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Abstract
Inspection planning approaches so far have focused on automatically obtaining an optimal set of viewpoints required to cover
a given object. While research has provided interesting results, the automatic inspection planning has still not been made a
part of the everyday inspection system development process. This is mostly because the plans are difficult to verify and it
is impossible to compare them to laboratory-developed plans. In this work, we give an overview of available generate-and-
test approaches, evaluate their results for various objects and finally compare them to plans created by inspection system
development experts. The comparison emphasizes both benefits and downsides of automated approaches and highlights
problems which need to be tackled in the future in order to make the automated inspection planning more applicable.

Keywords Visual surface inspection · Inspection planning · Viewpoint placement · Image acquisition optimization

1 Introduction

An automated system performing visual surface inspection
is an important component in industrial production lines. It is
used to inspect a given object for defects which were strictly
defined by themanufacturer. Inspected objects have a varying
level of geometrical complexities, from simple flat surfaces
(e.g., sheet metal or paper production) to more complicated
freeform structures containing hard-to-inspect areas such as
holes and cavities. In addition to the geometrical complex-
ity, surface of the object changes its appearance depending
on the material and surface texture. The development of
such systems today is experimentally driven and requires a
group of experts. It can roughly be divided into four steps:
product assessment, prototype configuration, prototype veri-
fication and configuration adaptation. The steps include both
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hardware (image acquisition) and software (image analysis)
aspects of the system development, with both being equally
important. A well- designed image acquisition ensures that
all necessary parts of the object are imaged in a way which
will enable the image analysis to detect defects.

The process of designing the right image acquisition setup
can be lengthy and is likely to integrate subjective assump-
tions made by the expert developing the system. Challenges
which are met during the development typically derive from
the surface material and the geometrical complexity of the
inspected object. The high variation in surface orientation
makes not only the reflectance issues more prominent, but
also introduces a problem of self-occlusion. Taking it all
into consideration, the expert is expected to find an acquisi-
tion solution, capable of inspecting the object in its entirety.
Therefore, once set up, the inspection system cannot be easily
adapted to a new application without repeating the complete
prototyping process.

Such inflexibility may be acceptable for production lines
which consistently produce a small set of known objects.
However, if objects on the production line vary, development
of automated inspection system becomes more challeng-
ing. It causes particular problems for additive manufacturing
industry, as well as factories that aim to follow the Industry
4.0 trend, orienting their production toward serialization and
high product customization.

Automated planning of inspection system aims to make
the overall design process more flexible and faster by pro-
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viding an expert with a possibility to use a set of automated
methods and tools. The approaches offered so far focused on
optimization of viewpoints (camera positions) relative to the
object, but gave little attention to evaluation of methods used
to generate viewpoints before optimization. In this work, we
explore different existing generate-and-test techniques used
for viewpoint generation and compare their performance in
terms of achieved coverage in the resulting set of viewpoints.
Additionally, we introduce a straightforward generate-and-
use approach and examine its use. Finally, for the first time,
we offer a possibility to compare results of automated and
manual viewpoint planning for the same objects.

All the results presented in this work have been made
available online1, as well as the source code for obtaining
the graphs and tables presented in this chapter2.

2 Inspection planning research

The importance of researching inspection planning has been
recognized a few decades ago with Cowan and Kovesi
[1], where they examined a possibility of using an analyt-
ical approach and highlighted the complexity of the task.
Since then, the topic received attention sporadically, with
most of the works focusing on optimal device placement.
Works which did not focus solemnly on device placement
were Tarabanis et al. [2], Scott et al. [3], and Gospodnetic
et al. [4]. Tarabanis et al. [2] introduced the classification
into generate-and-test and synthesis approach, and made
an exhaustive overview of the work done so far. The sur-
vey considers objects containing only polyhedral features
and the authors state a clear need for the development of
planning algorithms capable of handling complex surfaces.
They are inclined toward the synthesis approach, stating
that the viewpoint candidate approach might have the fol-
lowing drawbacks: computational costs of the combinatorial
search over finely tessellated (spherical) parameter spaces,
use of a tessellated sphere for viewpoint visibility evalua-
tion, and overall scalability of the approach. Besides a survey,
Scott et al. [3] introduced 16 requirements a view planning
algorithm for range sensing should satisfy and, among oth-
ers, emphasized the lack of standardized benchmarks. Those
requirements have been adapted and expanded by Gospod-
netic et al. [4], in order to be suitable for flexible inspection
systems. Additionally, they introduced a concept of a modu-
lar inspection planning pipeline which is application-flexible
and made a clear distinction between an automated and
semi-automated inspection planning and posed a list of
requirements flexible inspection planning systems must sat-
isfy.

1 https://owncloud.fraunhofer.de/index.php/s/H8jV9rwGN84knzP.
2 https://gitlab.itwm.fraunhofer.de/gospodnetic/vob.

Works which focused on optimal device placement were
adopting either a continuous or a discrete approach. The dis-
crete approaches received a lot more attention and will be
the focus of our work. However, it is worth mentioning that
continuous approaches presented by Mavrinac et al. [5] and
Mohammadikaji [6] are a valid and interesting alternative.

Discrete inspection planning offers a set of solutions
which are practically acceptable, but do not guarantee to pro-
duce the global optimum. It resides on a common idea that
first a set of viewpoint candidates is created, which is after-
ward evaluated and used for picking optimal viewpoints. We
split the approaches into three categories: Space Sampling,
Vertex Sampling and Patch Sampling.

2.1 Space sampling

Space Sampling was most prevalent in the early works, but
can still be found in more recent works. It is performed inde-
pendently of the object 3D model, with a set of parameters
defining the sampling space. Viewpoint candidates, which
are generated based on the sampling, can further be adapted
using the actual 3Dmodel, i.e., the 3Dmodel is usedpassively
for refinement and evaluation of already created viewpoint
candidates.

Sakane et al. [7,8] use uniformly and adaptively tessel-
lated spheres for solution space discretization. The size of
the resulting viewpoint candidate sets is briefly commented
on, stating that the desired number of viewpoint candidates
should be manually chosen to balance the trade-off between
planning complexity and accurate inspection representation.
Similarly, Tarbox and Gottschlich [9] use a densely sampled
viewing sphere, explicitly stating they have no a priori prefer-
ence on viewpoint placement. The camera viewing distance
d is fixed to an arbitrary number and the viewpoints are uni-
formly distributed over the sphere’s surface. It is assumed
that the visible parts of the object are always within the
acceptable depth of field. The main incentive for using dense
sampling is to increase the likelihood of the discovery and
coverage of regions which are difficult to sense by introduc-
ing redundancy. For meshes containing 1000–2500 vertices,
they produce a set of 15,000 viewpoint candidates which are
then used for the evaluation of the proposed optimization
algorithms. Jing [10] employs a mesh dilation by a maxi-
mum depth field within which a camera can operate. Such an
approach resembles the tessellated sphere, but with higher
correlation to the model geometry. The viewpoint candi-
dates are obtained by sampling the dilated surface until a
predefined number of viewpoint candidates is reached. Their
orientation is calculated based on the distance d to the origi-
nal object primitives, where each primitive has an attraction
force of 1/d2.
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2.2 Vertex sampling

Recent contributions tend to use the given 3Dmodel actively.
Instead of focusing on the space around the object, they
directly sample the object mesh and determine camera posi-
tions using a predefined distance to the surface points. Such
approaches are more appropriate for the computation of
feature-sensitive results.

Scott [11] suggests a model-based approach using geo-
metric information of the object. A viewpoint candidate is
created for each vertex of the mesh, which is stated to be the
optimal point for surface description. Due to the high resolu-
tion and geometric complexity of some discrete models, the
first step is to perform a curvature-sensitive resampling.After
an additional decimation step, the final viewpoint candidate
set is created. A good decimation level is heuristically deter-
mined to be 32 times lower than the targetmodel. Themethod
achieves good results for a set covering approach (e.g., a
model of approx. 36,000 vertices is resampled to 702 ver-
tices and decimated to 72 viewpoint candidates). In his work
on underwater inspection path planning, Englot [12] creates
a viewpoint candidate set using random sampling of themesh
primitives, where each primitive is used as a pivot point for
a viewpoint. The viewpoints are generated until each facet
of the model has reached an arbitrary level of redundancy
(number of different viewpoint candidates fromwhich a facet
can be observed), resulting in ca. 2500 and 1300 viewpoint
candidates from approximately 131,000 and 107,000 ver-
tex meshes, respectively. Gronle and Osten [13] agree with
[11] on generating one viewpoint candidate per mesh vertex.
Also, they agree with [12] that using every vertex is redun-
dant. Instead of mesh decimation or random vertex picking,
they reduce the cardinality of their viewpoint candidate sets
using an octree. Each leaf contains a group of neighboring
candidates. A viewpoint is selected at random and all the
neighboring viewpoints in the same leaf are removed if their
orientation vector closes an angle with the chosen viewpoint
which is smaller than a predefined threshold.

2.3 Patch sampling

Like Vertex Sampling, Patch Sampling uses mesh informa-
tion to subdivide the given 3D model into regions which are
afterward sampled using different criteria. Given that geo-
metrically complex features are rarely equally distributed in
all areas of the object, subdividing an object into smaller
regions makes sense and provides an opportunity to create an
unevenly distributed viewpoint candidate set. Such an uneven
set of candidates has an opportunity to contain more view-
points in regions of higher complexity.

Sheng et al. [14,15] focus on inspecting objects consist-
ing of surfaces with prominent differences in orientation or
having lowdegree ofwaviness. They take the flat patch grow-

ing approach by first splitting the surface into sub-patches,
calculating the bounding box of each sub-patch and finally
placing the viewpoint candidate at a fixed distance along the
normal of the largest bounding box side. Prieto et al. [16] dis-
cretize a 3D model described by NURBS into voxels, split
the object into sub-surfaces representing simple patches, and,
for each patch, find a viewpoint which can be used on the
surface in a sweeping manner (also known as view swaths).
While such an approach works well on simple objects, it
struggles when applied on free form or highly complex sur-
faces. Instead of trying to find the optimal positions for the
camera placement, Mosbach et al. [17], decided to tackle the
problem of geometrical complexity by sampling the surface
with various densities. Their approach uses B-splines and a
set of so-called feature functionals to analytically measure
geometrical features of an object and use them to guide the
sampling process (e.g., higher sampling in the curved areas
and lower in the flat areas). For discretemesh representations,
they offer a preprocessing step to reconstruct the object first
by using a set of B-spline surfaces, while for the B-spline rep-
resentation the method can be used directly. The approach
is independent of the 3D model resolution and generates
viewpoints based on values measuring objects geometrical
properties.

2.4 Manual planning

Automatic inspection planning aimed to enable inspection of
geometrically complex surfaces, which would otherwise be
very difficult to perform by an engineer. Recently, Gospod-
netic et al. [18] took a different approach providing an
engineer with an interactive surface inspection planning tool
capable of replicating the three main parts of the physical
inspection planning process: inspection object exploration,
inspection region selection on the 3D model and viewpoint
selection. Using the tool, an engineer can perform inspec-
tion planning digitally and obtain a real-time feedback about
inspection coverage of the newly created plan and each of
the viewpoints.

3 Viewpoint candidate requirements

In this work, we focus on inspecting objects based on their
geometrical features, while the material characteristics are
yet to be further examined. For that purpose requirements
which a good set of viewpoint candidates must satisfy are as
follows:

R1 Provide full coverage
R2 Exhibit adaptive coverage redundancy
R3 Minimize the amount of inadmissible viewpoints
R4 Have scalable coverage redundancy
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A set of viewpoint candidates must be able to com-
pletely cover the inspected object, or its restricted region,
i.e., a predefined region on the object which needs to be
inspected (3). Otherwise, its subset, the optimal viewpoints,
will also not cover all regions which need to be inspected.
Geometrical complexities typically vary across the object’s
surface, and viewpoint candidate placement should reflect
that (3). That way more viewpoints should be concentrated
in areas which are difficult to inspect (more complex). Fur-
thermore, generate-and-test approaches rely on a visibility
matrix, which is computed for every viewpoint-primitive pair
and can be costly to compute (see Sect. 5). A primitive is
considered visible by a viewpoint if it is observed in such
a manner to satisfy planning constraints (e.g., being within
a predefined depth of field or observed under an accept-
able angle). A viewpoint candidate set is likely to contain
viewpoints which are oriented toward the object, but do not
satisfy the constraints, making those viewpoints inadmissi-
ble. However, the visibilitymatrixwill be computed for those
viewpoints as well. In order to avoid unnecessary computa-
tions, 3 states that the number of such viewpoints should be
kept as low as possible. Finally, optimization based on the
visibility matrix is an NP-hard set covering problem. While
redundancy is needed to provide possibility to choose the
optimal solution, too much redundancy will cause combina-
torial explosion. In that sense, 3 emphasizes the importance
that the same approach can generate a viewpoint candidate
set with different viewpoint densities.

Since inspection planning will always take place prior to
an actual implementation of the inspection system, it is safe
to assume it can be done offline and poses no additional
requirements regarding time restrictions.

4 Object space exploration

As can be noticed in the related work, there are various
approaches tackling the viewpoint candidate generation.
This work aims to reproduce the most distinct ones, com-
pare them and revise based on requirements introduced in
Sect. 3.

A viewpoint (Fig. 1) represents a camera position in
space, relative to the object’s origin. It is defined as a 9D
vector v = [p,d,u], p,d,u∈ R

3. p represents a point in
space where the camera is positioned, d is the direction
of the optical axis of the camera (direction-vector) and u
represents orientation of the camera around the optical axis
(up-vector). The camera is assumed to be a typical industrial
area-scan camera producing a 2D image. In order to gener-
ate a set of viewpoint candidates, object space exploration
must be performed. It is a process used to determine appro-
priate positions for viewpoint candidates. For the purpose of

Fig. 1 Viewpoint position denotes the eye of the camera, relative to
the object. Its orientation is completely defined by an up-vector (blue)
and direction-vector (red). The two blue planes denote the depth-of-
field, which depends on the lens settings and describes the space within
which the objectwill be imagedwith satisfactory sharpness (color figure
online)

this work, we will follow the categorization introduced in
Sect. 2.

4.1 Space sampling

4.1.1 Fixed-distance sphere sampling

The methods presented in [7–9] generate viewpoint candi-
dates by defining a sphere around the object and sampling its
surface. The origin of the sphere coincides with the center
of the bounding box around the object to be inspected. The
sphere is uniformly sampled to obtain a predetermined num-
ber of points. For every obtained point, a viewpoint is created
by placing the camera at the point and orienting it toward the
center of the object. The orientation of the up vector is not
discussed. In this work, the up vector is determined using
a cross-product of viewpoint direction d and a predefined
helper vector [0, 1, 0] (or [1, 0, 0] in case the first one is par-
allel withd). Because all the viewpoints are generated strictly
on a sphere, they will not follow the geometry of the object
and their distance to the object will vary. The sphere radius is
initially set to an arbitrary focusing distance from the camera
and is afterward expanded by values relating to the bounding
box (e.g., half of maximal, average or minimal length of the
object’s bounding box), as can be seen in Fig. 2a–c.

4.1.2 Constraint-aware sphere sampling

Since the objects are typically not spherical, generating view-
points on a sphere can produce different results, with a
significant number of viewpoints being completely inadmis-
sible, i.e., not satisfying inspection constraints. Works so far
did not mention possibilities to tackle this problem. For that
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(a) Maximal bounding box (b) Average bounding box (c) Minimal bounding box

(d) Object intersection (e) Convex hull intersection (f) Mixed displacement

(g) Object intersection (h) Convex hull intersection (i) Mixed displacement

Fig. 2 1000 viewpoint candidates generated using fixed-distance ((a)–
(c)) and distance-aware Sphere Sampling ((d)–(i))methods. Viewpoints
are visualized using their orientation (green line) and focal point (red).
The focal point is placed along the viewpoint optical axis at focusing
distance For fixed radius, a predetermined focusing distance is used
and extended with maximum bounding box extent (a), average bound-
ing box extent (b) or minimum bounding box extent (c). (d)–(i) show

distance-aware methods where viewpoints are repositioned to the point
of intersection with the surface of the object ((d), (g)), convex hull ((e),
(h)), or both combined ((f), (i)). In Figures (d) – (f) viewpoints are
repositioned without changing the initial orientation, while in Figures
(g)–(i) they are both repositioned and reoriented to match the negative
of intersection point normal

purpose, we suggest and test methods which still use the
sampling sphere as a starting point but further reposition
the viewpoints to satisfy inspection constraints. Reposition-
ing the viewpoints after sampling the sphere will introduce
passive geometry awareness, meaning that the viewpoint
generation itself was not guided by the geometry, but the
geometry was used to adapt the viewpoints. The reposition-
ing is performed based on information obtained by casting a
ray along the viewpoint direction vector and evaluating the

intersection. If a primitive has been intersected, the view-
point can be adapted to match any given constraints. For the
purpose of this work, we are evaluating focusing distance
and angle of incidence constraints.

The focusing distance constraint is satisfied by reposition-
ing the viewpoint along its optical axis (direction vector) so
that the distance between the viewpoint and intersected object
surfacematches the focusing distance (Fig. 2d), i.e., the focal
point of the viewpoint lies on the surface of the object. If the
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optical axis of the viewpoint does not intersect the object,
the viewpoint remains unchanged. Because of that, objects
which have even slightlymore complex topology are likely to
suffer if viewpoints are repositioned only based on the inter-
section of the optical axis and the object. Angle of incidence
restricts themaximal angle which the optical axis closes with
the normal of the intersected primitive. The constraint is sat-
isfied if the viewpoint is repositioned to be parallel with the
normal.

The problem can be alleviated if the convex hull of the
object is used. Instead of checking if the optical axis inter-
sects the object itself, it is checked if it intersects the convex
hull of the object. If the intersection exists, the viewpoint is
repositioned accordingly (Fig. 2e). Repositioning viewpoints
in that manner will create floating viewpoints, for which the
focal point does not lie on the surface object but is close to it,
increasing the likelihood of the viewpoint being admissible.

Displacing a viewpoint to the convex hull of an object
may cause viewpoints, which would otherwise intersect the
object, to be placed at a distance to the surface greater than
the camera focusing distance. Mixed displacement method
(Fig. 2f) repositions the viewpoint focal point either to the
surface of an object, or to its convex hull if no intersection
with the object is available.

As can be noticed in Fig. 2a–f, repositioning the view-
pointswithout changing their orientation reveals thatmany of
theviewpointsmight bediscarded as inadmissible due to their
angle of incidence. For that purpose, in addition to focusing
distance repositioning, the viewpoints are reoriented to sat-
isfy d = −n, where n represents the normal of an intersected
primitive (Fig. 2g–i).

4.2 Vertex sampling

Using the sampling sphere might be a straightforward
approach, but the geometry of the object is only taken into
account by the constraint-aware methods. In order to focus
more on the geometry when generating viewpoints, using
mesh vertices is a natural approach, since vertices can be
considered as optimal points required to describe the given
geometry [11].

4.2.1 Direct vertex sampling

In its simplest form, a viewpoint candidate is created for
every vertex of the object and then displaced from the point
by the predetermined focusing distance. Direction of the
displacement depends on the desired orientation of the view-
point. Therefore, when using the vertex-based approach, it
is important to determine the desired viewpoint orientation
and density aspects beforehand. A viewpoint can be oriented
toward the center of the object (Fig. 3a, b) or along the nega-
tive normal of the vertex used to generate it (Fig. 3c, d). Since

Fig. 3 Viewpoint candidates generated using Direct Vertex Sampling
using two different orientations for two different mesh resolutions. (a)
and (b) show viewpoints oriented toward centroid, while (c) and (d)
show viewpoints oriented using corresponding vertex normal. Figures
(a) and (c) viewpoints are generated on a mesh containing 337 vertices,
while the mesh used for (b) and (d) had 1350 vertices. Number of
viewpoints for all figures corresponds to the number of vertices

a viewpoint is generated for every vertex, cardinality of the
vertex- basedmethods is directly dependent on the resolution
of the mesh. Therefore, Scott et al. [11] suggested to lower
the number of viewpoint candidates by reducing mesh reso-
lution. However, the spatial distribution is also dependent on
the vertex placement and the resolution reduction may cause
complete absence of viewpoints in flat areas, as shown in Fig.
3a, c.

4.2.2 Octree filtering

As proposed by Gronle and Osten [13], viewpoints are first
generated for every vertex and oriented in the negative direc-
tion of the vertex normal. In order to introduce different
angles of incidence into the set, additional viewpoints are
generated byduplicating and rotating every viewpoint around
the corresponding vertex, as shown in Fig. 4a. Maximum
rotation of each viewpoint is 90◦ from the original orien-
tation. All the viewpoints are further stored into an octree,
which is subdivided until the child deceeds a predetermined
threshold t and the leaves contain neighboring viewpoints.
Finally, the number of viewpoints is reduced by randomly
picking a viewpoint in each leaf and removing neighbors
whose orientation difference is smaller than the predeter-
mined minimal angle φ, as shown in 4b.

For the purpose of this work, we have implemented the
proposed method and introduced minor modifications. Since
the viewpoint distance has not been explicitly discussed, we
assume the viewpoint is displaced from the vertex along the

123



Viewpoint placement for inspection planning Page 7 of 21 2

Fig. 4 Viewpoint candidates generated using octree filtering method
for a mesh containing 1350 vertices. (a) First, viewpoints are created
for each vertex, oriented using the vertex normal and rotated in two
planes by 55◦ from the original viewpoint, creating 6750 viewpoints
before filtering. (b) After filtering, 218 viewpoints remained as view-
point candidates

vertex normal for the value of a predetermined focusing dis-
tance. In the originalwork, the authors performed the rotation
in a single plane which matched a plane accessible by the
available 4-DOF manipulator. We assume a 6-DOF manipu-
lator is available and therefore rotates the viewpoints in two
perpendicular rotation planes. Originally, volume fraction of
the inspected object is used as the octree subdivision thresh-
old. Since the octree is built aroundviewpoints after they have
been displaced to satisfy the focusing distance, it is possible
that the adequate threshold might be greater than the object
volume and determining it might be difficult. In this work,
we use the volume threshold, but also explore a possibility of
using a different threshold, i.e., a percentage of all generated
viewpoint candidates contained within the leaf.

4.3 Patch sampling

Direct use of the mesh representation of an object restricts
the viewpoint generation to the structure of the mesh. Fur-
thermore, it provides little information about geometrical
features of the object. As mentioned in Sect. 2.3, subdivision
of the object into patches gives an opportunity to generate
viewpoints based on features of each separate patch.

An approach by Mosbach et al. [17] utilizes models con-
sisting of multiple B-spline surfaces (patches) and their
geometrical features, as shown in Fig. 5. Most discrete
meshes can easily be converted into such models. Let S :
�0 → R

3 be a B-spline surface parameterized over a
rectangular parameter domain �0 ⊂ R

2. Viewpoint can-
didates corresponding to a B-spline surface are computed
by a non-uniform surface sampling, guided by a so-called
feature functional E(S,�), which measures how prominent
a certain property occurs within a given surface segment
S(�) = {S(u, v) | (u, v) ∈ �} for � ⊆ �0. The choice
of the feature functional controls the way the resulting view-
points are distributed. Feature functionals considered here
are as follows.

(a) Thin plate (b) Exact curvature

(c) Area (d) Normal deviation

(e) No subdivision

Fig. 5 Viewpoints generated using the patch sampling, based on geom-
etry feature functionals. (a) thin plate—475 viewpoints, (b) exact
curvature—514 viewpoints, (c) area— 427 viewpoints, (d) normal
deviation—322 viewpoints and e no subdivision—196 viewpoints

Curvature. By integrating the squared principal curvatures
κ1 and κ2, this term accurately describes surface bending. It
only vanishes if and only if the surface is flat.

Eκ(S,�) =∫∫
�

(κ2
1 (u, v) + κ2

2 (u, v)) ‖∂u S(u, v) × ∂vS(u, v)‖ dudv.

Thin-plate energy. This term is commonly used in varia-
tional design. It approximately measures surface bending via
second derivatives. It can be computed efficiently but might
have small nonzero values in flat regions.

ETP(S,�) =
∫∫

�

‖∂uu S(u, v)‖2 + 2 ‖∂uvS(u, v)‖2

+ ‖∂vvS(u, v)‖2 dudv

Surface area. By simplymeasuring surface area of a given
segment, this feature functional leads to a close to uniform
surface sampling. It can be combined with a curvature-based
feature functional to increase the amount of viewpoints in
highly curved regions while still ensuring a certain coverage
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of large, flat regions.

EA(S,�) =
∫∫

�

‖∂u S(u, v) × ∂vS(u, v)‖ dudv.

Normal deviation. This feature functional measures the
maximum deviation of any normal vector n(u, v) within the
segment from the average normal vector

END(S,�) = max
(u,v)∈�

cos−1 (
navg(S,�) · n(u, v)

)

with

navg(S,�) =
∫∫

�
n(u, v) ‖∂u S(u, v) × ∂vS(u, v)‖ dudv∫∫

�
‖∂u S(u, v) × ∂vS(u, v)‖ dudv .

The resulting values are geometrically intuitive, but also
more affected by local deformations.

Each surface of the model gets recursively subdivided
into smaller segments, until the feature functional values,
evaluated on each segment, are lower than a user-defined
subdivision threshold t . This threshold controls the amount
of resulting viewpoint candidates. It is generally chosen as
a percentage of the total or average feature functional value
across the entire model. For feature functions that compute
geometrically intuitive values (e.g., angles) the threshold can
be also given directly as an absolute value.

5 Next best view optimization

The next best view is a frequently used method to solve the
planning problem [10,11,13]. Since the goal of this paper
is to evaluate performance of different viewpoint candidate
sets using a common method, the same method is used here.
The optimization consists of building the visibility matrix
and using it further to determine the next viewpoint to pro-
vide the biggest coverage. The problem at hand is equivalent
to a minimum set coverage problem, which is an NP-hard
problem.

The visibilitymatrix describes the correlation between the
mesh primitives and viewpoints which can observe them. It
is built using ray tracing, for a set of predefined parameters
describing camera settings and setup constraints. Cam-
era settings include sensor resolution, pixel size and focal
length, while inspection constraints include depth of field
and maximum angle of incidence. The ray-tracing method
is computationally expensive, but is crucial for inspection
planning because of its capability to produce realistic image
simulations.

Once the visibility matrix is built, the optimization (see
Algorithm 1) starts by finding the primitive covered by the
least amount of viewpoints. From the set of viewpoints that

observe this primitive, the viewpoint which observes the
largest part of the object is chosen. Further, viewpoints are
chosen in an iterative way by always choosing the viewpoint
that observes the most uncovered primitives. The process is
repeated until all the primitives are covered or there are no
more viewpoints available.

5.1 Modifications

Next best view optimization, as described above, has two
challenges: (1) ray tracing is computationally expensive and
(2) optimization has a so-called long-tail effect. The long-
tail effect means that, as the coverage converges toward
maximum, every additional viewpoint will have strongly
decreasing coverage impact, introducingonly a small number
of newly observed primitives. Thus a significant number of
viewpoints will be added to the optimal solution which have
no significant impact and a high degree of redundancy. Here
we propose modifications to the next best view algorithm,
which can help tackle the described challenges

Ray tracing is performed for every viewpoint in the candi-
date set. As can be seen from Fig. 2, it is possible that some
viewpoints do not satisfy the inspection constraints along the
optical axis. For example, intersection point, if it even exists,
is notwithin the depth of field, or is observed under thewrong
angle. By assuming that the viewpoint is admissible only if it
satisfies the inspection constraints in the center of the image,
it is possible to filter out inadmissible viewpoints before ray
tracing takes place. That way the time required to build the
visibility matrix is reduced.

As can be seen in Fig. 10, 80% of the coverage will typi-
cally be covered within the first 30% of viewpoints. Further,
viewpoints are likely to introduce a significant amount of
coverage redundancy with continuously smaller amount of
newly covered surface. For that reason, a so-called stalling
threshold is introduced. The stalling threshold is set to an
arbitrary percentage of primitives which are newly observed
by the second used viewpoint (the first viewpoint depends
on the least observed primitive and, as such, must not neces-
sarily introduce the most newly covered surface). That way,
once the next best viewpoint introduces less newly observed
primitives than the threshold, the optimization is stopped.
Such practice is more likely to result in 98% or 99% cover-
age, rather than 100%.However, themissing coverage can be
examined by the user later on using coverage visualization
and fixed if necessary, as described in Sect. 7.

6 Generate-and-use

Generate-and-test approach relies on a set of pregenerated
viewpoint candidates which are further tested and optimized.
However, it is also possible to generate, test and use a view-
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Algorithm 1 Next Best View
P ← list of all mesh primitives
V ← list of all viewpoint candidates
l ← primitive covered by least viewpoints
Vl ← viewpoints covering l
v ← viewpoint v′ ∈ Vl that covers most primitives
while P 
= ∅ and V 
= ∅ do

O ← O ∪ {v}
P ← P\ primitives covered by v

V ← V\ viewpoints not seeing uncovered primitives
v ← viewpoint covering most uncovered primitives

end while
return O

point right away, thus avoiding a separate generation step of
viewpoint candidates.

In order to give an overview of the idea, this paper intro-
duces a straightforward solution. A viewpoint is created by
choosing a random uncovered primitive of the mesh and dis-
placing the viewpoint to a predefined focusing distance in
the direction of the primitive normal. After creating the view-
point, if it satisfies all the constraints along the optical axis, it
is considered admissible and ray tracing is performed to com-
pute its coverage. Otherwise, the viewpoint is rejected and
the primitive is dismissed from the set of uncovered primi-
tives. The process is repeated until a predetermined coverage
threshold t is exceeded.

7 Manual planning

So far no study has made a direct comparison of automatic
viewpoint planning results and a plan manually created by
an expert. Mostly because the physical nature of expert plan-
ning makes it impractical to precisely record each chosen
viewpoint. Furthermore, the set of parameters used for view-
point evaluation in automatic planning is only a subset of the
parameters used by an expert in the laboratory, making the
results even harder to compare. In this work, the viewpoint
planning interface introduced by Gospodnetic et al. [18] was
extended to provide the possibility of precise manual view-
point planning.

The interface consists of an interactive 3D editor, view-
point preview window, parameter editor and plan infor-
mation. Planning parameters include camera focal length,
sensor specifications (width, height and pixel size), maximal
allowed incidence angle, focusing distance and depth-of-
field interval within which the sharpness is acceptable. Upon
determining the planning parameters, an expert can use the
editor to plan the viewpoints. As shown in Fig. 6, for every
created viewpoint, coverage is computed based on the chosen
parameters and displayed on the surface of the object. Area
which is not colored does not satisfy the constraints (e.g.,
acceptable sharpness or maximal angle of incidence). The

Fig. 6 In the inspection planning interface surface of the object which
is covered by the created viewpoint is highlighted in red and the image
preview is shown in the lower left corner. Viewpoint is denoted by the
blue line, which spans from the camera position to the focal point and is
oriented to match the viewpoint direction vector. Camera up orientation
is denoted by the gray arrow

preview window displays the object geometry as it would
appear in an undistorted image, together with coverage visu-
alization.

A user can create a so-called anchored viewpoints, where
its focal point lies on the surface of the object, or a floating
viewpoints, where the focal point does not touch the surface
of the object. Anchored viewpoints are created by selecting
a point on the surface of the object which should lie in the
center of the image. Floating viewpoints, on the other hand,
are created by selecting a point on the convex hull of the
object.

Every created viewpoint can be selected, copied, moved,
deleted or rotated. Rotation can be performed in three dif-
ferent ways: (1) around its optical axis, thus adjusting the up
vector of the camera, (2) around its focal point, thus adjust-
ing the viewing angle, or (3) around the origin of the object,
which coincides with the world coordinate system. Finally,
when experts plan viewpoints, they always keep in mind a
possibility to reuse the same hardware setup for different
viewpoints, i.e., obtain different viewpoints by rotating the
object using a turntable (rotary table). The approach is par-
ticularly useful for symmetrical or repetitive geometries. For
that purpose, the interface provides a turntable option, where
a user can select viewpoints and replicate them with a pre-
defined rotation in world coordinate system, as can be seen
in Fig. 7.

8 Experiments

All of the methods described in Sects. 4 through 7 have
been applied to three different objects: Gear, Hirth and
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Fig. 7 Viewpoint generation using the turntable option. (a) viewpoints
which can be applied on other parts of the object are created. (b)
viewpoints which should be rotated and replicated are selected (their
coverage is highlighted as blue). As the rotation and replication param-

eters change, the user instantly obtains a visual feedback where the new
viewpoints would be placed. (c) rotation and replication are confirmed
and coverage is computed for the newly created viewpoints

Crankshaft. The comparison pipeline can be seen in Fig. 9. To
achieve maximal comparability, all tested methods used the
same inspection configuration parameters. Camera parame-
ters were defined to match a physical camera setup with a
sensor size of 2448× 2050 px, focal length of 12.93, focus-
ing distance 140mmand depth-of-field interval ranging from
135 to 155 mm. The maximum incidence angle was set to 75
deg.

The objects resemble typical objects to be expected in
surface inspection systems and are of different complexities.
The Gear object (Fig. 8a) has a combination of free form
(teeth and inside of a hole) and flat surfaces. The geometry
of the teeth geometry has a repetitive pattern, but the areas
between the teeth are frequently self-occluded. Furthermore,
the surface on the inside of the hole must be observed at an
angle due to self- occlusion. The Crankshaft object (Fig. 8b)
has an oriented volume (elongated), it is round and can be
logically split into three sections: a section which lies on the
central axis, a sectionwhich is displaced from the central axis
but still parallel with it, and a section which is perpendicular
to the central axis. The surface is not equally smooth in all
regions, adding a potential need for more viewpoints in some
areas. Finally, theHirth object (Fig. 8c) resembles theGear in
terms of the central hole, but has different surfaces.Geometry
on the top surface has repetitive pattern consisting of locally
flat surfaces, while the side and the bottom of the object are
smooth.

All computations have been performed on a PCwithAMD
FX-8320 Eight-Core Processor and 16 GB RAM.

8.1 Generate-and-test

The object space exploration is performed first, generating
a list of viewpoint candidates which are further optimized

Fig. 8 Testing objects (a) Gear (99,998 faces, 50,000 vertices), (b)
Crankshaft (74,018 faces, 37,011 vertices) and (c)Hirth (87,360 faces,
43,680 vertices)

Fig. 9 Comparison pipeline applied to an object. For every object 3
different types of approaches have been used. (1) Object space explo-
ration step (blue) is performed separately from optimization (green). (2)
Object space exploration is intertwined with optimal viewpoint selec-
tion. (3) Manual planning performed by an expert which is expected to
output only optimal viewpoints (color figure online)

using the next best view approach. Computing the visibility
matrix required the most computational time because of the
underlying ray-tracing process which is performed for every
viewpoint candidate. The time required to trace one view-
point varies per image and depends mostly on the portion of
the object which is visible in the image. This took 3.81 s on
average. Therefore, the maximum size of the viewpoint can-
didate set was aimed not to exceed 1000 viewpoints where
number of viewpoints could be used as a direct threshold
(i.e., Sphere Sampling) and 1500 viewpoints otherwise, if
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Table 1 Performance comparison using the complete viewpoint candidate set

Gear Hirth Crankshaft

Approach Method #VPC #OVP % #VPC #OVP % #VPC #OVP %

Space sampling Avg bbox 1000 31 79.6 500 19 90.15 1000 34 29.14

Max bbox 1000 44 48.74 500 10 81.69 500 33 30.38

Min bbox 1000 26 53.33 1000 13 86.76 1000 20 34.63

Convex hull 1000 38 85.55 1000 17 98.69 1000 38 71.79

Object intersection 1000 41 97.47 100 16 98.74 1000 28 65.98

Mixed intersection 1000 41 87.84 500 16 98.08 1000 32 66.74

Convex hull norm. 1000 29 70.02 1000 7 95.56 1000 29 86.4

Object intersection norm. 1000 45 99.05 100 15 98.46 1000 29 90.16

Mixed intersection norm. 1000 36 87.43 1000 16 98.86 1000 28 91.16

Vertex sampling Direct bbox center 1350 36 82.08 1336 32 86.47 2002 34 68.14

Direct norm. 337 35 99.0 125 18 98.39 502 24 99.67

Octree 120 35 98.68 71 17 98.21 182 29 98.98

Patch sampling Thin plate 475 35 98.85 151 13 99.65 276 23 99.69

Exact curvature 514 33 99.03 199 12 99.02 327 23 99.55

Area 427 34 99.09 169 15 99.79 300 24 99.38

Normal deviation 322 35 98.21 151 13 98.67 123 24 99.02

No subdivision 196 35 95.14 70 15 98.79 120 24 99.02

VPC viewpoint candidates, OVP - optimal viewpoints, % coverage

possible. The next best view duration was negligible in com-
parison, lasting under 10 seconds for a viewpoint candidate
set of 1000 viewpoints. In total, we have generated and tested
292 viewpoint candidate sets. 98 for Gear, 107 for Hirth and
87 for Crankshaft. The number of generated sets per object
varies because of the aforementioned aimed number of view-
points to be contained within the set. The time required to
generate viewpoints by any of the analyzed approaches was
in the magnitude of seconds and can therefore be considered
negligible.

Sphere Sampling methods were tested for 10, 100, 500
and 1000 generated viewpoint candidates, using full res-
olution models. Vertex Sampling methods depend on the
resolution of the model used to generate the viewpoint candi-
dates. For that purpose, a Quadratic Edge Collapse Strategy,
implemented in MeshLab [19], was used to obtain lower res-
olutions of the model. The resolution was reduced as long
as distinct geometrical features were preserved (e.g., edges,
holes, cavities). Gear model was reduced to contain 4000,
1350, 675 and 337 vertices, Hirth model 3750, 1336, 800,
250 and 125 vertices and Crankshaft model to 3752, 2002,
1002 and 502 vertices.

The Octree Filtering approach has a set of parameters
which can be adapted. For the purpose of this paper, the
parameters were adjusted heuristically, aiming to reduce the
number of viewpoint candidates as much as possible. In that
sense, systematic testing to explore the optimal combina-
tion of parameters lies outside of the scope of the paper.

Viewpoints havebeengenerated for different resolutionswith
rotation angle being 35◦, 45◦, 55◦ and 60◦ and filtering angle
being 40◦, 50◦, 60◦ and 85◦. The same angles were used for
both volume and viewpoint threshold type. The thresholds
values for both types were found heuristically, with view-
point threshold being chosen as 1/k × 8, where k represents
the aimed octree depth. Complete generation results can be
seen in Appendix, Tables 5, 6 and 7.

B-spline Patch Sampling has been conducted using the
subdivision methods described in Sect. 4.3. For area, exact
curvature and thin plate, feature functional threshold values
were 1, 0.75 and 0.5, while normal deviation used 45◦, 60◦
and 90◦ angle thresholds. Additionally, a no-subdivision run
was performed, which placed a viewpoint in the middle of
every surface patch. This results in the lowest number of
viewpoint candidates, see Fig. 5e.

The performance of each method has been measured in
terms of surface coverage using the next best view optimiza-
tion with stalling threshold set to 2% of the best viewpoint
coverage contribution. The methods were tested separately
without (Table 1) and with (Table 2) the use of filtering
described in Sect. 5.1. For each method, the result with the
lowest number of viewpoint candidates to reach viewpoint
coverage over 98% was considered to be the best perform-
ing. If a method could not produce coverage over 98%, the
result with the highest achieved coverage was considered
as best instead. Among the methods which achieved cover-
age of 98%, those obtaining the lowest number of viewpoint
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Fig. 10 Coverage convergence of object space exploration methods
for each of the three models. The graphs show the number of view-
points selected as optimal (x-axis) and the coverage they have achieved
(y-axis). Rows in the Figure represent Space, Vertex and Patch Sam-
pling approaches, respectively, while columns represent Gear, Hirth

and Crankshaft models, respectively. A single method belonging to an
object space exploration approach is represented as a gray line on the
corresponding graph. The dotted lines represent the envelope behavior,
with blue being the best and orange being the worst performing method
(color figure online)

candidates and lowest number of optimal viewpoints were
emphasized (bolded). In Table 2, the number of used view-
points after filtering was the number of evaluated viewpoint
candidates.

The graphs presented in Fig. 10 show coverage conver-
gence as optimal viewpoints are selected. They provide an
overview of the overall behavior of each object space explo-
ration approach, when applied to different models. The gray
lines on the graphs represent tested methods with different
parameters and show total coverage for each new viewpoint
chosen by the next best view algorithm. Maximum and min-
imum performance per number of chosen viewpoints creates
an envelope. Ideally, all the runs should be coherent and have

similar convergence, with no outliers causing the envelope to
spread. Such behavior shows the consistency of an approach.

The coverage convergence graphs show how fast will
the next best view algorithm converge for a different set of
viewpoint candidates. Beside convergence, the number of
discarded viewpoints gives additional insight into the perfor-
mance of different viewpoint candidate sets by highlighting
howmany viewpoint candidates do not satisfy the inspection
constraints in the very center of the image. For that purpose,
we have computed an average of discarded viewpoints for
each model. The average rejection rate per approach can be
seen in Table 3. Low performance of the Space Sampling
approach can be observed in Tables 1, 2 and 3. For that
reason, and for the sake of brevity, Table 4 contains only
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Table 3 Average discarded viewpoints [%] per object space exploration
approach against each of the models

Gear Hirth Crankshaft

Space sampling 61.87

75.29 77.04 33.29

Vertex sampling 39.51

45.28 46.8 26.47

Patch sampling 15.86

26.59 20.7 0.3

values for methods belonging to Vertex and Patch Sampling
approaches.

8.2 Generate-and-use

The method explained in Sect. 6 can be expected to suf-
fer from slower convergence rate and problems in achieving
full coverage. Nevertheless, we were interested to explore its
behavior. For each model, the coverage threshold was set to
100% and repeated 100 times. The general coverage conver-
gence behavior is shown in Fig. 11.

8.3 Manual planning

For each of the used models, two experts were given a task
to use the inspection planning interface, as described in Sect.
7. Goal of each expert was to place the camera in such a
way to obtain 100% coverage and the results can be seen in
Fig. 12. Given that the focus of this part of the study was to
gain insight into viewpoint placement comparisons, the time
required for an expert to create a plan was not measured.

9 Discussion

Experiments described in Sect. 8 provided insights into var-
ious viewpoint placement methods. The generate-and-test
approach highlighted the importance of performing object
space exploration and viewpoint generation based on the
geometry of the model; rather than trying to place it in the
space surrounding the object and adapting it further. The
generate-and-use technique indicated that it is possible to
achieve coverage results over 90% in a straightforward man-
ner. While it may be useful for rapid prototyping, it will
not provide a minimal set of viewpoints required to achieve
the obtained coverage. Finally, the manual planning revealed
differences in number and placement of viewpoints when
compared to automated viewpoint placement. While the
number of viewpoints was higher, their distribution showed
characteristic patterns which indicate expert’s attention to
easier viewpoint traversal during inspection. Ta
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Fig. 11 Convergence graphs showing the behavior of generate-and-use implementation for each of the models

(a) Expert, 44 viewpoints (b) Expert, 44 viewpoints (c) Exact curvature, 23 viewpoints

(d) Expert, 21 viewpoints (e) Expert, 13 viewpoints (f) Exact curvature, 12 viewpoints

(g) Expert, 34 viewpoints (h) Expert, 32 viewpoints (i) Exact curvature, 23 viewpoints

Fig. 12 Side-by-side comparison of manual inspection planning results made by two experts and the best performing inspection result for each of
the models
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9.1 Object space exploration

The generate-and-test results are highly sensitive to the
method used to generate viewpoint candidate lists, which
can be observed in Tables 1 and 2, as well as in Fig. 10.

9.1.1 Space sampling

In sphere sampling, viewpoints are generated in a space
around the object which is not derived from the geometry of
the object. The number of created viewpoints depends exclu-
sively on the user. Reaching full coverage is difficult due to
the high rate of inadmissible viewpoints (Table 3). There-
fore, the user is incentivized to raise the number of generated
viewpoints, e.g., see [9], which is overall counterproduc-
tive. The approach itself has shown very diverse behavior;
between methods, as well as between models. The most
notable difference can be observed between fixed-distance
and distance-aware methods. Fixed-distance methods are
highly dependent on distance parameters and are in general
too rigid to be used on more complex geometries. This is
mostly because of the focusing distance issues as well as
the restricted angle of incidence. The focal point rarely lies
on the surface of the object, making it very unlikely that
the surface will be observed within the depth-of-field con-
straint. Furthermore, consistent viewpoint orientation toward
the center of the object and varying surface orientation
makes it difficult for the method to ensure that a view-
point will observe the object under proper angle. Even if
the geometry is not as complex (e.g., Crankshaft), the plan-
ning results will be affected by the volume orientation of the
object.

The introductionof passivegeometry awareness in distance-
aware methods provides a way to increase the chance
of observing the object’s surface in a way that satis-
fies the inspection constraints. Repositioning viewpoints
to the surface of the object or its convex hull guarantees
that all repositioned viewpoints can observe a portion of
the object within the required depth-of-field. It does not,
however, guarantee that other constraints, such as maxi-
mal incidence angle are satisfied. Introducing viewpoint
reorientation in addition to repositioning will provide con-
trol over the incidence angle. It would be expected that
reoriented viewpoints will always perform better than just
repositioned. While that might be true for topologically
simple object such as Crankshaft, holes may require to be
observed under a specific angle, which is different from
the primitive normal and hard to generalize. Therefore,
for Gear and Hirth objects, an improvement in coverage
can be observed for the object intersection method (Table
1), but not necessarily for the convex hull and mixed
methods. The reason lies in the fact that viewpoints with
steady orientation toward the center of the object are more

likely to observe the inside of the centrally positioned
hole, while reorienting viewpoints based on the normal is
likely to introduce self-occlusion. Tables 1 and 2 show
that distance-aware methods can achieve significantly better
results than fixed-distance methods. Which method per-
forms best depends on the geometrical features of the
object.

In general, sphere sampling methods show that they
are struggling in terms of achievable coverage (3) and
computing a good number of admissible viewpoints (3).
The distribution of the viewpoints in distance-aware meth-
ods shows that more viewpoints will observe large flat
areas, while less will observe complex areas, which is
contradicting 3. This approach only seems to satisfy the
scalability requirement 3 by changing the number of view-
points one wishes to generate. Even if sphere sampling was
exchanged by a different shape, it is unlikely it would bring
any significant improvements. Therefore, Space Sampling
methods show no benefits and their use is not recom-
mended.

9.1.2 Vertex sampling

In contrast to Space Sampling, Vertex Sampling directly uses
the mesh representation of the object. Using vertices as rep-
resentation of optimal points to describe the mesh has shown
to be capable of providing coverage over 98% when using
vertex normals for viewpoint orientation, even for the low-
est provided mesh resolution. Orienting viewpoints toward
the center of the object performed worse than the other two
Vertex Sampling methods, both in terms of overall perfor-
mance (Tables 1, 2) and number of inadmissible viewpoints
(Table 4) in all cases. While the Direct Vertex Sampling had
a significantly smaller rate of inadmissible viewpoints and
achieved a slightly better coverage performance in compari-
son to the Octree Filteringmethod, its major drawback is that
the object resolution plays a key role and must be adapted
beforehand.Adapting the resolution of the objectmight cause
finer geometrical features to be removed. Also it can lead to
representation of flat areas using large primitives whose ver-
tices are positioned only on edges of the areas, thus having
no vertices within the flat areas. Result of having no ver-
tices in certain areas of the object can be observed in Fig.
3a, c, where viewpoints are concentrated only around edges
of the object. While reducing the number of viewpoints in
flat areas is favorable, omitting them completely is not. This
behavior can be avoided by increasing the resolution, and
thus increasing the number of generated viewpoints.

The Octree Filtering method too depends on the initial
mesh resolution for the purpose of viewpoint placement. It
has the advantage that the minimal number of viewpoints is
not restricted by the number of vertices, thus allowing the
use of higher resolution models. However, finding a good set
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of parameters can be a tedious process. During testing, the
following behavior has been observed: higher rotation granu-
larity will increase the likelihood of observing geometrically
complex areas under different angles. At the same time, it
will increase the initial number of viewpoints before filter-
ing. Therefore, a lower volume or viewpoint threshold might
be needed. Due to varying surface orientation and viewpoint
focusing distance, the viewpoints originating from different
sections of the object can end up in the same leaf, causing
varying viewpoint density in different regions after filtering,
see Fig. 4b. Like with Direct Vertex Sampling, geometrically
complex regions of the object are likely to be represented
with more vertices and will thus produce more viewpoint
candidates. Because of random neighbor picking during fil-
tering, the cardinality of the resulting viewpoint candidate
set might vary. Finally, both volume and viewpoint threshold
types showed to be able to produce viewpoint candidate sets
of comparable sizes. However, the threshold using viewpoint
percentage has showed to be more intuitive to use because its
value will not change with the change of viewpoint focusing
distance, i.e., changing the volume of the viewpoint candi-
date set.

In terms of requirements, both Direct Vertex Sampling
(using vertex normals) andOctree Filteringmethodwere able
to cover the object completely and hence fulfill 3. Adaptive
coverage redundancy is not controlled and is strictly depen-
dent on the underlying mesh. In that sense, 3 is possible, but
not guaranteed. Overall, Vertex Sampling generates under
40% of inadmissible viewpoints (Table 3), thus satisfying 3.
It is also worth emphasizing that, even though it produces
an overall smaller set of viewpoint candidates, the Octree
Filtering method on average has a higher share of inadmissi-
ble viewpoints than the Direct Vertex Sampling, as shown in
Table 4. Finally, scalable redundancy requirement 3 can only
be fulfilled by the Octree Filtering method through reduction
in the filtering angle parameter.

9.1.3 Patch sampling

Very good results were obtained via the B-spline Patch Sam-
pling method as described in Sect. 4.3. In contrast to a
discrete mesh, B-spline surfaces are described by continu-
ous mathematical functions. This eliminates the possibility
for undesired effects caused by low mesh resolution or bad
vertex distribution. The discussed feature functionals make
it possible to precisely measure the occurrence of features
within specific regions of the object. Consequentially, the
distribution of the resulting viewpoints resembles the distri-
bution of the specified features.

While the feature functionals provide an intuitive way
to control the distribution, the subdivision threshold allows
users to adjust the amount of viewpoints. With these parame-
ters, themethod canbe configured to produce a lownumber of

viewpoint candidates that sufficiently cover the entire object.
As Tables 3 and 4 show, this method has a low rate of inad-
missible viewpoints. To this end, it is worth pointing out that
the Crankshaft object shows low number of discarded view-
points for all methods which use inverted surface normal for
determining viewpoint candidate direction. Such behavior
can be expected since the Crankshaft, unlike Gear or Hirth,
has no holes and cavities which would cause the viewpoint to
be discarded due to self-occlusion. This emphasizes the influ-
ence of geometrical complexity in terms of topology rather
than in terms of shape and symmetry.

Finally, the plots in Fig. 10 indicate that the resulting view-
points for patch sampling are well distributed which leads to
a good convergence behavior of the next best view algorithm.
Together, these observations mean that all requirements (3–
3) to the viewpoint candidates are fulfilled.

9.2 Next best viewmodifications

As can be seen in Table 2, upon filtering, the best perform-
ing viewpoint candidate set stayed predominantly the same.
Change of the chosen set occurred most frequently in Space
Sampling approach, which can be expected due to the very
high number of inadmissible viewpoints. In case of the Ver-
tex and Patch Sampling approaches, the chosen set changed
only for the Octree Filtering method applied to the Hirth
object. Octree Filtering is capable of producing viewpoint
candidate sets which are comparably smaller but at the cost
of large portion of inadmissible viewpoints. Therefore, it is
possible to deduce that the use of filtering will make the next
best view results more unstable for methods with high rate of
inadmissible viewpoints, further highlighting the importance
of requirement 3. For all other cases, both achieved coverage
and the number of optimal viewpoints remained comparable
between results with andwithout the filtering, while reducing
the number of required computations.

Introduction of the stalling threshold stopped the next best
view from expanding the final set of optimal viewpoints with
viewpoints which introduce little coverage and a lot of redun-
dancy. Figure 10 supports that assumption by showing that
the coverage convergence in all the runs slowed down before
being stopped. However, the use of the stalling threshold
will also mean that complete coverage is very unlikely and
the user will have to keep that in mind.

9.3 Generate-and-use

The introduced techniquewas able to achieve≥ 90% conver-
gence for all the models, as shown in Fig. 11. The advantage
of the method is that no parameters are needed, but it is
also possible to restrict it by setting the lower aimed cov-
erage threshold. The threshold would in this case behave
similar to the stalling threshold modification of the next
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best view—it would cut off the convergence curve. The
technique might be useful for the purpose of fast prototyp-
ing, but shows no other benefits over the generate-and-test
approach.

9.4 Automated versus manual planning

Manual viewpoint planning revealed a clear difference in
spatial distribution of viewpoints required to perform a full
coverage inspection.As canbe seen inFig. 12,while the num-
ber of manually created viewpoints was typically higher, the
resulting set of viewpoints exhibits a placement pattern. The
trend ismost notable for theGear,wheremajority of the view-
points were created on the side of the object by replicating
the rotation of two viewpoints. The benefit of such approach
is that it allows a simpler physical implementation of the
acquisition hardware. For example, in order to perform the
side inspection, cameras could be placed on two fixed posi-
tions and a turntable can be used to rotate the object in order to
inspect the side completely. In contrast to that, automatically
created viewpoints exhibit no particular pattern in spatial dis-
tribution. Therefore, the inspection can only be implemented
using a manipulator which entails other challenges such as
path planning or timing restriction. In that case, the benefit of
having a smaller set of viewpoints becomes questionable and
highlights the overall inspection planning question which is
yet to be answered—What makes an inspection plan good or
adequate?

An automated approach, as currently formulated, will
always start the evaluation of a good viewpoint placement
on the surface of the object. That way, an object will surely
be observed in the center of the image, however, it does not
necessarily maximize the surface which the viewpoint could
cover if it was placed nearby without touching the surface. A
need for such viewpoints is likely to be higher for topologi-
cally complex objects. The automated viewpoint generation
provides no possibility to include such reasoning, mostly
because it is difficult to sample the space or the object in
a manner to generate a meaningful viewpoint. On the other
side, for an expert, such reasoning is natural and is more
likely to be included in the manual planning process.

10 Conclusion

Inspection planning is a challenging topic and, like with any
challenging topic, it is important to have an insight into dif-
ferent approaches and their qualities. The set of requirements
introduced in Sect. 3 have shown to provide a good way to
evaluate different object space exploration results. Classifi-
cation of the object space exploration approaches into Space,
Vertex and Patch Sampling made it possible to make a more
meaningful comparison of their strengths and weaknesses.

It is clear that Space Sampling is unlikely to be useful due
to its unstable results and high rate of inadmissible view-
points. Vertex and Patch Sampling are both good approaches,
providing viewpoint positions based on geometry character-
istics, which has shown to be important. Octree Filtering and
Patch Sampling using feature functionals provide compet-
itive results, with feature functionals having an advantage
of being more intuitive for parameter adjustment. While the
Octree Filtering is able to create smaller viewpoint candidate
sets, feature functional methods have the capacity of provid-
ing control of both the size of the viewpoint candidate set
and viewpoint distribution over the object surface.

For the sake of completeness, testing models, generated
data sets and dataset comparison pipeline have been made
publicly available.

The methods presented in this work focus on viewpoint
placement based on the geometrical features, which is a sig-
nificant challenge, but it is not alone. For that purpose, we
recommend further research of viewpoint placement meth-
ods base on material characteristics of the inspected object
and expected illumination response.

For the first time, results of automated viewpoint place-
ment methods have been compared to manually placed
viewpoints. Such comparison made it possible to provide
insight into importance of viewpoint placement in terms of
spatial patterns, and not only in terms of achieving maximal
coverage. As such, it has become apparent that evaluation
of an inspection plan as adequate is still not possible to be
made and must be explored further. Therefore, digitaliza-
tion of manual inspection planning might be as important as
inspection planning automation.
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Appendix

Viewpoint candidate generation results for Octree method
of the vertex Sampling approach using different parameters.
α— viewpoint rotation angle, φ—filter angle, T—threshold
type, t—threshold value. Resolution is displayed in vertex
count (Tables 5, 6, 7).
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Table 5 Viewpoint candidate
generation results for Octree
method on object Gear

Gear

Parameters #VPC (for 3 different mesh resolutions)

α φ T t 337 1350 4000

35 40 Volume 0.3 671 1369 3669

45 50 Volume 0.3 449 752 1339

60 50 Volume 0.3 401 550 1003

55 60 Volume 0.3 366 413 516

55 60 Volume 2.0 138 218 970

45 85 Volume 2.0 87 95 471

55 85 Volume 2.0 66 85 97

35 40 Viewpoint 0.125 116 4396 13524

35 40 Viewpoint 0.0156 566 1889 5668

45 50 Viewpoint 0.0156 464 812 2648

60 50 Viewpoint 0.0156 325 536 1128

55 60 Viewpoint 0.0156 276 242 457

45 85 Viewpoint 0.0156 273 165 328

45 85 Viewpoint 0.125 122 855 1041

55 85 Viewpoint 0.0156 249 118 129

55 85 Viewpoint 0.125 62 235 629

Table 6 Viewpoint candidate
generation results for Octree
method on object Hirth

Hirth

Parameters #VPC (for 3 different mesh resolutions)

α φ T t 125 1002 3750

35 40 Volume 0.3 802 2135 2185

35 40 Volume 0.5 309 551 598

35 40 Volume 10 160 1176 927

45 50 Volume 10 94 379 682

60 50 Volume 10 71 378 186

55 60 Volume 10 59 128 105

45 85 Volume 10 63 81 65

55 85 Volume 10 58 79 72

35 40 Viewpoint 0.125 313 3576 12,535

35 40 Viewpoint 0.003125 164 982 3340

45 50 Viewpoint 0.003125 111 438 1748

60 50 Viewpoint 0.003125 93 345 632

55 60 Viewpoint 0.003125 82 108 274

45 85 Viewpoint 0.003125 97 103 102

45 85 Viewpoint 0.125 40 548 1952

55 85 Viewpoint 0.125 42 234 260

55 85 Viewpoint 0.003125 82 105 108
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Table 7 Viewpoint candidate
generation results for Octree
method on object Crankshaft

Crankshaft

Parameters #VPC (for 3 different mesh resolutions)

α φ T t 502 1002 3752

35 40 Volume 0.2 886 1437 3111

45 50 Volume 0.2 738 1132 2309

60 50 Volume 0.2 552 739 1887

55 60 Volume 0.2 494 670 1686

45 85 Volume 0.2 562 613 1208

55 85 Volume 0.2 439 545 1095

35 40 Viewpoint 0.125 1338 2658 9042

35 40 Viewpoint 0.003125 796 1737 4836

45 50 Viewpoint 0.003125 703 1143 2686

60 50 Viewpoint 0.003125 343 723 2340

55 60 Viewpoint 0.003125 251 476 1429

45 85 Viewpoint 0.003125 245 399 1044

45 85 Viewpoint 0.125 308 724 2064

55 85 Viewpoint 0.125 192 408 1426

55 85 Viewpoint 0.003125 182 276 908
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