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Deep Traffic Sign Detection and Recognition
Without Target Domain Real Images

Lucas Tabelini, Rodrigo Berriel, Thiago M. Paixão, Alberto F. De Souza,
Claudine Badue, Nicu Sebe and Thiago Oliveira-Santos

Abstract—Deep learning has been successfully applied to
several problems related to autonomous driving, often relying on
large databases of real target-domain images for proper training.
The acquisition of such real-world data is not always possible
in the self-driving context, and sometimes their annotation is
not feasible. Moreover, in many tasks, there is an intrinsic data
imbalance that most learning-based methods struggle to cope
with. Particularly, traffic sign detection is a challenging problem
in which these three issues are seen altogether. To address these
challenges, we propose a novel database generation method that
requires only (i) arbitrary natural images, i.e., requires no real
image from the target-domain, and (ii) templates of the traffic
signs. The method does not aim at overcoming the training with
real data, but to be a compatible alternative when the real data
is not available. The effortlessly generated database is shown to
be effective for the training of a deep detector on traffic signs
from multiple countries. On large data sets, training with a fully
synthetic data set almost matches the performance of training
with a real one. When compared to training with a smaller
data set of real images, training with synthetic images increased
the accuracy by 12.25%. The proposed method also improves
the performance of the detector when target-domain data are
available.

Index Terms—Traffic Sign Detection, Deep Learning, Au-
tonomous Driving, Object Detection, Faster R-CNN, Template

I. INTRODUCTION

DEEP neural networks (DNNs) have been widely used to
tackle a variety of computer vision tasks, particularly on

several problems related to autonomous driving [1]. Many of
these applications rely on large networks which usually require
large amounts of data to be properly trained. This requirement,
however, is not always easy to be fulfilled. Acquiring problem-
specific real-world databases, especially in robotics, is often
a hard task, particularly when considering the additional
annotation process. In this context, it is desirable to produce
high-performance models without the need of annotated real-
world images.

The success of deep learning on autonomous driving and on
advanced driver assistance systems (ADAS) has been demon-
strated on several applications: scene semantic segmenta-
tion [2], traffic light detection [3], crosswalk classification [4],
traffic sign detection [5], pedestrian analysis [6], car heading
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direction estimation [7] and many other applications. This
work focuses on the traffic sign detection problem, whose goal
is to locate signs of interest along the road (with the help of
a camera mounted on a vehicle) and classify their specific
type (e.g., whether it is a 60 or a 80 km/h sign). This is an
important task to be performed by autonomous driving systems
and ADAS because traffic signs set rules which (i) the drivers
are expected to abide by and (ii) road users should rely on
while making decisions.

The traffic sign detection problem has been investigated
by the research community for a while. Researchers have
been proposing all types of solutions such as the ones using
hand-crafted features in model-based solutions [8], leveraging
simple features in learning-based approaches [9], and, the
more recent and state-of-the-art, using deep learning based
methods [5], [10] that is the focus of this work.

Apart from the major advances on the topic, there are still
many issues requiring further investigation, specially when
considering deep learning approaches for detection. In general,
the training of deep detectors require (i) expensive annotation,
(ii) real images from the target domain, and (iii) balanced
data sets. The annotation process is expensive because each
traffic sign has to be marked with a bounding box, which
is more difficult than just assigning a class for an object in
a classification problem. Moreover, deep detectors are still
known for being data hungry, i.e., they require many real
images to perform well. Therefore, the acquisition of such
images with traffic signs can be troublesome, because it
requires finding many traffic sign samples along the roads.
Since traffic legislation changes from country to country, the
traffic signs are not standardized across the world and a new
data set has to be created for every country. Finally, the
image acquisition process should yield a balanced number of
exemplars of each class. This would require collecting many
more images to have a minimum balance across the classes
because some traffic signs are rarer than others under common
driving circumstances, causing a long-tail effect [5].

In this context, we hypothesize that the training of a deep
traffic sign detector without annotated real images from the
domain of interest (i.e., target domain real images) can yield
a performance similar to those models trained on manually
annotated images from the domain of interest. The method
does not aim at overcoming the training with real data, but
to be a compatible alternative when the real data is not
available. Therefore, this work proposes a novel effortless
method for generation of synthetic databases that requires only
(i) arbitrary natural images (i.e., images out of the domain
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or context of interest) as background and (ii) templates of
the traffic signs (i.e., synthetic representative images of the
different traffic signs). The synthetic database is used to train
a country-optimized deep traffic sign detector. We argue that,
in the context of traffic sign detection, the proposed database
generation process handles the three previously mentioned
issues altogether facilitating the training of country-specific
detectors. In a preliminary work [11], the hypothesis was
verified, but only for a simplified case, as detailed next.

The traffic sign detection task can be divided in two steps:
localization and recognition. Although the first step is crucial,
it becomes more useful in practice when is followed by
the second step. It is not enough to know that there are
traffic signs in the scene, since different traffic signs convey
different information. It is in the recognition step that traffic
signs are distinguished, for example, to verify the speed limit
on the road. In the preliminary version of this paper [11],
the recognition step was not addressed since the focus was
precisely on locating traffic signs in the scene. In that occa-
sion, the proposed method was shown to be effective on the
localization task for German traffic signs. This work extends
and consolidates the preliminary investigation by including:
the recognition task, an extensive experimentation, and a more
in-depth discussion of the results. Although the recognition
step implies significant additional complexity, experimental
results show that the proposed method is successful, which
makes it useful in practice. In the experimentation, two large
data sets were added, both more than ten times larger than
the one used in the preliminary work. To assess the impact
of each step in the proposed method, an ablation study was
performed. In addition, the previous work raised a question:
how many real images are equivalent to using synthetic ones?
This work shows that the amount of real data required to
match the performance of the system trained with synthetic
data only is huge for two data sets (in the order of tens of
thousands). Finally, two additional use cases were investigated
for the synthetic data, data augmentation and pretrain. The
data augmentation investigation shows that the synthetic data
together with a few real data samples can remarkably boost
the performance of a detector to match those trained with a
large amount of real images. The pretrain investigation shows
that the proposed synthetic data generation process is useful
even when a large amount of real data from the target domain
is available. Results show that pretraining the detector with
the synthetic data generated with our method improves the
learning of the detection model and substantially increases the
final accuracy.

II. RELATED WORKS

This section presents a brief review of general traffic sign
detection methods and of methods for generating synthetic
data for deep training.

A. Traffic Sign Detection

In the past, most methods proposed in the literature to tackle
the problem of traffic sign detection used classic computer

vision approaches. Since traffic signs may be easily distin-
guished by humans due to the contrasting colors, the first
works took advantage of those features [12]. In this context,
techniques such as color thresholding are used to segment the
traffic signs, followed by a post-processing step [13]. Although
those methods are generally faster than others, they are not
robust to factors such as weather conditions, occlusion, or
time of the day [14]. Other approaches take advantage of the
well-defined shapes of traffic signs. To detect them by the
shape, many methods may be used, but the most common
ones employ the Hough transform [15]. Although these two
approaches (based on color and shape) work well separately,
the results can be improved if they are combined [16]. When
combined, either method can be used first, while the second
is usually applied to filter the results. With the traffic signs
detected, the next step is the recognition. For this step, the
most common methods are neural networks [17], [18], genetic
algorithms [19], AdaBoost classifiers [20] and SVMs [21].
More recently, with data becoming easier to acquire, deep
learning has also shown success on the traffic sign recognition
task, particularly with the use of convolutional neural networks
(CNNs) [22], [23]. In 2010, a benchmark for traffic sign
recognition was proposed [24]. The best results were achieved
using CNNs [25]. It is important to note that in many works
that tackle the traffic sign detection problem with deep learning
the classification is done only to distinguish between super-
categories and not between specific classes (e.g., a 70 or 80
km/h traffic sign has the same class label) [10], [23]. The main
issue in most works with deep detectors is the need for large
amounts of data. In this work, we propose a method to train
a deep detector with no real data and focus on distinguishing
between every specific class (fine-grained class recognition).
For a more in-depth review of traffic sign detection the reader
can refer to [26].

B. Synthetic Data Generation for Deep Training

Methods to generate synthetic data for deep training have
been extensively studied in the past. Those methods can be
divided in two groups: non-learning (i.e., there is no learning
during the synthetic data generation) and learning based (i.e.,
there is learning during the synthetic data generation). For
the detection task, most non-learning based methods cut and
paste objects from an image to another. For instance, Dwibedi
et al. [27] cut objects with a segmentation mask and then
blend them on other images from the target domain. Wang et
al. [28] use a similar approach, where different objects from
the same category switch positions. 3D models have also been
used to generate data for training, overlaying 2D renderings
of those models on real images [29]. In the task of traffic sign
classification, some works used image processing to generate
training samples from traffic sign templates [30], [31]. In the
detection task, Møgelmose et al. [32] tried using synthetic
data to train a Viola-Jones traffic sign detector, but the results
were not satisfactory. Learning based approaches are motivated
by the premise that training the model with more realistic
synthetic data will lead to a better performance on real-
world data. The learning process can be used to, for example,



3

Training Database GenerationNatural Images (e.g., MS COCO)

Templates of Traffic Signs

Background

Template(s)

Training
Database

Faster R-CNN Training Inference

Model 
Parameters

Test Images

Fig. 1. Overview of the proposal method. From left to right, the method receives as input natural images (e.g., from publicly available large-scale databases)
and templates of traffic signs and generates a synthetic training database. The synthetic database is used to train a deep detector (e.g., Faster R-CNN). Finally,
the model is ready to detect and recognize traffic signs.

generate data with objects in a more natural position, as
Dvornik et al. [33] have shown that cutting and pasting objects
at random positions may not be ideal. In particular, Georgakis
et al. [34] place cropped objects of interest from public data
sets on locations that are most likely to be a surface, being
such positions estimated via semantic segmentation. The scale
of the objects to be placed is determined according to the depth
value associated to the surface position. Gupta et al. [35] use a
similar approach for text localization, predicting a depth map
of each background image. With the depth map, regions are
filtered to gather suitable regions for text placement. Then, the
text is superimposed on those regions, also using the depth
map to determine the text’s perspective. In the context of
classification using one-shot learning, Grigorescu [36] pro-
poses to generate data with predefined functions that make
templates more realistic. To set those functions’ parameters,
a network is trained using templates (called one shot objects,
in his work) and real traffic sign samples. Kim et al. [37]
propose an approach with a variational prototyping-encoder.
In the training process, real training images are encoded to a
latent space and then decoded to a prototype (template). In the
testing phase, the encoder is used as a feature extractor and
a nearest neighbor classifier is used on the features extracted
from the test image and the templates.

In all the aforementioned works, the proposed method is
either evaluated on the classification task only or requires
annotated real-world data from the problem domain. In this
work, we tackle the detection task with fine-grained class
recognition using no problem domain real-world data.

III. PROPOSED METHOD

The proposed method (illustrated in Figure 1) comprises
mainly the generation of a synthetic training data set that
requires no real image from the domain of interest. After
that, this synthetic data set is used to train a deep traffic
sign detector. Finally, the trained deep detector model can be
used to infer the position and the class of traffic signs on real
images.

A. Training Database Generation

The generation of the training database is three-fold. First,
templates of the traffic signs of interest are acquired. Then,

background images that do not belong to the domain of
interest are collected (e.g., arbitrary natural images). Lastly,
the training samples, comprising images with annotated traffic
signs, are generated.

Template acquisition. The first step towards the generation
of the training samples is the acquisition of a template for
each traffic sign of interest. The traffic signs of interest are
those which the system is expected to operate with. Frequently,
traffic signs are part of country-wise specific legislations
defined by governmental agencies. This usual country-wise
standardization helps the acquisition of templates (which is
the goal of this step), because their very definitions (i.e.,
the templates) are part of pieces of legislation commonly
available on-line on the websites of these agencies. In fact,
templates are graphic representations of these definitions. In
addition, some of the publicly available data sets for traffic
sign detection (e.g., [38]) also distribute the templates of the
classes annotated in their samples. All of this makes it easy and
convenient to acquire templates virtually for any given set of
standardized traffic signs worldwide. In case the templates are
not available online, it is always possible to draw it manually.
These templates are acquired and stored to be used later.
Background acquisition. In addition to the templates, the
system requires images to use as background of the training
samples. Although the natural choice would be images that
belong to the domain of interest, e.g., images of roads,
highways, streets, etc., we argue that this is not required.
Moreover, we believe that choosing background images from
the domain of interest may introduce unwanted noise in the
training data if not carefully annotated. Images from the
domain of interest eventually will present the object of interest,
which, in turn, will be treated as background as well. By
not constraining the background acquisition to images of the
domain of interest, many of the freely available large-scale
data sets (e.g., ImageNet [39], Microsoft COCO [40], etc.)
can be exploited. For this work, the Microsoft COCO data
set was chosen to be used as background, except for the
images containing classes that are closely related to the domain
of interest in order to avoid the introduction of noise in
the training data set. Details of the background acquisition
are presented in Section IV. After choosing the background
images, the training samples can be generated.
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Training samples generation. The last step of the training
database generation is blending the background images and
the templates of the traffic signs. This blending process aims to
reduce the appearance difference between the background and
the templates. If successful, the samples generation process
is advantageous because it may tackle all the three afore-
mentioned issues: (i) the training samples are automatically
annotated, since the position of the traffic signs on the image
is defined by the method; (ii) a large-scale database can be
generated without much cost, given that there are a lot of
different possible combinations between the random natural
images (i.e., the backgrounds) and the objects of interest (i.e.,
the transformed traffic sign templates); and (iii) the training
data set will not suffer from imbalance, since the method
can sample the classes uniformly. The details of the blending
process are described next.

brightness 
adjust

histogram 
noise

blend

multiplication geometric
transformations

template
acquisition

Fig. 2. Steps of the template blending process.

Let B = {Bi}Si=1 be the background set with S random
natural images, in total; C = {Ci}Mi=1 be the set of classes of
interest; T = {Ti | i ∈ C} be the set of templates of traffic
signs; and a, b, c, d, e, and f be input parameters. First, for a
training data set with N samples, the training set is defined as
X = {X1, X2, · · · , XN}

iid∼ B. The first step is to randomly
change the brightness and contrast of the image by randomly
adding and multiplying each training sample, i.e., αiXi + β,
where αi ∼ U(a, b), β ∼ U(c, d), and Xi is the background
image sampled for the i-th training sample. The next step is to
add a random amount of |Ki| templates into the i-th sample
Xi, where |Ki| ∈ {1, 2, . . . ,M} and Ki

j ∼ T . The templates
are placed in random configurations (e.g., a 2× 4 grid, 1× 3
row, etc) from a predefined set. This step attempts to mimic
a common behavior in real world (considering the country of
interest), where sometimes multiple signs are seen together.
The process of adding a template into a background image is
as follows: (i) multiply the template Ki

j by the same αi used on
the background image Xi; (ii) apply geometric transformations
(3D rotations and scaling) (iii) adjust the brightness by adding
to the template the average of the region on which the template
is being added, minus a constant; (iv) add noise, i.e., jitter;
(v) place the template into a random position (unless it is
tied to another template) with no intersection with the others;
and (vi) fade the borders of the template to create a smooth
transition from the template to the background image. Lastly,
a Gaussian blur σ ∼ U(0,max(e, f × scale)) is applied to the
resulting image, generating the final training sample. Some
training samples can be seen in Figure 3, while a step-by-step
overview of the blending process can be seen in Figure 2.

IMAGE + ZOOM IMAGE + ZOOM

Fig. 3. Some training samples can be seen in the bottom row, and zoomed-in
figures highlighting the regions with traffic signs can be seen in the top row.
These samples were generated using the process described in Section III-A.

Finally, it is important to generate the templates according
to the range of operation of the application. Therefore, it
is important to set up the minimum and maximum size of
the templates to be detected and sample the random scales
accordingly. This procedure can be seen as a calibration step
on which, in a real-world application, one could determine the
minimum and maximum size of a traffic sign by looking at
few images of a particular target camera. Models, code and
the parameters used will be made available1.

B. Model Training and Inference

After generating the training database, a deep detector can
be trained. In this work, the state-of-the-art for traffic sign
detection [10], Faster R-CNN [41] framework, was chosen. In
every experiment conducted, the training model was initialized
from a model pre-trained on ImageNet [39]. Roughly, the
Faster R-CNN is a 2-step detection framework comprising (i)
the Region Proposal Network (RPN), which predicts regions
that are likely to contain an object, then (ii) two fully-
connected networks, one to refine the predicted regions, and
the other to predict the class of each object. After being
trained, the Faster R-CNN can process RGB input images of
traffic scenes predicting bounding boxes, classes, and confi-
dence scores of the predicted traffic signs.

IV. EXPERIMENTAL METHODOLOGY

This section introduces the data sets used to train and
evaluate the detection models, the metrics for performance
quantification, and the experiments conducted to validate our
proposal. The experimental platform is described at the end
of the section.

A. Data sets

A public image data set was used as source for background
images, while three data sets of traffic scenes were used to
evaluate the proposed method. Each data set is described in
the following paragraphs.
Backgrounds source. Microsoft COCO (MS-COCO) [40]
is a large-scale data set (more than 200k labeled images

1The link will be available upon acceptance.
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divided into training and test sets) designed for the tasks of
object detection, segmentation, and visual captioning. For this
work, the images of the 2017 version of MS-COCO are used
as background for the traffic signs templates, as described
in Section III-A. More specifically, the sign templates are
overlaid onto the images of the MS-COCO training partition
in order to train the traffic sign detector. For our purposes,
traffic-related scenes should be disregarded, which is done by
filtering out those images originally labeled as “traffic light”,
“bicycle”, “car”, “motorcycle”, “bus”, “truck”, “fire hydrant”,
“stop sign”, and “parking meter”. Images with height less than
600 pixels or width less than 400 pixels are also removed,
totaling at the end 58078 images. The remaining images are
further uniformly scaled so that the shortest dimension has
1500 pixels. Finally, the central 1500 × 1500 pixels area is
cropped from the scaled image.
Evaluation datasets. The three datasets used to evaluate the
proposed method were Belgian Traffic Signs Dataset (BTSD)
[42], Tsinghua-Tencent 100K benchmark (TT100K) [5] and
German Traffic Sign Detection Benchmark (GTSD) [38]. On
BTSD, although the data set has annotations for more than
a hundred classes, it also provides a reduced list of 62,
which was used in this work. On CTSD, originally, there
are 151 traffic sign classes, however, only a subset of 42
classes is used. To perform this selection, the ones with less
than 100 instances were simply ignored, as done in the data
set’s original paper [5]. In addition, three other classes were
removed. Those three categories (namely “po”, “io”, “wo”)
refer to three groups of signs that are not traffic signs, thus
irrelevant. On GTSD, there are 43 unbalanced traffic sign
classes. Commonly, the classification step used on this data set
uses only three super-classes [10], [23]: prohibitory, indicative
and warning. In this work, the classification is performed using
all 43 classes. In all datasets, only images containing traffic
signs were used.

B. Experiments

Five experiments were carried out to evaluate the effective-
ness of the proposed approach. The first was (i) an ablation
study, followed by (ii) training with a fully synthetic data
set and (iii) search for model performance correspondence
between training with real and synthetic images. Finally, two
other applications were evaluated, using: (iv) the proposed
method as data augmentation and (v) the proposed method
for finetuning.

1) Ablation Study: The proposed approach to generate the
training samples comprises a sequence of processes. To assess
the importance of each process, the performance of the pro-
posed approach was measured when disabling a process at a
time. This study was conducted on the well-known GTSD data
set. The study was performed on the following components
from the training samples generation step: blur, brightness
adjust, geometric transformations, background augmentation,
blend, histogram noise and traffic sign grouping. Although
other works have already shown that the Poisson blending
algorithm [43] does not improve results in some problem
domains [27], it has not been shown yet on the traffic sign

detection problem. Thus, the blending algorithm was tested as
an alternative to the naive procedure adopted in our method.
Two additional experiments were performed to verify the
impact of using COCO’s traffic scenes as background to train
the deep detector: training with a data set generated using only
images from the driving domain in COCO and with the full
COCO data set as backgrounds. Additionally, training with a
data set generated using images from the target data set that
contains no traffic signs as background was also evaluated.
This experiment was performed only on TT100K because
GTSD does not provide images without traffic signs. The
last experiment evaluates (for the three test collections) the
replacing of COCO backgrounds by uniform random patterns.
Some samples of training instances are shown in Figure 4.

Fig. 4. Four training samples with uniform noise as background for the
ablation study.

2) Training with a Fully Synthetic Data set: The main
purpose of the proposed method is to be able to train a
deep detector effortlessly, i.e., without manually annotating
data, while maintaining its efficacy. For the evaluation, a
deep detector was trained using only synthetic data generated
by our method and compared against a model trained using
only the full collection of real target-domain images (vanilla
training). For fairer comparison, offline data augmentation was
applied on the real image training set. This data augmentation
comprises the same effects used on our method’s background
augmentation: brightness, contrast and blur. The total number
of images in the training set after augmentation is the same as
in training set with synthetic images (70k). This experiment
aims to measure the performance cost of training only with
samples generated by the proposed method instead of training
only with real data of the target data set. To compare with
the literature, the performance of two state-of-the-art methods,
with objectives similar to ours, were also evaluated. In the first
method [27], objects of interest instances from the target data
set’s training set are cut and then pasted on images also from
the target data set that contains no objects of interest. In the
second [33], a similar process is performed, but uses a neural
network to predict regions that are likely to contain instances
of each class. Then, it pastes instances from other images on
those regions. Both methods rely on segmentation annotations,
which are much more expensive to acquire than bounding
box annotations. As a consequence, they are evaluated only
on TT100K since this data set is the only that provides
segmentation annotations. Also, in both methods, the total
number of training samples is 70k (same number as in every
other training in this work).

3) Model Performance Correspondence Between Training
with Real and Synthetic Images: Another interesting question
to answer is: How many real images, manually annotated,
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are necessary to train a model that matches the performance
of one trained with the proposed method? As an attempt
to answer this question, an experiment was conducted using
an approximate binary search in two data sets: BTSD and
TT100K. GTSD was not evaluated because the performance
with only synthetic images is already better than the vanilla
training, as further discussed in Section V. Due to time
constraints, the number of splits in the binary search was set
to a maximum of four for each data set, each split requiring a
new training section. The search is approximate since: (i) there
is randomness in the training step, (ii) the number of training
sessions was limited to four (due to time restrictions), and
(iii) the number of images used at each step does not match
exactly the number given by the binary search. The latter is
because of the method used to define the set of real image
sets at each search step. This set is defined as S = {Si}Ni=1,
which is a set of N sets of real images. Each set of images
Si contains the same set of images as Si−1 (S0 = ∅) plus
C more images selected in a way to maintain the original
distribution of each class, where C is the number of classes
in the data set. This procedure was performed to reduce the
randomness in the experiment. With the set of real images
defined, data augmentation was applied to keep the number of
training samples constant and equal to the number of samples
used in the proposed method (i.e., 70k).

4) Proposed Method as Data Augmentation: One of the
applications for the proposed method is data augmentation.
To evaluate its effectiveness in this application, an experiment
was performed on BTSD and TT100K. It was not performed
on GTSD since it has not enough samples for each category. In
this experiment, for each data set, Faster R-CNN was trained
with a set of images I = O∪S∪A, where O is a subset of the
target country’s training set, S contains 35k synthetic images
generated with the proposed method and A contains 35k−|O|
images generated using basic data augmentation (brightness,
contrast and blur). In total, I contains 70k images. The data
augmented is a set of images that contains at least n original
instances of each class. This approximate number is because
it is very difficult to form a set with exactly n instances per
class, since an image can have multiple instances of different
classes. Although it is not exactly n instances, the set is chosen
in a way that minimizes the difference. For each data set
the experiment was performed with n = 1, 10,M (maximum
number possible, i.e., using the whole training set). To reduce
the randomness, each set is a super-set of the previous, using
the same procedure described on Section IV-B3.

5) Proposed Method for Finetuning: The proposed method
can also be used as a way to pretrain a model. After the
pretraining, the model can be finetuned on a set of real images.
In this experiment, for each data set, the model trained with
a fully synthetic data set (proposed method) was finetuned
on real images with simple augmentation (vanilla training).
The inverse was also evaluated, i.e., training with real images
with simple augmentation and then finetuning on the proposed
method. In the finetuning process, the final learning rate of the
pretrain (10−4) was used during the whole training session,
i.e., there was no learning rate decay.

TABLE I
ABLATION STUDY RESULTS ON GTSD

Factor mAP (%) (normalized)

no brightness adjust 22.86 (0.2492)
no geometric transformations 46.11 (0.5026)
no background augmentation 54.82 (0.5975)
no blur 55.74 (0.6075)
no histogram noise 70.52 (0.7686)
no blend 83.02 (0.9049)
Poisson blend 86.00 (0.9373)
no traffic sign grouping 86.77 (0.9457)
domain-only COCO backgrounds 86.88 (0.9469)
no COCO filtering 87.01 (0.9483)

none (full method) 91.75 (1.0000)

C. Faster R-CNN parameters

Every training on Faster R-CNN used the same base set-
tings, except for the input size for each data set. The feature-
extractor used was the state-of-the-art ResNet-101 [44]. For
tests on BTSD and GTSD, the proposed system was trained
with an input size of 1500 × 1500 pixels, and tested with
an input size of 3500 × 2060 pixels. The vanilla training for
the GTSD data set was performed with an input size of 1360
× 800, while for BTSD the input size was 1628 × 1236.
For TT100K, the input size was 2048× 2048 for training
with both the proposed and vanilla methods. That is, all three
vanilla trainings were executed in their respective original
image resolutions. The input size for testing on TT100K was
4096 × 4096. For every target data set, the input size at test
time for the proposed system and the vanilla trainings were the
same. The increased test sizes are due to the poor performance
of the tested detectors on small objects.

D. Performance Metrics

In addition to the precision and recall metrics, the Mean Av-
erage Precision (mAP) was also used to quantify the detection
performance. The Average Precision (AP) metric, from which
mAP is derived, follows the same approach in the PASCAL
VOC 2012 challenge [45]. Basically, AP is defined as the
approximate area under the precision/recall curve obtained for
a fixed IoU threshold (0.5, in this work). Then, the mAP value
is the average of APs for all object classes.

V. RESULTS AND DISCUSSION

In the following paragraphs, quantitative and qualitative
results are presented and discussed following the same order
of the respective experiments introduced in the last section.
The section ends with a discussion of potential applications
of the proposed method.

Ablation Study. The results for the ablation study are shown
in Table I. Overall, it can be observed that every component of
the proposed method has a significant impact on the model’s
performance. Disabling the brightness adjustment was the step
which yielded the worst performance, achieving only 24.92%
of the full method’s performance, which may be a result
of the high amount of brightness variations in the data set.
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Fig. 5. Precision-Recall curves for each data set.

TABLE II
RESULTS OF TRAINING WITH UNIFORM NOISE AS BACKGROUND INSTEAD

OF COCO IMAGES ON BTSD, TT100K AND GTSD. ∆ MAP
CORRESPONDS TO THE DIFFERENCE WHEN COMPARED TO TRAINING WITH

COCO IMAGES AS BACKGROUNDS.

Data set mAP (%) ∆ mAP (%)

BTSD 71.61 -8.67
GTSD 76.66 -14.17
TT100K 63.99 -19.13

Concurrently, traffic sign grouping had the lowest impact.
Moreover, despite the simplicity of the blending process, re-
sults show that it substantially improves (9.51 p.p. more mAP)
the performance of the detector on the target data set. The
results with the Poisson blending indicate that a more complex
blending process may not be necessary. In fact, it can worsen
the model’s performance, as the results suggest. Furthermore,
the hypothesis that COCO driving domain images may hinder
the learning process was also confirmed. In this scenario, the
model’s performance decays by 5.17%.

The results for the study using uniform noise as background
instead of real images are shown in Table II. In summary, they
evidence that training with real images instead of noise indeed
produces a better model, as expected. We observed, looking
at the precision-recall curve, that the difference in mAP is
mostly because of the increasing number of false positives.
This behavior might be a result of the network being unable to
learn features other than those in traffic signs, thus not learning
well what a background is. On the other hand, if images that
are known to not contain any traffic signs of interest are used,
the performance increases by 2.12 p.p. on TT100K, but, in
this case, more data were used.

Training with a Fully Synthetic Data set. Results of training
with a fully synthetic data set generated by the proposed
method are shown in Table III, while precision vs. recall
curves (as computed in [45]) are shown in Figure 5. The
results described as “full method” in Table I are the same
ones described as “Proposed” in Table III. As evidenced by

the GTSD results in the table, training with a fully synthetic
data set may be even better than training with a smaller
set of real images. For GTSD, the mAP difference between
the proposed method and the vanilla training is +12.25 p.p..
Additionally, for BTSD and TT100K, which are larger data
sets, the proposed method still performs similarly, although
it does not surpass their corresponding vanilla trainings. The
difference in mAP between the proposed method and the
BTSD and TT100K vanilla trainings are -5.22 p.p. and -6.16
p.p., respectively. In Table III the results of two state-of-the-
art methods are also shown. Since both require real data to
work, a fair comparison is against our result that uses real
data, i.e., from the Proposed Method as Data Augmentation
experiment. Our method outperforms both. This result shows
that, for some problem domains, a more complex approach
may not be necessary, in fact, it may produce a worse result.

As expected, increasing the collection of annotated traffic
scenes yields a better performance, however this implies more
human effort. Furthermore, it should be considered that the
mAP difference between the vanilla training baseline and the
proposed method is affected by the fact that the baseline’s
training and test sets share a particular geographic context.
This implies more similarity between the two sets with respect
to the overall appearance and the traffic scene structure,
which is hard to be reached in real driving applications. By
using natural images, the structural dependency is disregarded
completely.

For a qualitative analysis, extensive qualitative results can
be seen on the videos 2 Some of the false positives (i.e.,
false alarms) are indeed signs, but either they are not traffic
signs, or they do not belong to set of the classes of interest.
Furthermore, there is a considerable amount of false positives
related to objects from the driving domain, such as headlights
or traffic lights. This may be a result of the lack of those
objects in the training set, although it can be mitigated by using
real traffic scenes as backgrounds (as shown in the ablation
study). Most false positives with higher confidence score arise
from mistakes in the classification phase, but have sufficient

2youtube.com/playlist?list=PLm8amuguiXiKEEI1A3qrktpup1SbmC1a5

youtube.com/playlist?list=PLm8amuguiXiKEEI1A3qrktpup1SbmC1a5


8

TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS ON BTSD, TT100K

AND GTSD. THE “PROPOSED + REAL” RESULTS ARE FROM THE
PROPOSED METHOD AS DATA AUGMENTATION EXPERIMENT, USING ALL

REAL IMAGES AVAILABLE.

mAP (%)

Method Real target
domain images BTSD TT100K GTSD

Vanilla Required 85.50 89.28 79.50

CPL [27] Required — 89.66 —
CPL [27] + real Required — 92.03 —
Context-DA [33] Required — 74.96 —

Proposed Not required 80.28 83.12 91.75
Proposed + real Required 89.64 92.25 —

IoU. Some false negatives (i.e., undetected traffic signs) can
also be seen in the videos. The mistakes are mainly caused by
severe geometric distortion or occlusion.

1 10 all
Amount of real traffic sign instances per class used in training
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TT100K vanilla

BTSD augmented
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Fig. 6. Proposed method as data augmentation (logarithmic scale).

Proposed Method as Data Augmentation. The results for the
experiments using the proposed method as a data augmentation
method are shown in Figure 6. For TT100K, using n = 10
instances (at least) per class (total of 231 images), resulted
in a mAP of only 0.67 p.p inferior to that obtained with
the full training set that contains 5905 real images. For
BTSD, training with also n = 10 (total of 581 images),
was enough to surpass the performance of training with the
full training set that contains 4483 real images by 2.60 p.p..
Furthermore, when using the entire training set of real images
(n = M ), the proposed method was able to increase the
model’s performance significantly (2.97 p.p. and 4.41 p.p. of
mAP, for TT100K and BTSD, respectively).

Finetuning on Real and on Synthetic Images. The results
for finetuning on real and on synthetic images are shown
in Table IV. As evidenced, using the proposed method to
pretrain a model consistently increases its performance. When
compared to the results with only an ImageNet pretrain,
the mAP increases by 4.09 p.p., by 3.34 p.p. and by 18.98
p.p., for BTSD, TT100K and GTSD, respectively. Moreover,

TABLE IV
FINETUNING RESULTS

Target Training data set Finetuning data set mAP (%)

BTSD proposed method real + augmented 89.89
real + augmented proposed method 84.55

GTSD proposed method real + augmented 98.48
real + augmented proposed method 91.69

TT100K proposed method real + augmented 92.62
real + augmented proposed method 90.68

finetuning was slightly more effective than training with both
data sets at the same time, as can be seen in Table III, in the
“Proposed + real” row. Those results show another possible
use for the proposed method, as a cheap (without acquiring
new real data) way to increase a model’s performance. On the
other hand, finetuning on synthetic data decreases the model’s
performance. This result is on par with the general intuition,
as finetuning on synthetic images may specialize the model
on them.
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Fig. 7. Binary search for the equivalent amount of images on BTSD and
TT100K. The highlighted points are the closest to the proposed method’s
result.

Model Performance Correspondence Between Training
with Real and Synthetic Images. Figure 7 shows the results
of the necessary number of real images to yield a performance
comparable to that achieved by synthetically generated data.
It is important to recall that the number of training samples
was the same in each step of the search (70k). The difference
is in the number of original real images (i.e., the rest of the
images are generated via simple offline data augmentation).
The results reveal that, for BTSD, the equivalence number
is around 2000 images. For TT100K, this number is around
1250 images. For a simple comparison, to collect and annotate
TT100K, 100k images had to be manually annotated, in order
to acquire 10k images with traffic signs [5]. If the ten-to-
one relation is kept, our method would eliminate the need to
annotate around 12.5k images on TT100K. On BTSD, it would
be equivalent to annotating around 20k images manually. This
suggests that the proposed method may be specially useful
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when a large amount of annotated data is difficult to acquire.

VI. CONCLUSION

Solving challenging tasks with deep neural network usually
requires large-scale annotated data with real image samples
belonging to the domain of the problem. The human effort and
other costs involved in gathering such data has motivated re-
search on alternative ways to train those models. In particular,
this work leverages templates to train a deep model to detect
traffic signs in real traffic scenes. Besides eliminating the need
for real traffic signs, we also propose a more flexible and
effortless construction of the training set by superposing the
templates on natural images, i.e., arbitrary background images
available in computer vision benchmarks. The results showed
that the proposed method can be used to train deep detectors
without the need for manually annotated data sets, and these
models can achieve competitive performance. Moreover, mul-
tiple applications for the proposed method were shown, such as
improving a model’s performance when few, or even a lot of,
annotated data is available. Finally, the number of real images
that need to be manually annotated to match the performance
of training with the proposed method was shown to be in the
order of tens of thousands for every data set used. All those
results indicate that the proposed method may make it viable
to train a deep detector when large amounts of annotated data
is difficult or impossible to acquire.
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