm. The shape accuracy of roundness, cylindricity and perpendicularity of the structure is high. The proposed method can meet the reverse precision requirements in general precision machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17.
Fig. 18

Similar content being viewed by others

References

  1. Andrea, R., Oliver, J.D.B., Georg, M.: Reverse engineering of CAD models via clustering and approximate implicitization. Comput. Aided Geomet. Des. 80, 1–16 (2020)

    MathSciNet  MATH  Google Scholar 

  2. Pahk, H.J., Kim, Y.H., Hong, Y.S., Kimc, S.G.: Development of computer-aided inspection system with CMM for integrated Mold manufacturing. CIRP Ann. 42(1), 557–560 (1993)

    Article  Google Scholar 

  3. Keller, P., Bertram, M., Hagen, H.: Reverse engineering with subdivision surfaces. Computing 79, 119–129 (2007)

    Article  MathSciNet  Google Scholar 

  4. Zhang, X.C., Cui, W.Y., Li, W.: A hybrid process integrating reverse engineering, pre-repair processing, additive manufacturing, and material testing for component remanufacturing. Materials 12(12), 1961–1980 (2019)

    Article  Google Scholar 

  5. Ji, H., Gu, Y., Wu, J., Liu, Z., Fan, X., Ma, J., Xia, X.: Reverse engineering of CFETR vacuum vessel Mockup. IEEE Trans. Plasma Sci. 46(5), 1603–1607 (2018)

    Article  Google Scholar 

  6. Kaushik, Y., Chen, G.L., Xu, X.B.: Reverse engineering of additive manufactured composite part by toolpath reconstruction using imaging and machine learning. Compos. Sci. Technol. 198, 1–7 (2020)

    Google Scholar 

  7. Cabibbo, M., Forcellese, A., Raffaeli, R., Simoncini, M.: Reverse engineering and scanning electron microscopy applied to the characterization of tool wear in dry milling processes. Procedia CIRP 62, 233–238 (2017)

    Article  Google Scholar 

  8. Li, L., Schemenauer, N., Peng, X., Zeng, Y., Gu, P.: A reverse engineering system for rapid manufacturing of complex objects. Robot. Comput. Integr. Manuf. 18(1), 53–67 (2002)

    Article  Google Scholar 

  9. Chaple, G.N., Daruwala, R.D., Gofane, M.S.: Comparisions of Robert, Prewitt, Sobel operator based edge detection methods for real time uses on FPGA. In: International Conference on Technologies for Sustainable Development, pp. 1–4 s(2015)

  10. Shi, P., Li, X.D.: The Research of the Improvement of Iris Location of the Sobel Algorithm. Adv. Mater. Res. 1359(604), 525–529 (2011)

    Article  Google Scholar 

  11. Yang, L., Zhao, D.W., Wu, X.Y., Li, H., Zhai, J.: An improved Prewitt algorithm for edge detection based on noised image. Int. Congr. Image Signal Process. 3, 1197–1200 (2011)

    Google Scholar 

  12. Coleman, S.A., Scotney, B.W., Suganthan, S.: Edge detecting for range data using laplacian operators. IEEE Trans. Image Process. 19(3), 2814–2824 (2010)

    Article  MathSciNet  Google Scholar 

  13. Mallick, A., Roy,S., Chaudhuri,S., Roy, S.: Optimization of Laplace of Gaussian (LoG) filter for enhanced edge detection: a new approach. In: The 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC), pp. 658–661 (2014)

  14. Shi, G.M., Suo, J.D.: Remote sensing image edge-detection based on improved canny operator. In: 2016 8th IEEE international conference on communication software and networks, pp. 248–252 (2016)

  15. Wu, X., Yu, W.B., Liu, X.T., Liu, K.P.: A newly improved canny algorithm of image edge detection. In: 2016 6th International Conference on Information Engineering for Mechanics and Materials, pp. 380–385 (2016)

  16. Mittal, M., Verma, A., Kaur, I., Kaur, B., Sharma, M., Roy, S., Kim, T.H.: An efficient edge detection approach to provide better edge connectivity for image analysis. IEEE Access 7, 33240–33255 (2019)

    Article  Google Scholar 

  17. Rafael, A., Leopoldo, A.: Contour-based focus of attention mechanism to speed up object detection and labeling in 3D scenes. Image Vis. Comput. 32(5), 303–320 (2014)

    Article  Google Scholar 

  18. Martínez-Aroza, J., Gómez-Lopera, J.F., Blanco, N.D.: Clustered entropy for edge detection. Math. Comput. Simul. 182, 620–645 (2021)

    Article  MathSciNet  Google Scholar 

  19. Masoud, Z.L., Ömer, M.S., Kazim, S.: Video mining for facial action unit classification using statistical spatial–temporal feature image and LoG deep convolutional neural network. Mach. Vis. Appl. 30(1), 41–57 (2019)

    Article  Google Scholar 

  20. Zhang, J., Luo, B., Su, X.: A convenient 3D reconstruction model based on parallel-axis structured light system. Opt. Lasers Eng. 138, 106366–106370 (2021)

    Article  Google Scholar 

  21. Wang, Y.L., Deng, N., Xin, B.J.: A novel three-dimensional surface reconstruction method for the complex fabrics based on the MVS. Opt. Laser Technol. 131, 106415–106424 (2020)

    Article  Google Scholar 

  22. Du, J.Y., Sang, X.Z., Yu, X.B.: Large viewing angle floating three-dimensional light field display based on the spatial data reconstruction (SDR) algorithm. Opt. Commun. 475, 126229–126236 (2020)

    Article  Google Scholar 

  23. Rahiman, M.H.F., Rahim, R.A., Rahim, H.A.: An evaluation of single plane ultrasonic tomography sensor to reconstruct three-dimensional profiles in chemical bubble column. Sens. Actuat. A Phys. 246, 18–27 (2016)

    Article  Google Scholar 

  24. Huang, W.H., Jiang, Z.J., Wang, T.: Remanufacturing scheme design for used parts based on incomplete information reconstruction. Chin. J. Mech. Eng. 33(1), 1–14 (2020)

    Article  Google Scholar 

  25. Balla-Arabe, S., Gao, X., Ginhac, D., Brost, V., Yang, F.: Architecture-driven level set optimization: from clustering to subpixel image segmentation. IEEE Trans. Cybern. 46(12), 3181–3194 (2016)

    Article  Google Scholar 

  26. Samper, D., Santolaria, J., Brosed, F.J., Majarena, A.C., Aguilar, J.J.: Analysis of Tsai calibration method using two- and three-dimensional calibration objects. Mach. Vis. Appl. 24(1), 117–131 (2011)

    Article  Google Scholar 

  27. Ricolfe-Viala, C., Sanchez-Salmeron, A.J.: Lens distortion models evaluation. Appl. Opt. 49(30), 5914 (2010)

    Article  Google Scholar 

  28. Sun, Q.C., Hou, Y.Q., Tan, Q.C.: A robust edge detection method with sub-pixel accuracy. Optik 125(14), 3449–3453 (2014)

    Article  Google Scholar 

  29. Zhang, Z.Y.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  30. Jain, P., Tyagi, V.: A survey of edge-preserving image denoising methods. Inf Syst Front 18, 159–170 (2016)

    Article  Google Scholar 

  31. Mannan, M.A., Mian, Z., Kassim, A.: A: Tool wear monitoring using a fast Hough transform of images of machined surfaces. Mach. Vis. Appl. 15(3), 156–163 (2004)

    Article  Google Scholar 

  32. Xiong, Y.L., Li, W.L., Yin, Z.P.: Three-dimensional point-based shape registration algorithm based on adaptive distance function. IET Comput. Vis. 5(1), 68–76 (2011)

    Article  MathSciNet  Google Scholar 

  33. Bin, T.J., Liu, D., Lei, A.: Subpixel edge location based on orthogonal Fourier-Mellin moments. Image Vis. Comput. 26(4), 563–569 (2008)

    Article  Google Scholar 

  34. Drost, B.H., Ilic, S.: Almost constant-time 3D nearest-neighbor lookup using implicit octrees. Mach. Vis. Appl. 29(2), 299–311 (2017)

    Article  Google Scholar 

  35. Medellín, H., Corney, J., Davies, J.B.C., Lim, T., Ritchie, J.M.: Algorithms for the physical rendering and assembly of octree models. Comput. Aided Des. 38(1), 69–85 (2006)

    Article  Google Scholar 

  36. Gohari, H., Barari, A., Kishawy, H.: An efficient methodology for slicing NURBS surfaces using multi-step methods. Int. J. Adv. Manuf. Technol. 95, 3111–3125 (2018)

    Article  Google Scholar 

  37. Lee, S.G., Yang, S.H.: Improvement of Product Accuracy in Freeform Surface Machining. Int. J. Adv. Manuf. Technol. 21(12), 972–979 (2003)

    Article  Google Scholar 

  38. Pralay, P.: A reconstruction method using geometric subdivision and NURBS interpolation. Int. J. Adv. Manuf. Technol. 38(3/4), 296–308 (2008)

    Google Scholar 

  39. Li, Y.F., Hu, S.M., Ju, T.: Modifying the shape of NURBS surfaces with geometric constraints. Comput. Aided Des. 33(12), 903–912 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Key research and development Plan in Shanxi Province of China (201803D421045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Wu, X. & Ma, Z. Research on 3D model reconstruction based on a sequence of cross-sectional images. Machine Vision and Applications 32, 92 (2021). https://doi.org/10.1007/s00138-021-01220-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-021-01220-7

Keywords

Navigation