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Abstract
Chest X-ray (CXR) is a medical imaging technology that is common and economical to use in clinical. Recently, coronavi-
rus (COVID-19) has spread worldwide, and the second wave is rebounding strongly now with the coming winter that has a 
detrimental effect on the global economy and health. To make pre-diagnosis of COVID-19 as soon as possible, and reduce 
the work pressure of medical staff, making use of deep learning networks to detect positive CXR images of infected patients 
is a critical step. However, there are complex edge structures and rich texture details in the CXR images susceptible to noise 
that can interfere with the diagnosis of the machines and the doctors. Therefore, in this paper, we proposed a novel multi-
resolution parallel residual CNN (named MPR-CNN) for CXR images denoising and special application for COVID-19 which 
can improve the image quality. The core of MPR-CNN consists of several essential modules. (a) Multi-resolution parallel 
convolution streams are utilized for extracting more reliable spatial and semantic information in multi-scale features. (b) 
Efficient channel and spatial attention can let the network focus more on texture details in CXR images with fewer param-
eters. (c) The adaptive multi-resolution feature fusion method based on attention is utilized to improve the expression of the 
network. On the whole, MPR-CNN can simultaneously retain spatial information in the shallow layers with high resolution 
and semantic information in the deep layers with low resolution. Comprehensive experiments demonstrate that our MPR-CNN 
can better retain the texture structure details in CXR images. Additionally, extensive experiments show that our MPR-CNN 
has a positive impact on CXR images classification and detection of COVID-19 cases from denoised CXR images.
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1 Introduction

Compared with computed tomography (CT), CXR is not 
only cheap but also has lower radiation, that can reduce the 
harm to human. COVID-19 is a respiratory disease caused 
by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) [1, 2] and has spread rapidly around the world. The 
epidemic grows even faster with severe new variants of 

coronavirus and has greatly damaged the global economy 
and health. Until May 2021, more than 160 million con-
firmed cases and 3.32 million deaths have been registered in 
more than 200 countries and territories. During the diagno-
sis and assessment of disease progression, the radiologists 
can perform multiple CXR examinations on the patient to 
accurately evaluate the curative effect since most COVID-
19 infected patients were diagnosed with pneumonia [3]. 
However, with the increase of confirmed cases, it is not only 
a huge burden and time-consuming process performed for 
radiologists to check CXR images, but also difficult to ensure 
the accuracy of evaluation since annotations of CXR images 
are often highly influenced by clinical experience [4].

Recently, deep learning [5–11] models have attained sig-
nificant advancements in the field of medical image analysis 
by training on enough labeled data and fine-tuning its mil-
lions of parameters [12, 13]. Therefore, it is becoming more 
and more important to use deep learning models to analyze 
CXR images of COVID-19 infected patients, to relieve the 
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shortage of medical resources and the overload of doctors. 
Here, Ouyang et al. [14] used a dual-sampling attention net-
work to detect of COVID-19 cases. [15] proposed a novel 
PSSPNN model for classification between COVID-19, 
secondary pulmonary tuberculosis, community-captured 
pneumonia, and healthy subjects. DenseNet-OTLS method 
[16] achieved better performances than state-of-the-art 
approaches in diagnosing COVID-19. [17, 18] both utilized 
CNN to segment COVID-19 infection in CT images. And 
Shi et al. [19] make a review of imaging data acquisition, 
segmentation, and diagnosis for COVID-19 using AI (arti-
ficial intelligence). The above works are all typical methods 
of COVID-19 image analysis.

Nevertheless, there are various types of noise in CXR 
images, such as ground-glass opacity, bilateral abnormali-
ties, and interstitial abnormalities. Especially, low-dose 
CXR images susceptible to noise are complicated and fuzzy 
likely to interfere with the diagnosis of machines and doctors 
[20]. Therefore, obtaining clearer details in CXR images 
and improving the images quality by denoising is of great 
significance [21, 22].

Due to the high practical value, the medical image denois-
ing method [20, 23–27] has been extensively studied for a 
long time. Mondal et al. [28] and Raj et al. [29] used discrete 
wavelet technology [30] for medical image denoising. The 
methods are simple to calculate and run faster, but they both 
had an unsatisfactory performance in removing Gaussian 
white noise (GWN) widely existing in medical images. In 
addition to classic filtering [31–33] and transform domain 
medical images denoising method [24, 25, 34], non-local 
mean (NLM) [35, 36] and block-matching and 3D filtering 
(BM3D) [37, 38] based on the self-similarity show promis-
ing denoising performance.

Although traditional medical image denoising algorithms 
can improve the quality of medical images to a certain 
extent, they usually need to manually selected parameters 
and complex optimized algorithms [39], and enable to pre-
serve texture details effectively [20]. Recently, deep learn-
ing methods [40–46], given enough data, have significant 
advances in images denoising than those traditional hand-
crafted methods. They are significantly different in several 
key respects. First of all, deep learning methods do not need 
to manually adjust the parameters and complicated optimi-
zation algorithm. Moreover, deep learning methods can be 
competent for many varied noise tasks through different 
training data. However, the proposed methods above still 
have some obvious weaknesses. (1) Most of these methods 
ignore the connection between shallow layers and deep lay-
ers. (2) Some of these deep networks fail to extract infor-
mation from feature maps effectively. (3) Lack of efficient 
multi-resolution feature fusion method. Given these, in 
this paper, we proposed a novel multi-resolution parallel 
residual CNN for CXR images denoising. There is spatial 

information in the shallow layers with high resolution and 
semantic information in the deep layers with low resolution. 
We utilize the multi-resolution parallel convolution streams 
to connect the spatial and semantic information. The ECSA 
module is proposed to make the network focus more on tex-
ture details in CXR images with fewer parameters. We usu-
ally directly add or concatenate multiple resolution feature 
maps. However, they both provide limited expressive power 
to the network. Therefore, we design the AMFF method 
based on attention to improve the expression of the network.

The main contributions of this work are summarized as 
follows:

(1) Multi-resolution parallel convolution flows are used to 
fuse information from high-resolution and low-resolu-
tion features. It is also used to enhance the robustness 
of the model.

(2) An ECSA model combining effective channel and spa-
tial attention is proposed to make the network pay more 
attention to the texture details of CXR images while 
reducing the parameters.

(3) To improve the representation of the network, an atten-
tional-based AMFF method is used, which adaptively 
fuses multi-resolution features, rather than simply com-
bining and summing features.

(4) To verify the impact of the MPR-CNN, we design 
abundant experiments for CXR images classification. 
The outstanding results demonstrate the ability of our 
network to detect of COVID-19 cases from denoised 
CXR images.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a brief survey of related work. In Sect. 3, our 
MPR-CNN was first presented and then illustrates the loss 
function and optimization. In Sect. 4, extensive experiments 
are conducted to evaluate. Finally, several summaries and 
future work are given in Sect. 5.

2  Related work

In this paper, we proposed the MPR-CNN model for CXR 
images denoising. With the rapidly growing CXR images of 
confirmed cases, there is a pressing necessity to enhance the 
images quality for improved COVID-19 detection. To better 
understand the composition and the core of the model, we 
briefly describe the representative methods for each of the 
central studied problems.

2.1  Deep learning methods for images denoising

Deep learning has become a dominant machine learning 
method in image processing, such as image classification [7], 
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image recognition [47], and image denoising, which have 
demonstrated great potential and remarkable performance 
due to flexible and powerful plug-in components in deep 
learning [39]. Burger et al. [48] first utilized the multilayer 
perceptron (MLP) for image denoising and the extensive 
experiments demonstrate that MLP has similar or even better 
representation power than the hand-crafted BM3D. Besides, 
GANs [45, 46] that are frameworks to estimate generative 
models are also fine choices to suppress the noise. Generally, 
the framework consists of a generative network (G) and a 
discriminative network (D), ruling the game theory.

In terms of improving the efficiency of denoising, CNNs 
can be regarded as a modular part, and some classic opti-
mization methods can be inserted to restore potential clean 
images, which is effective for processing noisy images. 
DnCNN [43] and IRCNN [49] both use a full convolution 
network with a signal-scale feature for image denoising. An 
encoder–decoder method was utilized in [50–53]. First, the 
input is gradually mapped to the low resolution representa-
tion, and then the stepwise reverse mapping is applied to 
the original resolution. Although these CNNs have achieved 
progressive results, they still have limitations. Full convolu-
tion networks do not use any downsampling operations, so 
the feature maps have more precise spatial details. How-
ever, these networks are less efficient in encoding contex-
tual information due to their limited acceptance field. On 
the other hand, encoder–decoder methods lost fine spatial 
details, although gaining more context information.

2.2  Multi‑resolution features fusion

Multi-resolution features fusion is an important process 
to improve the denoising of CXR images. The low-level 
features with higher resolution, contain more position and 
detailed information. However, they have less semantic 
information and more noise due to less convolution. In con-
trast, high-level features with richer feature information, but 
the resolution is very low, and the perception of details is 
unsatisfactory. The purpose of feature fusion is to merge the 
features extracted from the input into new features that are 
more expressive than the original one. The classic feature 
fusion methods are mainly divided into summation [54, 55] 
and concatenation [56]. Assuming the dimension of the two 
respective input features are p and q, and the dimension of 
the output feature Z by concatenation is shown in Eq. (1).

The number of channels is increased, but the information 
in each channel is maintained the same. In contrast, assum-
ing the two respective input features are x and y, and the 
value of output characteristic Z is shown in Eq. (2). Here, � 
represents a constant.

(1)Dim(Z) = p + q

However, they both provide limited expressive power to 
the network. Inspired by this reason, we design the AMFF 
method based on attention to improve the expression of 
the network.

2.3  Attention mechanism

Recently, lots of works [57–60] utilize channel attention or 
spatial attention to improve the performance of deep learn-
ing as an effective module. Hu et al. [57] first proposed a 
squeeze and excitation network (SENet) to pay attention 
to the relationship between channels. The weight of each 
channel is squeezed by global average pooling (GAP) and 
fully connection layers. Zhang et al. [60] propose a resid-
ual non-local attention network to address the issue that 
the uneven distribution of information in the corrupted 
images. [59] combines the channel and spatial attention to 
improve the feature extraction ability of networks.

The attention mechanism enables the network to learn 
where to concentrate and promotes the network to focus 
on the target object. The channel attention mechanism 
enhances or suppresses different channels for different 
tasks, by modeling the weights of each feature channel. 
The essence of spatial attention is to locate the target and 
perform some transformations or obtain weights. These 
attention mechanisms can improve the expression of the 
features by establishing dependencies between channels, 
or weighted spatial attention masks. However, these meth-
ods still need a large cost on memory and computation 
complexity.

3  Proposed method

In this section, we introduce the proposed CXR images 
denoising network MPR-CNN in detail, containing MNEB, 
ECSA, and AMFF. The ECSA module is designed to make 
the network focus more on texture details in CXR images 
and reduce the parameters by 1D convolution instead of full 
connection layer. The AMFF module based on attention, 
rather than simple concatenation or summation for feature 
fusion, is utilized to improve the expression of the network. 
The MNEB is utilized for fusing information from high and 
low resolution features, which is included the ECSA and 
the AMFF. Also, the whole network uses residual blocks 
to reduce the difficulty of network learning. Further, the 
SSIML1 loss and the cosine annealing strategy [61] are set 
to train our MPR-CNN. We will describe these methods in 
later subsections.

(2)Z = x + �y
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3.1  Network architecture

The network architecture of the proposed MPR-CNN con-
sisted of ECSA, AMFF, and MNEB is shown in Fig. 1. Here, 
“DS” and “US” stand for downsampling and upsampling, 
respectively. First, the MPR-CNN applies a convolutional 
layer with the filter size of 1 × 3 × 3 × 48 to extract low-level 
features from the input X (noisy CXR images). Then, the 
feature maps pass through several layers of MNEB modules 
that will describe in Sect. 3.2. The MNEB is the fundamen-
tal building block of MPR-CNN. Next, we use a convolu-
tional layer with filter size of 48 × 3 × 3 × 1 again to obtain 
the desired residual image R(X). At last, we can subtract 
R(X) from X to get the output (denoised CXR images).

3.2  Multi‑resolution noise extraction block (MNEB)

The architecture of the MNEB is shown in the dotted 
box above Fig. 1. The full convolution with filter size of 
48 × 3 × 3 × 48 is utilized to keep more precise spatial 
details and performing with filter size of 48 × 3 × 3 × 96 
and 4 × downsampling with filter size of 48 × 3 × 3 × 192 
on the original features to gain more context informa-
tion. Then, we use the ECSA module that will describe in 
Sect. 3.3 to focus more on texture details in CXR images 
and reduce the parameters as well. Next, 2 × upsampling 
with filter size of 96 × 3 × 3 × 48 and 4 × downsampling 
with filter size of 192 × 3 × 3 × 48 are applied to restore to 

original feature maps size. Further, the AMFF which is uti-
lized to fuse multi-resolution features will be described in 
Sect. 3.4. Finally, a convolutional layer with filter size of 
48 × 3 × 3 × 48 is applied to extract the residual informa-
tion from feature maps again. The MNEB module also uses 
residual learning as same as the whole network to reduce 
the difficulty of network learning. Multi-resolution parallel 
convolution streams are utilized for fusing information from 
high and low resolution features, as well as to enhance the 
robustness of the model.

3.3  Efficient channel and spatial attention (ECSA)

As shown in Fig. 2, the ECSA module is made up of chan-
nel attention and spatial attention, making the network 
focus more on texture details in CXR images and reduce 
the parameters as well. The channel attention branch is 
designed to enhance or suppress different channels for 
CXR images denoising by modeling the weights of each 
feature channel. Global average pooling (GAP) is applied 
to squeeze the input feature maps MC ∈ RH×W×C and yield a 
feature descriptor d ∈ R1×1×C . The excitation operator usu-
ally passed through two fully connected layers to dimension 
reduction and cross channel interaction. However, dimen-
sion reduction has side effects on the prediction of chan-
nel attention. Therefore, we utilize the 1D convolution with 
kernel sizes of 5 and 2 paddings to replace the two fully 
connected layers. The complexity of this method is tiny, and 

Fig. 1  Network architecture of the proposed MPR-CNN
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the promotion effect is significant. Next, the sigmoid gating 
is applied to generate activations d̂ ∈ R1×1×C . Finally, the 
output of the channel attention branch is obtained by mul-
tiplying MC and d̂.

The spatial attention branch is designed to locate the tar-
get and perform some transformations. Given a feature map 
MS ∈ RH×W×C , GAP, and global max pooling (GMP) are first 
applied to extract the information along the channel dimen-
sions and then concatenating them to generate a feature map 
FS ∈ RH×W×2 . Next, the FS passes through a convolution 
layer and sigmoid activation to generate a spatial attention 
feature map F̂S ∈ RH×W×1 . Finally, the output of the spatial 
attention branch is obtained by multiplying MS and F̂S.

The overall pipeline of the ECSA module, a convolution 
layer with kernel size of 3 × 3 is first applied to extract the 
low-level features and PReLU is to improve the nonlinear 
characteristics of the network. After another convolution 
layer with kernel size of 3 × 3, the feature maps pass through 
both the channel and spatial attention in parallel. Next, we 
concatenated the feature maps along the spatial and channel 
dimensions. Finally, a convolution layer with kernel size of 
3 × 3 is used to extract the residual information from feature 
maps again. The ECSA module is also a residual block.

3.4  Adaptive multi‑resolution feature fusion (AMFF)

As shown in Fig. 3, we design the AMFF method based on 
attention rather than directly add or concatenate multiple 
resolution feature maps to improve the expression of the 
network. We first fuse the multiple resolution feature maps 

by element-wise sum as shown in Eq. (3) and get the feature 
maps Min.

, where M1, M2, and M3 represent 1 ×, 2 ×, and 4 × feature 
maps, respectively. Then, the M passes through the GAP to 
extract the average information along the channel dimen-
sion and gain a feature descriptor D ∈ R1×1×C . Further, we 
use global depthwise convolution (GDC) in that the number 
of convolution groups is the same as the channel number, 
and the size of convolution kernel is the same as that of 
input feature map, to assign each position a learnable weight 
and get a new descriptor D̂ ∈ R1×1×C . Next, we still utilize 
the 1D convolution with kernel sizes of 5 and 2 padding 
to cross channel interaction and keep the channel dimen-
sion unchanged. Afterward, the sigmoid gating is applied 
to generate three different attention activations S1 ∈ R1×1×C

,S2 ∈ R1×1×C , S3 ∈ R1×1×C . Finally, the output Mout of the 
AMFF after recalibration and aggregation is defined in 
Eq. (4).

3.5  Loss function and optimization

We propose the MSL1 loss to train our MPR-CNN by 
adding multi-scale structural similarity (MS_SSIM) [62, 
63] and L1 loss. On one hand, MS-SSIM can preserve 
the contrast in high-frequency regions in CXR images, 

(3)Min = M1 +M2 +M3

(4)Mout = M1 ⋅ S1 +M2 ⋅ S2 +M3 ⋅ S3

Fig. 2  Efficient channel and spatial attention
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on the other, L1 loss can keep the color and brightness 
of CXR images. SSIM is a theoretical method based on 
image structure similarity and the general form of the 
SSIM index between signal x and y is defined as Eq. (5), 
where, l, c, and s represent the light, contrast, and struc-
ture. � , � and � are parameters to allocate the weight of the 
three attributes in SSIM.

Here, we set � = � = � = 1 and the final SSIM index is 
shown in Eq. (6), where �x and �y are the mean values of 
signal x and y, �x and �y are the variances, and �xy are the 
covariances of signal x and y. C1 and C2 are small normal 
numbers to avoid the situation where the denominator is 
zero in Eq. (6).

Furthermore, MS-SSIM performs SSIM evaluation on 
images of different resolutions through downsampling 
which can merge more structural information. Thus, the 
MS_SSIM loss is shown in Eq. (7), where X denotes the 
noisy CXR image and the Y represents the clean CXR 
image.

And, Eq. (8) describes the L1 loss.

(5)SSIM(x, y) = l(x, y)� ⋅ c(x, y)� ⋅ s(x, y)�

(6)SSIM(x, y) =
(2�x�y + C1) (2�xy + C2)

(�2
x
+ �2

y
+ C1) (�

2
x
+ �2

y
+ C2)

(7)

MS_SSIM((R(X),V(X − Y))

=
1

N

N∑

i=1

{
1 − SSIM(R(Xi) − V(Xi − Yi))}

The overall MSL1 loss is given by Eq.  (9), which 
expresses the loss error between the desired residual image 
V(X–Y) and estimated one R(X) from noisy CXR image, and 
the � is a constant which is set to 0.2 for all the experiments 
by ablation study.

We utilize PSNR as the evaluation for our MSL1 loss, 
which is shown in Table 6 in Sect. 4.4.

In addition, as shown in Eq. (10), the cosine annealing 
strategy is set as an optimization method and decreases the 
learning rate from initial value 5e−4 to 5e−6 during train-
ing. Here, the � stands for initial value and T is empirically 
set as 5.

4  Experiments

In this section, we first describe the datasets and then give 
the implementation details. Next, we compare our MPR-
CNN with some state-of-the-art denoising methods. Fur-
thermore, ablation studies are designed to explore the impact 
of each of our architectural components and choices on the 
final performance. Finally, we innovatively verify the impact 
of the MPR-CNN for CXR images classification.

(8)L1(R(X),V(X − Y)) =
1

N

N∑

i=1

||R(Xi) − V(Xi − Yi)
||

(9)MSL1 = (1 − �) L1 + � ∗ MS_SSIM

(10)�t =
1

2

(
1 + cos

(
t�

T

))
�

Fig. 3  Schematic for adaptive multi-resolution feature fusion
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4.1  Datasets

We evaluate the denoising performance of our MPR-CNN 
via COVID-19 radiography database [64], which consists 
of 1341 normal CXR images, 1345 CXR images of viral 
pneumonia, and 219 CXR images of COVID-19, collecting 
by several research organizations. The size of CXR images 
is 1024 × 1024. Here, we randomly select 400 normal CXR 
images, 400 CXR images of viral pneumonia, and 170 CXR 
images of COVID-19 as training data. Then, we select 30 
images in each category as validation data, and 15 images in 
each category as test data. To speed up the training process 
and keep as much detail as possible in each CXR image, we 
extract the training data to 128 × 128 and gain 16 × 10,552 
patches (16 is the mini-batch size and 10,552 represents an 
iterative number for one training epoch) as training label 
by scaling and rotation. The main noise in CXR image is 
the granular noise, which is caused by the receiving device 
(film), and the granular noise accords with Gaussian distri-
bution. So we decided to add white Gaussian noise (WGN) 
in the patches with standard deviation to simulate the low-
dose noisy CXR images with � = [0, 55] different level 
noise as the input of MPR-CNN (Fig. 4).

Also, we further make classification experiments to verify 
the impact of the MPR-CNN for CXR images classifica-
tion. To balance classification data while classifying, we 
collect another 605 CXR images of COVID-19 from three 

datasets: (1) Fig. 1 COVID-19 chest X-ray Dataset [65], (2) 
COVID-19 Image Data Collection [66], and (3) ActualMed 
COVID-19 chest X-ray Dataset [67]. There are three types 
of cases that are COVID-19, normal, and viral pneumonia. 
The detailed component distribution of the classified dataset 
is shown in Table 1.

4.2  Implementation details

The proposed MPR-CNN is end-to-end trainable that does 
not require any pre-training of sub-modules. The model is 
trained with the Adam optimizer ( �1 = 0.9 , and �2 = 0.999 ) 
that is an extension of the stochastic gradient descent algo-
rithm, and the cosine annealing strategy is set as an opti-
mization method and decreases the learning rate from ini-
tial value 5e-4 to 5e-6 during training. The mini-batch size 
is set as 16 and 10,552 iterations for one training epoch. 
We train 30 epochs to fit our model. Specifically, we apply 

Fig. 4  Denoising results of different methods on normal CXR image with σ = 15. a Original CXR image, b noisy CXR image/24.731 dB, c 
NLM/38.313 dB, d DnCNN/38.402 dB, e IRCNN/38.432 dB, f FFDNet/38.682 dB, g ESRGAN/38.786 dB, h MPR-CNN/38.784 dB

Table 1  Component distribution of the classified dataset

Types Training data Test data Total

COVID-19 665 166 824
Normal 1073 268 1341
Viral Pneumonia 1076 269 1345
Total 2814 703 3510



 X. Jiang et al.

1 3

100 Page 8 of 15

Pytorch 1.4.0 and Python 3.5 to train and test the proposed 
MPR-CNN in CXR image denoising on the Ubuntu 16.04 
from a PC, composed of an Intel Core i7-7800X CPU with 
3.50 GHz, a RAM 16G, and two Nvidia GeForce RTX 2080 
Ti GPU.

4.3  Comparisons with state‑of‑the‑art denoising 
methods

In this subsection, we test the denoising performance of our 
MPR-CNN in terms of both subjective and objective evalu-
ation, comparing with 7 state-of-the-art denoising methods, 
such as NLM [35], BM3D [37], DnCNN [43], IRCNN [49], 
FFDNet [53], SRGAN [45], and ESRGAN [46].

In terms of subjective evaluation, we compare the denois-
ing ability for different noise levels and different scaling 
factors with peak signal-to-noise ratio (PSNR) and struc-
tural similarity (SSIM) index. PSNR is a measure to evalu-
ate the ability of model to remove noise, while the SSIM 
is a measure of the similarity of two images. The value is 
higher, the corresponding denoising method has a better 
performance. Table 2 describes the average PSNR (dB) 
and SSIM of different methods on test data with different 
noise levels of 15, 25, and 40. The proposed MPR-CNN 
achieves the best performance on noise levels of 15, 25, and 
50 in SSIM, although the value of PSNR is a little bit lower 
than ESPGAN when σ = 15. Also, when σ = 25 the value 
of PSNR is 0.84 dB, 0.627 dB, and 0.034 dB more than 
BM3D, DnCNN, and ESRGAN, respectively. Especially, 
the value of SSIM is 0.037, 0.020, and 0.011 more than 
NLM, IRCNN, and SRGAN. It is noted that our MPR-CNN 
achieves excellent results on denoised tasks of different 
noise levels (Fig. 5).

Table 3 describes the average PSNR (dB) and SSIM of 
different methods on three types of CXR images with noise 
levels of 30. It is noted that our MPR-CNN is also superior 
to competing methods on each type of CXR image and has 

a better denoising performance on types of viral pneumonia 
and COVID-19 than the normal type.

Moreover, to evaluate the ability of the proposed model 
for the blind Gaussian denoising, we also added WGN to 
Fig. 6a with standard deviation σ = {10, 15, 20, 25, 30, 35, 
40, 45} and the line chart of PSNR and SSIM are shown in 
Fig. 7. The blue solid lines represent the denoising result of 
our MPR-CNN, and one can clearly see that the values of 
PSNR and SSIM of our MPR-CNN are higher than other 
competing methods at most time, although the value of 
PSNR is a little bit lower than ESPGAN when σ < 25. Fig-
ure 7 demonstrates that our proposed MPR-CNN is robust 
for the blind CXR images denoising.

Average PSNR (dB) and SSIM of different methods on 
test data with different scaling factors are shown in Table 4. 
Here, we set three scaling factors, × 2, × 4, and × 8, and the 
corresponding CXR images sizes are 512 × 512, 256 × 256, 
and 128 × 128. The noise level is still set to 25. According 
to Table 3, it is noted that our MPR-CNN has a better per-
formance in denoising CXR images with different scaling 
factors than other methods.

For computation time, we select 4 state-of-the-art denois-
ing methods to perform the test for CXR images denoising. 
The size of the CXR image is set as 128 × 128, 256 × 256, 
and 512 × 512 as illustrated in Table 5. From that, we can 
find that the inference time of our MPR-CNN is very com-
petitive in contrast to other popular methods.

4.4  Ablation studies

We design ablation studies to explore the impact of each of 
our architectural components and choices on the final perfor-
mance. All the ablation experiments use the same test data, 
adding WGN with standard deviation � = 25 to simulate the 
low-dose noisy CXR images. First, we analyze the impact of 
different loss function for denoising CXR images in Table 6. 
It shows that the proposed MSL1 loss with � = 0.2 has the 

Table 2  Average PSNR (dB) 
and SSIM of different methods 
on test data with different noise 
levels of 15, 25, and 40

Bold vaue indicates that the best denoising results

Methods NLM BM3D DnCNN IRCNN FFDNet SRGAN ESRGAN MPR-CNN

� = 15

 PSNR 37.751 37.964 38.114 38.203 38.463 38.456 38.653 38.482
 SSIM 0.901 0.919 0.900 0.913 0.921 0.913 0.916 0.922
� = 25

 PSNR 35.872 36.040 36.253 36.452 36.732 36.661 36.846 36.880
 SSIM 0.878 0.892 0.873 0.896 0.903 0.894 0.902 0.905
� = 40

 PSNR 34.067 34.249 34.434 34.563 35.023 34.986 35.136 35.286
 SSIM 0.854 0.874 0.850 0.871 0.885 0.880 0.887 0.891
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most outstanding denoised performance than other loss 
function, which increases 0.243 dB more than L1 loss and 
0.46 dB more than MS-SSIM. Furthermore, the SSIM also 
has a certain promotion. It could be concluded that MSL1 
loss can preserve the contrast in high-frequency regions in 
CXR images and keep the color and brightness as well.

Then, we study the influence of the number of multi-
resolution streams in the MNEB for the CXR images 
denoising quality in Table 7. According to Table 7, we can 
note that the MNEB with two different resolution streams 
is better than one of single one and three different reso-
lution streams have the best performance. Therefore, it 
could be concluded that increasing the number of streams 
can provide a significant improvement for CXR images 
denoised and the MNEB is important to improve the CXR 
images quality.

Finally, in Table 8, we make ablation studies on the 
impact of proposed ECSA and AMFF for CXR images 
denoised. From the first three columns, we can note that 
the AMFF based on attention, rather than simple concat-
enation or summation for feature fusion, can improve the 
expression of the network, which increases by 0.318 dB 
more than summation and 0.108 dB more than concatena-
tion. Moreover, it is also evident from Table 8 that the 
ECSA module has a positive effect on our MPR-CNN, 
which, respectively, increases by 0.019, 0.020, 0.020 in 
SSIM.

Fig. 5  Denoising results of different methods on CXR image of viral pneumonia with σ = 25. a Original CXR image, b noisy CXR 
image/20.306  dB, c BM3D/36.482  dB, d DnCNN/36.931  dB, e IRCNN/36.973  dB, f SRGAN/37.154  dB, g FFDNet/37.263  dB, h MPR-
CNN/37.577 dB

Table 3  Average PSNR (dB) and SSIM of different methods on three 
types of CXR images with noise levels of 30

Bold vaue indicates that the best denoising results

Methods DnCNN IRCNN FFDNet ESRGAN MPR-CNN

Normal
PSNR 34.702 34.683 35.263 35.373 35.484
SSIM 0.830 0.858 0.878 0.880 0.883
Viral pneumo-

nia
PSNR 36.192 36.053 36.771 36.971 37.011
SSIM 0.884 0.898 0.917 0.919 0.922
COVID-19
PSNR 35.761 35.544 36.231 36.296 36.368
SSIM 0.876 0.877 0.892 0.894 0.895
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Extensive ablation experiments prove that the proposed 
MS-SSIM loss can preserve more detailed information 
in CXR images as well as the MNEB, and the ECSA and 
AMFF both have positive influences on the final CXR 
images quality.

4.5  Verify the impact of the MPR‑CNN for CXR 
images classification

In this subsection, we not only make the denoising experi-
ments but also use the denoised CXR images by MPR-CNN 
to classify CXR images. To evaluate the effectiveness of 
the MPR-CNN, we use three classic classified networks: 
ResNet18 [47], VGG19 [68], DenseNet121 [69] (Fig. 8).

We use a classified dataset that has been introduced in 
Sect. 4.1 for CXR images classification. The images size are 
set to 512 × 512, which adding WGN with standard deviation 
� = 20 to simulate the low-dose noisy CXR images. Here, 
the vertical data represents the true value, while horizontal 
data stands for the predicted one. Especially, the number of 
diagonals represents the correct classifications. Moreover, 
the normal cases correctly classified, respectively, increase 
by 5 and 6 after denoising using VGG19 and DenseNet121. 
Then, the viral Pneumonia cases correctly classified, 
respectively, increase by 63 and 38 after denoising using 
ReseNet18 and VGG19. Especially, the correctly classified 
COVID-19 cases, respectively, increase by 11, 17, and 4 

using ResNet18, VGG19, and DenseNet121. Hence, it can 
clearly note that the MPR-CNN has a positive impact on the 
CXR images classification.

The classification effects between different models 
denoised by DnCNN and MPR-CNN are shown in Table 9. 
To quantify the classified networks, we calculated the test 
accuracy (ACC), sensitivity (SEN), and precision (PRE) of 
each infection type on the above classified dataset. Here, 
the higher value the SEN corresponds to the lower the 
probability of missing positive cases. Moreover, the higher 
value the PRE results in the lower the probability of mis-
diagnosing negative cases. After denoising by MPR-CNN, 
the ACCs of the ResNet18, VGG19, and DenseNet121 are, 
respectively, improved by 8.96%, 8.53%, and 8.52%, while 
the PREs, respectively, improved by 7.41%, 7.26%, and 
7.37%. Comparing to DnCNN, the SENs have improved 
by 0.56%, 1.13%, and 1.56%, respectively, using ResNet18, 
VGG19, and DenseNet121. Meanwhile, the classification 
performance of denoised CXR image by MPR-CNN is 
very close to original one. The ACCs have just decreased 
by 0.57%, 0.30%, and 0.32% using ResNet18, VGG19, and 
DenseNet121.

Furthermore, it could be concluded that classification 
models fed into CXR images by MPR-CNN have a lower 
probability of missing COVID-19 cases, as well as a lower 
probability of misdiagnosing negative cases.

Fig. 6  Denoising results of different methods on CXR image of COVID-19 with σ = 40. a Original CXR image, b noisy CXR image/16.732 dB, 
c NLM/33.566 dB, d DnCNN/34.403 dB, e IRCNN/34.982 dB, f FFDNet/35.192 dB, g ESRGAN/35.626 dB, h MPR-CNN/35.632 dB



Images denoising for COVID-19 chest X-ray based on multi-resolution parallel residual CNN  

1 3

Page 11 of 15 100

5  Conclusion

In this paper, we propose a novel MPR-CNN for CXR 
images denoising and special application for COVID-19 
that can improve the images quality. Multi-resolution paral-
lel convolution streams are utilized for fusing information 
from both high and low resolution features. The ECSA mod-
ule is proposed to make the network focus more on texture 
details in CXR images as well as to reduce the parameters. 
The AMFF method based on attention is utilized to improve 
the expression of the network rather than simple concat-
enation or summation for feature fusion. The MSL1 loss is 
utilized to preserve the contrast in high-frequency regions 
in CXR images and keep the color and brightness as well. 
The extensive experiments demonstrate that all the proposed 
methods have significant impacts on CXR images denoising. 
Comparing to competing methods, our MPR-CNN has the 
best performance in both subjective visual evaluation and 
objective indicators. It is noted that our proposed MPR-CNN 
is very robust for blind CXR images denoising. Moreover, 
extensive experiments show that the proposed MPR-CNN 
has a positive impact on CXR images classification and 
detection of COVID-19 cases from denoised CXR images. 

Fig.7  Value of PSNR and SSIM of denoised results of Fig. 6a using 
different method

Table 4  Average PSNR (dB) 
and SSIM of different methods 
on test data with different 
scaling factors

Bold vaue indicates that the best denoising results

Methods NLM BM3D DnCNN IRCNN FFDNet SRGAN ESRGAN MPR-CNN

 × 2
 PSNR 34.083 34.235 34.672 34.832 35.032 35.021 35.613 35.606
 SSIM 0.860 0.872 0.861 0.883 0.888 0.886 0.900 0.901

 × 4
 PSNR 31.741 31.885 32.283 32.373 32.432 32.316 32.513 32.950
 SSIM 0.831 0.843 0.833 0.847 0.851 0.848 0.855 0.871

 × 8
 PSNR 29.181 29.319 29.729 29.852 29.783 29.701 29.713 29.730
 SSIM 0.814 0.823 0.814 0.820 0.822 0.809 0.812 0.831

Table 5  Computation time of 4 popular denoising methods for the 
noisy images of sizes 256 × 256, 512 × 512, and 1024 × 1024

Method/s 128 × 128 256 × 256 512 × 512

BM3D 0.284 0.562 2.486
FFDNet 0.032 0.062 0.134
ESRGAN 0.078 0.163 0.378
MPR-CNN 0.029 0.061 0.127
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Table 6  Average PSNR and 
SSIM of denoised CXR images 
by different loss functions

Bold vaue indicates that the best denoising results

Loss function L1 loss MS-SSIM MSL1 ( � = 0.1) MSL1 ( � = 0.2) MSL1 ( � = 0.3)

PSNR/dB 36.727 36.420 36.849 36.880 36.773
SSIM 0.900 0.892 0.903 0.905 0.901

Table 7  Result of different 
components of multi-resolution 
streams in MNEB

Bold vaue indicates that the best denoising results

1 × ✔ ✔ ✔ ✔
2 × ✔ ✔ ✔ ✔
4 × ✔ ✔ ✔ ✔
PSNR/dB 35.732 36.171 35.900 36.405 36.226 36.607 36.880
SSIM 0.875 0.886 0.880 0.891 0.888 0.897 0.905

Table 8  Influence of individual 
components of MNEB

Bold vaue indicates that the best denoising results

ECSA ✔ ✔ ✔
Summation ✔ ✔
Concatenation ✔ ✔
AMFF ✔ ✔
PSNR/dB 35.808 36.018 36.126 36.567 36.796 36.880
SSIM 0.877 0.882 0.885 0.896 0.902 0.905

Fig. 8  Comparison of the confusion matrices of different models denoised by MPR-CNN. First line: classification using noisy CXR images. Sec-
ond line: denoised CXR images by MPR-CNN, then feed into classification models
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On the whole, the proposed MPR-CNN can provide a more 
clear and rigorous diagnostic basis both for radiologists and 
machines. We will continue to focus on the development of 
COVID-19, and our future work will concentrate on effec-
tively reducing the noise artifacts in COVID-19 CXR images 
with the current powerful method. Improving the quality of 
COVID-19 CXR images, to classify and detect of COVID-
19 cases more accurately from denoised CXR images.
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