Skip to main content
Log in

LPI: learn postures for interactions

An open posture-based system for interactions in virtual environments

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

To a great extent, immersion of a virtual environment (VE) depends on the naturalness of the interface it provides for interaction. As people commonly exploit gestures during communication, therefore interaction based on hand-postures enhances the degree of realism of a VE. However, the choice of selecting hand postures for interaction varies from person to person. Generalizing the use of a specific posture with a particular interaction requires considerable computation which in turns depletes intuition of a 3D interface. By investigating machine learning in the domain of virtual reality (VR), this paper presents an open posture-based approach for 3D interaction. The technique is user-independent and relies neither on the size and color of hand nor on the distance between camera and posing-position. The system works in two phases—in the first phase, hand-postures are learnt, whereas in the second phase the known postures are used to perform interaction. With an ordinary camera, a scanned image is partitioned into equal size non-overlapping tiles. Four light-weight features, based on binary histogram and invariant moments, are calculated for each part and portion of a posture-image. The support vector machine classifier is trained by posture-specific knowledge carried accumulatively in each tile. By posing any known posture, the system extracts the tiles information to detect a particular hand-posture. At the successful recognition, appropriate interaction is activated in the designed VE. The proposed system is implemented in a case-study application; vision-based open posture interaction using the libraries of OpenCV and OpenGL. The system is assessed in three separate evaluation sessions. Results of the evaluations testify efficacy of the approach in various VR applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ackad, C., Kay, J., Tomitsch, M.: Towards learnable gestures for exploring hierarchical information spaces at a large public display. In: CHI’14 Workshop on Gesture-based Interaction Design, vol. 49, p. 57 (2014). https://doi.org/10.1002/rwm3.20180

  2. Akman, O., Poelman, R., Caarls, W., Jonker, P.: Multi-cue hand detection and tracking for a head-mounted augmented reality system. Mach. Vis. Appl. 24(5), 931–946 (2013). https://doi.org/10.1007/s00138-013-0500-6

    Article  Google Scholar 

  3. Alam, M.M., Islam, M.T., Rahman, S.: A unified learning approach for hand gesture recognition and fingertip detection. arXiv preprint arXiv:2101.02047 (2021)

  4. Alqahtani, A.S., Daghestani, L.F., Ibrahim, L.F.: Environments and system types of virtual reality technology in stem: a survey. Int. J. Adv. Comput. Sci. Appl. (IJACSA) (2017). https://doi.org/10.14569/IJACSA.2017.080610

  5. Althoff, F., Lindl, R., Walchshausl, L., Hoch, S.: Robust multimodal hand-and head gesture recognition for controlling automotive infotainment systems. VDI Berichte 1919, 187 (2005)

  6. Arif, A.S., Stuerzlinger, W., de Mendonca Filho, E.J., Gordynski, A.: How do users interact with an error-prone in-air gesture recognizer? (2008). https://doi.org/10.1145/2559206.2581188

  7. Baudel, T., Beaudouin-Lafon, M.: Charade: remote control of objects using free-hand gestures. Commun. ACM 36(7), 28–35 (1993). https://doi.org/10.1145/159544.159562

    Article  Google Scholar 

  8. Belgioioso, G., Cenedese, A., Cirillo, G.I., Fraccaroli, F., Susto, G.A.: A machine learning based approach for gesture recognition from inertial measurements. In: 53rd IEEE Conference on Decision and Control, pp. 4899–4904. IEEE (2014). https://doi.org/10.1109/CDC.2014.7040154

  9. Beurden van, M.H., Ijsselsteijn, W.A., de Kort, Y.A.: User experience of gesture based interfaces: a comparison with traditional interaction methods on pragmatic and hedonic qualities. In: International Gesture Workshop, pp. 36–47. Springer (2011). https://doi.org/10.1007/978-3-642-34182-3_4

  10. Caceres, C.A.: Machine learning techniques for gesture recognition. Ph.D. thesis, Virginia Tech (2014). https://doi.org/10.1109/CDC.2014.7040154

  11. Caicedo, J.C., Cruz, A., Gonzalez, F.A.: Histopathology image classification using bag of features and kernel functions. In: Conference on Artificial Intelligence in Medicine in Europe, pp. 126–135. Springer (2009). https://doi.org/10.1007/978-3-642-02976-9_17

  12. Camplani, M., Salgado, L.: Efficient spatio-temporal hole filling strategy for kinect depth maps. In: Three-Dimensional Image Processing (3DIP) and Applications II, vol. 8290, p. 82900E. International Society for Optics and Photonics (2012). https://doi.org/10.1117/12.911909

  13. Clapés, A., Pardo, À., Vila, O.P., Escalera, S.: Action detection fusing multiple kinects and a wimu: an application to in-home assistive technology for the elderly. Mach. Vis. Appl. 29(5), 765–788 (2018). https://doi.org/10.1007/s00138-018-0931-1

    Article  Google Scholar 

  14. Clark, A., Moodley, D.: A system for a hand gesture-manipulated virtual reality environment. In: Proceedings of the Annual Conference of the South African Institute of Computer Scientists and Information Technologists, pp. 1–10 (2016). https://doi.org/10.12968/sece.2016.25.10a

  15. Clark, G.D., Lindqvist, J.: Engineering gesture-based authentication systems. IEEE Pervasive Comput. 14(1), 18–25 (2015). http://dx.doi.org/10.1145/2858036.2858270

  16. Dardas, N.H., Alhaj, M.: Hand gesture interaction with a 3d virtual environment. Res. Bull. Jordan ACM 2(3), 86–94 (2011). https://doi.org/10.3917/afcul.086.0094

    Article  Google Scholar 

  17. Desai, P.R., Desai, P.N., Ajmera, K.D., Mehta, K.: A review paper on oculus rift-a virtual reality headset. arXiv preprint arXiv:1408.1173 (2014). https://doi.org/10.14445/22315381/IJETT-V13P237

  18. Elons, A., Ahmed, M., Shedid, H., Tolba, M.: Arabic sign language recognition using leap motion sensor. In: 9th International Conference on Computer Engineering & Systems (ICCES), pp. 368–373. IEEE (2014). https://doi.org/10.1109/ISIE.2014.6864742

  19. Fiorentino, M., Uva, A.E., Monno, G.: Vr interaction for cad basic tasks using rumble feedback input: experimental study. In: Product Engineering, pp. 337–352. Springer (2008). https://doi.org/10.1007/978-1-4020-8200-9_16

  20. Francese, R., Passero, I., Tortora, G.: Wiimote and kinect: gestural user interfaces add a natural third dimension to HCI. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, pp. 116–123. ACM (2012). https://doi.org/10.1145/2254556.2254580

  21. Froehlich, B., Hochstrate, J., Skuk, V., Huckauf, A.: The globefish and the globemouse: two new six degree of freedom input devices for graphics applications. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 191–199. ACM (2006). https://doi.org/10.1145/1124772.1124802

  22. Georgi, M., Amma, C., Schultz, T.: Recognizing hand and finger gestures with IMU based motion and EMG based muscle activity sensing. In: Biosignals, pp. 99–108 (2015). https://doi.org/10.5220/0005276900990108

  23. Gribnau, M.W., Hennessey, J.M.: Comparing single-and two-handed 3d input for a 3d object assembly task. In: Chi 98 Conference Summary on Human Factors in Computing Systems, pp. 233–234 (1998). https://doi.org/10.1145/286498.286720

  24. Grossman, T., Fitzmaurice, G., Attar, R.: A survey of software learnability: metrics, methodologies and guidelines. In: Proceedings of the Sigchi Conference on Human Factors in Computing Systems, pp. 649–658 (2009). https://doi.org/10.1145/1518701.1518803

  25. Gupta, P., da Vitoria Lobo, N., Laviola, J.J.: Markerless tracking and gesture recognition using polar correlation of camera optical flow. Mach. Vis. Appl. 24(3), 651–666 (2013). https://doi.org/10.1007/s00138-012-0451-3

    Article  Google Scholar 

  26. Hafner, J., Sawhney, H.S., Equitz, W., Flickner, M., Niblack, W.: Efficient color histogram indexing for quadratic form distance functions. IEEE Trans. Pattern Anal. Mach. Intell. 17(7), 729–736 (1995). https://doi.org/10.1109/34.391417

    Article  Google Scholar 

  27. Hsu, S.C., Huang, J.Y., Kao, W.C., Huang, C.L.: Human body motion parameters capturing using kinect. Mach. Vis. Appl. 26(7–8), 919–932 (2015). https://doi.org/10.1007/s00138-015-0710-1

    Article  Google Scholar 

  28. Hua, J., Qin, H.: Haptic sculpting of volumetric implicit functions. In: Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001, pp. 254–264. IEEE (2001). https://doi.org/10.1109/PCCGA.2001.962881

  29. Huang, C.L., Huang, W.Y.: Sign language recognition using model-based tracking and a 3d hopfield neural network. Mach. Vis. Appl. 10(5-6), 292–307 (1998). https://doi.org/10.1007/s001380050080

  30. Itkarkar, R.R., Nandy, A.K.: A study of vision based hand gesture recognition for human machine interaction. Int. J. Innov. Res. Adv. Eng. (IJIRAE) 1(12) (2014)

  31. Jacob, R.J., Girouard, A., Hirshfield, L.M., Horn, M.S., Shaer, O., Solovey, E.T., Zigelbaum, J.: Reality-based interaction: a framework for post-wimp interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 201–210 (2008). https://doi.org/10.1145/1357054.1357089

  32. Jáuregui, D.A.G., Horain, P.: Real-time 3d motion capture by monocular vision and virtual rendering. Mach. Vis. Appl. 28(8), 839–858 (2017). https://doi.org/10.1007/s00138-017-0861-3

    Article  Google Scholar 

  33. Jörg, S., Hodgins, J., Safonova, A.: Data-driven finger motion synthesis for gesturing characters. ACM Trans. Graph. (TOG) 31(6), 1–7 (2012). https://doi.org/10.1145/2366145.2366214

    Article  Google Scholar 

  34. Kang, T., Chae, M., Seo, E., Kim, M., Kim, J.: DeepHandsVR: hand interface using deep learning in immersive virtual reality. Electronics 9(11), 1863 (2020). https://doi.org/10.3390/electronics9111863

    Article  Google Scholar 

  35. Kaushik, D.M., Jain, R.: Gesture based interaction NUI: an overview. arXiv preprint arXiv:1404.2364 (2014). https://doi.org/10.14445/22315381/IJETT-V9P319

  36. Kerber, F., Puhl, M., Krüger, A.: User-independent real-time hand gesture recognition based on surface electromyography. In: Proceedings of the 19th International Conference on Human–Computer Interaction with Mobile Devices and Services, pp. 1–7 (2017). http://dx.doi.org/10.1007/s10462-012-9356-9

  37. Khattak, S., Cowan, B., Chepurna, I., Hogue, A.: A real-time reconstructed 3d environment augmented with virtual objects rendered with correct occlusion. In: IEEE Games Media Entertainment, pp. 1–8. IEEE (2014). https://doi.org/0.1109/GEM.2014.7048102

  38. Khundam, C.: First person movement control with palm normal and hand gesture interaction in virtual reality. In: 12th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 325–330. IEEE (2015). https://doi.org/10.1109/JCSSE.2015.7219818

  39. Kim, D., Hilliges, O., Izadi, S., Butler, A.D., Chen, J., Oikonomidis, I., Olivier, P.: Digits: freehand 3d interactions anywhere using a wrist-worn gloveless sensor. In: Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, pp. 167–176 (2012). https://doi.org/10.1145/2380116.2380139

  40. Kim, J.O., Kim, M., Yoo, K.H.: Real-time hand gesture-based interaction with objects in 3d virtual environments. Int. J. Multimed. Ubiquitous Eng. 8(6), 339–348 (2013)

  41. Lajevardi, S.M., Hussain, Z.M.: Feature extraction for facial expression recognition based on hybrid face regions. Adv. Electr. Comput. Eng. 9(3), 63–67 (2009)

  42. LaViola, J.: MSVT: a virtual reality-based multimodal scientific visualization tool. In: Proceedings of the Third IASTED International Conference on Computer Graphics and Imaging, pp. 1–7 (2000). https://doi.org/10.1.1.33.7853

  43. Lee, C.S., Oh, K.M., Park, C.J.: Virtual environment interaction based on gesture recognition and hand cursor. Electron, Resour (2008)

    Google Scholar 

  44. Li, Y., Chen, X., Tian, J., Zhang, X., Wang, K., Yang, J.: Automatic recognition of sign language subwords based on portable accelerometer and emg sensors. In: International Conference on Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction, pp. 1–7 (2010). https://doi.org/10.1145/1891903.1891926

  45. Liu, Y., Shen, Y., Chan, H., Lu, Y., Wang, D.: Touching the future: the effects of gesture-based interaction on virtual product experience (2015)

  46. Lumsden, J., Brewster, S.: A paradigm shift: alternative interaction techniques for use with mobile and wearable devices. In: Proceedings of the 2003 Conference of the Centre for Advanced Studies on Collaborative Research, pp. 197–210. IBM Press (2003). https://doi.org/10.1145/961322.961355

  47. Lupinetti, K., Ranieri, A., Giannini, F., Monti, M.: 3d dynamic hand gestures recognition using the leap motion sensor and convolutional neural networks. In: International Conference on Augmented Reality, Virtual Reality and Computer Graphics, pp. 420–439. Springer (2020). https://doi.org/10.1007/978-3-030-58465-8_31

  48. Ma, R., Zhang, Z., Chen, E.: Human motion gesture recognition based on computer vision. Complexity 2021,(2021). https://doi.org/10.1155/2021/6679746

  49. Mahzoon, M., Maher, M.L., Grace, K., Locurto, L., Outcault, B.: The willful marionette: modeling social cognition using gesture–gesture interaction dialogue. In: International Conference on Augmented Cognition, pp. 402–413. Springer (2016). https://doi.org/10.1007/978-3-319-39952-2_39

  50. Mikolajczyk, K., Leibe, B., Schiele, B.: Local features for object class recognition. In: Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, vol. 2, pp. 1792–1799. IEEE (2005). https://doi.org/10.1109/ICCV.2005.146

  51. Molina, J., Pajuelo, J.A., Escudero-Viñolo, M., Bescós, J., Martínez, J.M.: A natural and synthetic corpus for benchmarking of hand gesture recognition systems. Mach. Vis. Appl. 25(4), 943–954 (2014). https://doi.org/10.1007/s00138-013-0576-z

    Article  Google Scholar 

  52. Nacenta, M.A., Kamber, Y., Qiang, Y., Kristensson, P.O.: Memorability of pre-designed and user-defined gesture sets. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1099–1108 (2013). https://doi.org/10.1145/2470654.2466142

  53. Oprisescu, S., Barth, E.: 3d hand gesture recognition using the hough transform. Adv. Electr. Comput. Eng. 13(3), 71–77 (2013). https://doi.org/10.1016/j.coastaleng.2013.02.005

  54. Oron, S., Bar-Hillel, A., Avidan, S.: Real-time tracking-with-detection for coping with viewpoint change. Mach. Vis. Appl. 26(4), 507–518 (2015). https://doi.org/10.1007/s00138-015-0676-z

    Article  Google Scholar 

  55. Pal, M., Mather, P.M.: Assessment of the effectiveness of support vector machines for hyperspectral data. Future Gen. Comput. Syst. 20(7), 1215–1225 (2004). https://doi.org/10.1016/j.future.2003.11.011

    Article  Google Scholar 

  56. Park, S., Trivedi, M.M.: Multi-person interaction and activity analysis: a synergistic track-and body-level analysis framework. Mach. Vis. Appl. 18(3–4), 151–166 (2007). https://doi.org/10.1007/s00138-006-0055-x

    Article  MATH  Google Scholar 

  57. Pavlovic, V.I., Sharma, R., Huang, T.S.: Visual interpretation of hand gestures for human-computer interaction: a review. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 677–695 (1997). https://doi.org/10.1109/34.598226

    Article  Google Scholar 

  58. Phung, S.L., Bouzerdoum, A., Chai, D.: A novel skin color model in ycbcr color space and its application to human face detection. In: Proceedings of International Conference on Image Processing, vol. 1, pp. I–I. IEEE (2002). https://doi.org/10.1109/ICIP.2002.1038016

  59. Rabbi, I., Ullah, S.: Extending the tracking distance of fiducial markers for large indoor augmented reality applications. Adv. Electr. Comput. Eng. 15(2), 59–65 (2015). https://doi.org/10.1007/s35127-015-0706-1

    Article  Google Scholar 

  60. Raees, M., Ullah, S., Rahman, S.U., Rabbi, I.: Image based recognition of pakistan sign language. J. Eng. Res. 1(4), 1–21 (2016). https://doi.org/10.7603/s40632-016-0002-6

    Article  Google Scholar 

  61. Rautaray, S.S., Agrawal, A.: Real time hand gesture recognition system for dynamic applications. Int. J. UbiComp 3(1), 21 (2012). https://doi.org/10.5121/iju.2012.3103

    Article  Google Scholar 

  62. Rocha, L., Velho, L., Carvalho, P.C.P.: Image moments-based structuring and tracking of objects. In: Proceedings of XV Brazilian Symposium on Computer Graphics and Image Processing, pp. 99–105. IEEE (2002). https://doi.org/10.1109/SIBGRA.2002.1167130

  63. Saffer, D.: Designing Gestural Interfaces: Touchscreens and Interactive Devices. O’Reilly Media Inc, Newton (2008)

    Google Scholar 

  64. Sahane, M., Salve, H., Dhawade, N., Bajpai, S.: Visual interpretation of hand gestures for human computer interaction. Environments (VEs) 2, 53 (2014). https://doi.org/10.1109/34.598226

  65. Schröder, M., Elbrechter, C., Maycock, J., Haschke, R., Botsch, M., Ritter, H.: Real-time hand tracking with a color glove for the actuation of anthropomorphic robot hands. In: 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pp. 262–269. IEEE (2012). https://doi.org/10.1109/HUMANOIDS.2012.6651530

  66. Sharma, R.P., Verma, G.K.: Human computer interaction using hand gesture. Procedia Comput. Sci. 54, 721–727 (2015). https://doi.org/10.1016/j.procs.2015.06.085

    Article  Google Scholar 

  67. Smus, B., Riederer, C.: Magnetic input for mobile virtual reality. In: Proceedings of the 2015 ACM International Symposium on Wearable Computers, pp. 43–44. ACM (2015). http://dx.doi.org/10.1145/2802083.2808395

  68. Starner, T., Leibe, B., Minnen, D., Westyn, T., Hurst, A., Weeks, J.: The perceptive workbench: computer-vision-based gesture tracking, object tracking, and 3d reconstruction for augmented desks. Mach. Vis. Appl. 14(1), 59–71 (2003). https://doi.org/10.1016/S1246-7391(03)00007-1

    Article  Google Scholar 

  69. Tapu, R., Mocanu, B., Tapu, E.: A survey on wearable devices used to assist the visual impaired user navigation in outdoor environments. In: 11th International Symposium on Electronics and Telecommunications (ISETC), pp. 1–4. IEEE (2014). https://doi.org/10.1109/ISETC.2014.7010793

  70. Tootaghaj, D.Z., Sampson, A., Mytkowicz, T., McKinley, K.S.: High five: improving gesture recognition by embracing uncertainty. arXiv preprint arXiv:1710.09441 (2017)

  71. Torres-Huitzil, C.: A review of image interest point detectors: from algorithms to fpga hardware implementations. In: Image Feature Detectors and Descriptors, pp. 47–74. Springer (2016). https://doi.org/10.1007/978-3-319-28854-3_3

  72. Tran, T.T., Pham, V.T., Shyu, K.K.: Moment-based alignment for shape prior with variational b-spline level set. Mach. Vis. Appl. 24(5), 1075–1091 (2013). https://doi.org/10.1007/s00138-013-0504-2

    Article  Google Scholar 

  73. Vanacken, D., Beznosyk, A., Coninx, K.: Help systems for gestural interfaces and their effect on collaboration and communication. In: Workshop on Gesture-Based Interaction Design: Communication and Cognition. Citeseer (2014)

  74. Wachs, J.P., Kölsch, M., Stern, H., Edan, Y.: Vision-based hand-gesture applications. Commun. ACM 54(2), 60–71 (2011). https://doi.org/10.1145/1897816.1897838

    Article  Google Scholar 

  75. Walter, R., Bailly, G., Müller, J.: Strikeapose: revealing mid-air gestures on public displays. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 841–850 (2013). https://doi.org/10.1145/2470654.2470774

  76. Wang, C., Cannon, D.: A virtual end-effector pointing system in point-and-direct robotics for inspection of surface flaws using a neural network based skeleton transform. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 784–789. IEEE (1993). https://doi.org/10.1109/ROBOT.1993.292240

  77. Weissmann, J., Salomon, R.: Gesture recognition for virtual reality applications using data gloves and neural networks. In: Proceedings of International Joint Conference on Neural Networks, IJCNN’99 (Cat. No. 99CH36339), vol. 3, pp. 2043–2046. IEEE (1999). http://dx.doi.org/10.1109/IJCNN.1999.832699

  78. Wilson, V.: Applicability: What is it? how do you find it? Evid. Based Libr. Inf. Pract. 5(2), 111–113 (2010)

  79. Wolf, M.T., Assad, C., Stoica, A., You, K., Jethani, H., Vernacchia, M.T., Fromm, J., Iwashita, Y.: Decoding static and dynamic arm and hand gestures from the jpl biosleeve. In: IEEE Aerospace Conference, pp. 1–9. IEEE (2013). https://doi.org/10.1109/AERO.2013.6497171

  80. Wu, M.Y., Ting, P.W., Tang, Y.H., Chou, E.T., Fu, L.C.: Hand pose estimation in object-interaction based on deep learning for virtual reality applications. J. Vis. Commun. Image Represent. 70, 102802 (2020). https://doi.org/10.1016/j.jvcir.2020.102802

    Article  Google Scholar 

  81. Xiao, M., Feng, Z., Yang, X., Xu, T., Guo, Q.: Multimodal interaction design and application in augmented reality for chemical experiment. Virtual Real. Intell. Hardw. 2(4), 291–304 (2020). https://doi.org/10.1016/j.vrih.2020.07.005

    Article  Google Scholar 

  82. Ye, G., Corso, J.J., Burschka, D., Hager, G.D.: VICS: a modular HCI framework using spatiotemporal dynamics. Mach. Vis. Appl. 16(1), 13–20 (2004). https://doi.org/10.1007/s00138-004-0159-0

    Article  MATH  Google Scholar 

  83. Zhang, D., Adipat, B.: Challenges, methodologies, and issues in the usability testing of mobile applications. Int. J. Hum. Comput. Interact. 18(3), 293–308 (2005). https://doi.org/10.1207/s15327590ijhc1803_3

    Article  Google Scholar 

  84. Zhang, M., Zhang, Z., Chang, Y., Aziz, E.S., Esche, S., Chassapis, C.: Recent developments in game-based virtual reality educational laboratories using the microsoft kinect. Int. J. Emerg. Technol. Learn. (iJET) 13(1), 138–159 (2018). https://doi.org/10.3991/ijet.v13i08.9048

    Article  Google Scholar 

  85. Zhao, J., Allison, R.S.: Comparing head gesture, hand gesture and gamepad interfaces for answering yes/no questions in virtual environments. Virtual Real. 24(3), 515–524 (2020). https://doi.org/10.1007/s10055-019-00416-7

    Article  Google Scholar 

  86. Zielasko, D., Horn, S., Freitag, S., Weyers, B., Kuhlen, T.W.: Evaluation of hands-free HMD-based navigation techniques for immersive data analysis. In: IEEE Symposium on 3D User Interfaces (3DUI), pp. 113–119. IEEE (2016). https://doi.org/10.1109/VR.2016.7504781

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Raees.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raees, M., Ullah, S. LPI: learn postures for interactions. Machine Vision and Applications 32, 113 (2021). https://doi.org/10.1007/s00138-021-01235-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-021-01235-0

Keywords

Navigation