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Abstract. Problems of secure communication and computation have been studied
extensively in network models. Goldreich et al., Franklin and Yung, and Franklin and
Wright have initiated the study of secure communication and secure computation in
multirecipient (multicast) models. A “multicast channel” (such as ethernet) enables
one processor to send the same message—simultaneously and privately—to a fixed
subset of processors. In their recent paper, Franklin and Wright have shown that if
there aren multicast lines between a sender and a receiver and there are at most
malicious (Byzantine style) processors, then the conditios t is necessary and
sufficient for achieving efficient probabilistically reliable and probabilistically private
communication. They also showed thatif- [3t/2], then there is an efficient protocol

to achieve probabilistically reliable and perfectly private communication. They left
open the question whether there exists an efficient protocol to achieve probabilistically
reliable and perfectly private communication whe/2] > n > t. In this paper, by
using a different authentication scheme, we answer this question affirmatively and study
related problems.
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1. Introduction

If two parties are connected by a private and authenticated channel, then secure com-
munication between them is guaranteed. However, in most cases, many parties are only
indirectly connected, as elements of an incomplete network of private and authenticated
channels. In other words they need to use intermediate or internal nodes. Achieving
participants’ cooperation in the presence of faults is a major problem in distributed
networks. The interplay of network connectivity and secure communication has been
studied extensively (see, e.g., [1], [3], [5], [6], and [12]). For example, Dolev [5] and
Dolev et al. [6] showed that, in the casetd@yzantine faults, reliable communication is
achievable only if the system’s network is-2 1 connected. Hadzilacos [12] has shown

that connectivityt + 1 is required to achieve reliable communication in the presence of

t faulty participants even if those faults are not malicious.

Goldreich etal. [11], Franklin and Yung [8], and Franklin and Wright [7] have initiated
the study of secure communication and secure computatimultirecipient(multicas)
models. A “multicast channel” (such as ethernet) enables one participant to send the same
message—simultaneously and privately—to a fixed subset of participants. Franklin and
Yung [8] have given a necessary and sufficient condition for individuals to exchange
private messages in multicast models in the presence of passive adversaries (passive
gossipers). For the case of active Byzantine adversaries, many results have been presented
by Franklin and Wright [7]. Note that Goldreich et al. [11] have also studied fault-tolerant
computation in the public multicast model (which can be thought of as the largest possible
multirecipient channels) in the presence of active Byzantine adversaries. Specifically,
Goldreich et al. [11] have made an investigation of general fault-tolerant distributed
computation in the full-information model. In the full information model no restrictions
are made on the computational power of the faulty parties or the information available
to them. (Namely, the faulty players may be infinitely powerful and there are no private
channels connecting pairs of honest players). In particular, they present efficient two-
party protocols for fault-tolerant computation of any bivariate function.

There are many examples of multicast channels. A simple example is a local area
network like an ethernet bus or a token ring. Another example is a shared cryptographic
key. By publishing an encrypted message, a participant initiates a multicast to the subset
of participants that are able to decrypt it.

We abstract away the concrete network structures and consider multicast graphs.
Specifically, a multicast graph is a gra@iV, E). A vertex A € V is called a neighbor
of another verteXB € V if there there is an edg@A, B) € E. In a multicast graph, we
assume that any message sent by a oddl be received identically by all its neighbors,
whether or notA is faulty, and all parties outside &'’s neighbor learn nothing about
the content of the message. These neighbor networks have been studied by Franklin and
Yung in [8]. They have also studied the more general notion of hypergraphs, which we
do not need.

As Franklin and Wright [7] have pointed out, unlike in the simple channel model, itis
not possible to apply protocols directly over multicast lines to disjoint paths in a general
multicast graph, since disjoint paths may have common neighbors. Franklin and Wright
have shown that in certain cases the change from a simple channel to a multicast channel
hurts the adversary more than it helps, because the adversary suffers from the restriction
that an incorrect transmission from a faulty processor will always be received identically
by all of its neighbors.
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Franklin and Wright [7] showed that if there arenulticast lines (that is; paths with
disjoint neighborhoods) between a sender and a receiver and there aretatmaldsbus
(Byzantine style) processors, then the conditios t is necessary and sufficient for
achieving efficient probabilistically reliable and probabilistically private communication.
They also showed that there is an efficient protocol to achieve probabilistically reliable
and perfectly private communication when> [3t/2], and there is an exponential
bit complexity protocol for achieving probabilistically reliable and perfectly private
communication wher3t/2] > n > t. However, they left open the question whether
there exists an efficient protocol to achieve probabilistically reliable and perfectly private
communication wheni3t/2] > n > t. In this paper, using a different authentication
scheme, we answer this question affirmatively and study related problems: the use of
multicast line protocols when the lines are embedded in a more general multicast graph.
There are limits to what we can expect to achieve in the most general case. We also show
that it isNP-complete to decide whether a multicast graphrdisjoint multicast lines
(that is,n paths with disjoint neighborhoods).

Note that, similar to Franklin and Wright [7], we only consider the scenario when the
underlying graph is known to all nodes. For the scenario that the graph is unknown, the
protocols may be completely different, see [2].

We present our model in Section 2. We review the relevant result of [7] in Section 3.
In Section 4 we present a solution to the Franklin—Wright open question. In Section 5
we consider the applicability of multicast line protocols to general multicast graphs.

2. Model

Throughout this papen denotes the number of multicast lines am#notes the number

of faults under the control of the adversary. We wijig to denote the number of
elements in the se. We writex €r Sto indicate thai is chosen with respect to the
uniform distribution onS. Let F be a finite field, and le4, b, M € F. We define auth

(M, a, b) := aM + b (following [7], [10], [13], and [14]). In this paper we introduce

a multiple authentication scheme. That is, key:= (a, b, c,d) € F* andM ¢ F, let
authy(M, key := aM?® +bM? 4+ cM + d. Note that the main advantage of the function
authy() is that each authentication ké&gy = (a, b, ¢, d) can be used to authenticate
three different messagédo, My, and M, without revealing any information about any
component of the authentication key. While for the function uglach authentication

key (a, b) can only be used to authenticate one message (that is, it is a kind of one-
time pad) (see [15]), each authentication Kayb, c, d) in our scheme can be used to
authenticate three messages. Note that den Boer [4] used similar polynomials to construct
one-time authentication schemes.

Theorem 2.1. Let key:= (a, b, ¢, d) be chosen uniformly frork*, M; € F, and
s = authy(M;, key fori = 0, 1, 2. Then for any key := (a9, by, Co, do) € F4,

Prla = ag|views] = Pr[b = bg|views]

= Prc = co|viewy] = Pr[d = do|view] = %

where view := (Mo, S, M1, 51, M2, ).
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Proof. By the condition, one derives the following three equations with four unknowns:

Ma+ Mgb+cMo+d = s,
Mia+ MZb+cMy+d = s,
Mia+ Mib+cM+d = 5.

Since the coefficient matrix of the above equations is a Vandermonde matrix, no value
of a can be ruled out. That is, evesyis equally likely given the value&My, S5, M1,

s1, Mz, 5). (A similar argument applies fdy, ¢, ord.) This completes the proof of the
theorem. O

Following Franklin and Wright [7], we consider multicast as our only communication
primitive. A message that is multicast by any node in a multicast neighbor network is
received by all its neighbors with privacy (that is, nonneighbors learn nothing about what
was sent) and authentication (that is, neighbors are guaranteed to receive the value that
was multicast and to know which neighbor multicast it). We assume that all nodes in
the multicast graph know the complete protocol specification and the complete structure
of the multicast graph. In a message transmission protocol, the sénstarts with
a messagev”* drawn from a message spadéd with respect to a certain probability
distribution. At the end of the protocol, the receivBroutputs a messagkl®. We
consider asynchronous systemin which messages are sentvia multicastin rounds. During
each round of the protocol, each node receives any messages that were multicast by its
neighbors at the end of the previous round, flips coins and performs local computations,
and then possibly multicasts a message. We also assume that the messagd space
subset of a finite fieldF.

We consider two kinds of adversaries. A passive adversary (or gossiper adversary)
is an adversary who can only observe the traffic throughternal nodes. An active
adversary (or Byzantine adversary) is an adversary with unlimited computational power
who can controk internal nodes. That is, an active adversary will not only listen to
the traffic through the controlled nodes, but also control the message sent by those
controlled nodes. Both kinds of adversaries are assumed to know the complete protocol
specification, message space, and the complete structure of the multicast graph. At the
start of the protocol, the adversary choosesttfailty nodes. A passive adversary can
view the behavior (coin flips, computations, message received) of all the faulty nodes. An
active adversary can view all the behavior of the faulty nodes and, in addition, control
the message that they multicast. We allow for the stronger adversary. (An alternative
interpretation is that nodes are collaborating adversaries.)

For any execution of the protocol, etlv be the adversary’s view of the entire protocol.

We write adv(M, r) to denote the adversary's view whén” = M and when the
sequence of coin flips used by the adversary is

Definition 2.2 (see [7]).

1. A message transmission protocobiseliable if, with probability at least 1- 3,
B terminates withMB = MA. The probability is over the choices M* and the
coin flips of all nodes.
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2. Amessage transmission protocaliprivateif, for every two messaged,, M; and
everyr, Y .| Prladv(Mo, r) = c] — Prladv(My, 1) = ]| < 2¢. The probabilities
are taken over the coin flips of the honest parties, and the sum is over all possible
values of the adversary’s view.

. A message transmission protocopirfectly privatdf it is O-private

. A message transmission protocoldsé)-secureif it is e-private and-reliable.

. An (g, §)-secure message transmission protoceffisientif its round complexity
and bit complexity are polynomial in the size of the network,(log) (if ¢ > 0)
and log1/$) (if § > 0).

g b~ w

3. Background: Reliable Communication over Neighbor Networks

In this section we review Franklin and Wright's [7] protocols for reliable communication
over multicast lines. The reader familiar with these protocols can skip this section. For
two verticesA andB in a multicast grapl&(V, E), we say thatA and B are connected

by n interiorly neighborhood-disjoint linei§ there aren linespy, ..., p, € V with the
following properties:

e Foreach 1< j < n, thejthline p; is a sequence of; + 2 nodesA = Xgq j, X1 j,
...y Xm+1,j = B whereX; j is a neighbor ofX; 4 ;.

e For eachiq, iy, j1, and j, with j; # j, the only possible common neighbors of
Xi, j, andX;, , are AandB.

Without loss of generality, in this section we assume that pAr{fthe message trans-
mitter) and partyB (the message recipient) are connected byteriorly neighborhood-
disjoint lines, and we assume thaf = m, = - -- = m;,.

Basic Propagation Protocol[7]. In this protocol, A tries to propagate a valug®
to B.

e Inround 1,A multicastss”.

e Inroundp for2 < p <m+1,eachX,_,; (1 < j < n) expects to receive a single
element fromX,_, ;. Letu,_y j be this value if a value was in fact received, or a
publicly known default element otherwise. At the end of ropnX,_, ; multicasts
Up—1,j-

e In roundm + 2, B receives a single element from eakh, ;, or substitutes the
default element. LeﬁjB be the value received or substituted on ljne

From now on when a party substitutes the default element, we just say that the party
substitutes.

Full Distribution Protocol [7]. In this protocol, each internal nod§ ; tries to trans-
mit an elemens ; to both A andB.

e Inround 1, eacl; ; (1 <i <m, 1< j <n)multicasts j to Xj_1 ; and X1 ;.
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e Intoundpfor2<p <m+1:

— Forl<j <nandp <i < m,eachX; expects to be the intended recipient of
an element fronX;_, ; (initiated by Xj_,41 ;). Letu; ; be the received value or a
default value if none is received.

— Forl<j<nandl<i <m-p+1,X; expectsto be the intended recipient
of an element fromX; 1 ; (initiated by Xj,_1 ;). Letv; j be the received value
or a default value if none if received.

— For 1< j < n, B expects to be the intended recipient on ilie line of a single
element (initiated byXm_,12j). Lets® be the received value or a default
value if none is received.

— For 1< j < n, Aexpects to be the intended recipient on {lie line of a single
element (initiated by<,_1 j). Lets” ARY be the received value or a default value if
none is received.

— Xj,j multicastay; j to X1 if o <i <m,andv;jtoXj_1;ifl <i <m-—p+1.

—p+2,]

Fact 3.1[7]. If there are no faults on thetlj ling, then $‘*J = s;‘?j forall1<i <m.
Further if X; j is the only fault on theth line, then ¢} = s°,.

Reliable Transmission Protocol[7]. In this protocol,A reliably transmits a message
MA to B.

e The nodes on all tha lines execute an instance of the Full Distribution Protocol,
which takes place during rounds 1 through- 1. The element thaX; j initiates is
(&, bi.j) which is randomly chosen froif?. Let (ai’fj, bi’fj) and(aIBJ, b,BJ) be the
values thatA and B receive or substitute as the element initiated<py.

e The nodes on all the lines execute an instance of the Basic Propagation Protocol
from Ato B, which takes place during rounn‘BJrZIhrough 2n+3. The elementthat
A initiates is{(, j, MA, auth MA, aI i IJ)) 1<i<m1l<j<n} Inround
2m + 3, B receives or substitutdi, j, Muqk, i!J-’k) l<i<ml<j<njon
thekth line, 1< k < n.

o Letri(M) :={j : 3i(M = M®, , andu?; , = authM®, ,, &%, b%))}, that is, for
any messagml, rg(M) denotes the set of aII line |nd|ce,=such thaM is “correctly”
authenticated by some keya?, , b?;) according to the informatioB received on

thekth line. B outputsM B that maximizes maxr(MB)|.

Fact3.2[7]. If§ > 0,n > t, and |[F| > mr?/8, then the Reliable Transmission
Protocol is an efficieng-reliable message transmission protacol

4. Reliable and Private Communication over Neighbor Networks

4.1. Survey of Franklin—Wright's Results

As in the previous section, we assume that parifghe message transmitter) and party
B (the message recipient) are connectechbipteriorly neighborhood-disjoint lines.
Franklin and Wright [7] showed the following results regarding privacy in multicast
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networks:

1. Ifn > t,8 > 0, ande > 0, then there is an efficien, §)-secure message
transmission protocol betweekhand B.

2. Ifn > [3t/2] and$ > 0, then there is an efficieiid, §)-secure message transmis-
sion protocol betweei and B, that is, as-reliable and perfectly private message
transmission protocol.

3. Ift < n < [3t/2] ands > 0, then there is an exponential bit complexify §)-
secure message transmission protocol betweand B.

4.2. The Franklin—Wright Open Problem

Franklin and Wright left open the question whether it is possible to achieve perfect
privacy efficiently whert < n < [3t/2]. That is, does there exist a polynomial time
(0, 8)-secure message transmission protocol betweand B whent < n < [3t/2]?

We give an affirmative answer to this question.

4.3. The Solution

Intuitively, our protocol proceeds as follows. First, using the Full Distribution Protocol
from the preceding section, each internal nodg transmits a random authentication
key key,j = (&,j,bj,C,,dj) €r F4 to both A and B. Secondly, using the Basic
Propagation ProtocoB transmits toA a randonr; ; er F authenticated by the key
key ; foreach 1<i <m,1 < j <n. Thirdly, for each 1< j < n, A decides whether

A andB agree on at least one authentication key onjthdine. Informally, let

KA = {(j, J) : Abelieves thakeyj“’j is the first key
agreed upon b andB on thej th line}.

The formal definition ofK A is given in the following protocol. FourthlyA encrypts
the messag®1” using the sum of the pa@ﬁj ((ij, j) € K#) and, using the Reliable
Transmission Protocol, transmits Bothe setk # and the ciphertext. Lastl¥ decrypts
the message.

Perfectly Private Transmission Protocol.

e The nodes on all tha lines execute an instance of the Full Distribution Protocol,
which takes place during rounds 1 throught- 1. The element thaX; ; initiates
is key,j = (& j, b j, G j, di j) which is randomly chosen from*. Let ke;ﬁj =
@7, bf. ¢\, d%) andkey’; = (a%, bP,. B dP) be the values that and B
receive or substitute as the element initiateddy .

e Foreach, j,B choosesi?j €r F. The nodes on all the lines execute an instance
of the Basic Propagation Protocol froBito A, which takes place during rounds

m + 2 through 2n + 3. The element thaB initiates is
(s®. (authy(s®. keyP)) 11 <i <m 1< <n)),

wheresB := ((ri?j,autm(rf‘j, ke;ﬁ)) :1<i<m1<]j<n)and(--)denotes

the ordered set of its elements (without loss of generality, we assume that we can
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uniquely and efficiently recover its elements from the ordered-sef). In round
2m + 3, A receives or substitutds;, (uI k1= i <m,1< | <n))onthekth
line for 1 < k < n. For each tripldi, j, k), let vi,j,k be defined in such a way that
S0 = (A v il<i<ml<j<n).

o Letly :={j : i (uIJk = authy(s?, ke)(*J))} that is, Lx denotes the set of
all line indicesj such thats? is correctly authenticated by some kdyes;{A ac-
cording to the informatiomA received on théth line, and letkg be the Ilne that
maximizes|Ly,| = max/|Ly|. Let KA = {Gj, ) 1 YO < i < ij )(vl’]’ko #*
authy(r .. key')) andv_ijA’j,kO = _auth;(riﬁj’ko, key*)}. If |KA_| > |Ly,|, then go
to the next step, otherwisé, terminates the protocol with failure.

o Acomputegh = MA+ 3, o aalt;.

e Inrounds 2n + 4 through 4n'+ 7, the nodes on all the lines execute an instance
of the Reliable Transmission Protocol frofnto B. The element thah initiates is
(7, (KA)). Let (2B, (K B)) be the value received i as the output of the Reliable
Transmission Protocol.

e BcomputesM®:=2% -3, (adP;.

The Perfectly Private Transmission Protocol provides effic(@n$)-secure message
transmission provided that the fielflused by autf() satisfies|F| > mn(2n + 3)/6.
Sincereliable communication is not possible whenn, this protocol provides matching
upper and lower bounds for perfect privacy and probabilistic reliability.

Theorem4.1. If§ > 0,n > t,and|F| > mn(2n + 3)/§, then the Perfectly Private
Transmission Protocol is an efficie(@, §)-secure message transmission protocol

Proof. To see that the Perfectly Private Transmission Protocol is O-privateyglet
denote the number of lines with no faults, the number with exactly one fault, and.
the number with two or more faults. Then= wo + wi + w, andt > wj; + 2w, . Since
n > t, it follows thatwg > w. . By Fact 3.1, no matter whether the transmission fil®m
to Aduring roundsn+2 to 2m+3 succeeds or ngtK A| > |Li,| > wo+w1 > wi +w.
Whencethereisé,, |) € K”suchthatthéthlineis anonfaulty line, ankey?*, = key’,.
By Theorem 2.1, the adversary gets no information ala;lﬁ‘ytgiven the viewadvya,
whereadvya consists of the following information:

L ((rB, auth(r®, key’)) i 1<i<m,1<j<n)

2. (s®, (authy(sB. key’) 1 1<i<m1<j<n));

3. at most one randomly guessed (by the adversary) correct authenticator of some
random message.

It should be noted that the above item 3 in the adversary’s gigwy,a is important for

the following reasons: with nonzero probability the first transmission fBota A may

fail (i.e., in roundsm + 2 through 2n + 3). That is, the adversary may create a bogus
(rf‘j)’ (which is different fromri‘?j) and guess the value au(l(rfj)’, kefj) correctly.
Then at the end of round2+ 3, A may choose a wron A. That is, there may be an
item (i, j') € K” such thakeyj“,,j, is not the first key agreed upon ByandB on the

j’th line. It is easy for the adversary to decide whether such kind of an item exists in
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KA. When such an item exists, the adversary knows that he may have guessed a correct
authenticator of the messagé?j ). Since

A=MA+al+ Y al,

(j. ek A
#

one derives that everyl A is equally likely givenadwya. Since this is the only relevant
information abouM A in ady, one derives that PaiMMo, r) = ¢] = PrladuMi,r) =

c] for every pair of messaged, andM,, adversary’s coin flips, and the possible view
c. It follows that

> |PriaduMo, 1) = c] — Prladv(My, 1) = c]| = 0.

In the following we prove reliability. Let

B = {(ij, |): au(key“] = key’,) and
YO<i < |,)(|<ey‘\J # key’))}.

KEY® := 3 jjekn &y, and KEY*® := 3 o as @/4. Note that, by a simple argu-
mentasinthe proof of Fact 3.2,itis stralghtforward thatthe first transmissiorBrimm
(i.e., in roundsn+ 2 through 2n+ 3) succeeds with probability at leastnr?/|F|. Let
FRT denote the event that the first transmission fibta A (i.e., in roundsn+-2 through
2m + 3) succeeds. In the following we compute the probability that REY KEY AB
given FRT. We first define two notations. For ainyj), let

TAG §) = 1 if vi,Aj’kozautm(ri’fj'kO,key‘,‘j),
o otherwise

and

T D= {0 otherwise

It is straightforward that for angi, j), one derives
PTG, j) = TAG, DIFRT, TA8G, ) =1] = 1. 6

For any (i, j) such thatTAB(i, j) = 0 andTA(i, j) = 1, one derlvesv,A K =
authy(rA . key)). Since FRT implies that®, | = authy(r®, key?,) andr® =rA | |
one derives

ij

a% (%) + 0% () + cBr ) +df = al () ) + b0 () ) + eyl i, +
which implies thari,Bj is a solution of the equation

@% —a )+ 0% —bHaP)?+ ¥ —cHrd +@® -dH =0 2
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Smceke)(A and ke){3 are fixed before the random choicerdf, and (2) has at most
three solut|ons we have the following relation:

PrITA%G, ) = TAG, DIFRT, TA%G, j) = 0,18

_ o if r®isasolution of (2),
1 otherwise.

This implies that
PriTAB(, j) = TAG, ))IFRT, TAB(, j) = 0]
= Y PTG, j) = TAG, )IFRT. TA8G, j) = 0,151 Prir ]

B
ri_jeF

>1-—. 3
> F )

Combining (1) and (3), for angi, j) one derives

PrTAB(, j) = TAG, )IFRT] > 1 - %

Hence we have

P{KEY” = KEY*® | FRT]

v

[T PITAG. 1) =T"BG, j)IFRT]
iz

I( %)

1<j=n

A%

3mn
IFl
Note that the last inequality is obtained by the Bernoulli inequality, th&tig, x)™" >

1+ mnxforanyx > —1. Let SRT denote the event that the second reliable transmission
from Ato B (i.e., in rounds & + 4 through 4n + 7) succeeds. Then

v

PriMA = MB] > PI[FRTA SRTA(KEY” = KEY*B)]
> PI[(KEY” = KEY”®B)| FRT, SRT]- Pr[FRT, SRT]

Pr[KEY* = KEY”® | FRT] - Pr[FRT]- Pr[SRT]

- () ()

S 1o mn(2n+3).
|F|

Note that we have used the following properties in the above computation:

1. FRT and SRT are independent;
2. SRT and the everKEY” = KEY “B) are independent.

Since|F| > mn(2n + 3)/8, it follows that PrM® = MA] > 1 — 6. O
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5. Weak Connectivity

In the more general setting of multicast graph, there is a channel from each node to
its neighbor nodes. We say that two nodesind B of a multicast graph arstrongly
t-connectedwhich was implicitly introduced by Franklin and Wright [7]) if there are
t interiorly neighborhood-disjoint paths connectiAgand B. Franklin and Wright [7]
have observed that the multicast lines protocol can be simulated on any strongly (
connected multicast graph. That isAfand B are strongly { + 1)-connected, then our
result in the previous section shows tliats)-secure message transmission betwaen
andB is possible. In the following we show that this condition is not necessary.

Franklin and Yung [8] define that two nodésand B in a multicast graplG(V, E)
areweakly t-connected for any setV; € V\{A, B} with |V;| < t, the removal of
neighboi(V;) and all incident edges fro®(V, E) does not disconne& and B, where
neighborVy) = ViU {v € V : Ju € Vi(u,v) € E}\{A, B}. Franklin and Yung [8]
show that it is cbIP hard to decide whether a given graph is weaktpnnected.

Let AandB be two nodes on a multicast gra@iV, E) andt < n. We say thaiA and
B areweakly(n, t)-connectedf there aren vertex disjoint pathy, ..., p, betweenA
andB and, for any vertex sét C (V\{A, B}) with|T| < t,thereexistsan(1 <i <n)
such that all vertices g have no neighbor iff . Obviously, if two vertices are weakly
(n, t)-connected then they are weakty 1)-connected.

Theorem 5.1. If A and B areweakly (n, t)-connectedor some t< n, then the Per-
fectly Private Transmission Protocol in the previous section is an effi¢ied)-secure
message transmission between A and B

Proof. It follows straightforwardly from the proof of Theorem 4.1. O

Franklin and Yung [8] show that, in the context af-passive adversary, wegk+ 1)-
connectivity is necessary and sufficient for achieving private communications. Theo-
rem 5.1 provides a sufficient condition for achieving perfect privacy and probabilistic
reliability against d-active adversary in a general multicast graph. It is an open question
whether the condition in Theorem 5.1 is also necessary.

Itis easily observed that strongi{1)-connectivity implies wealk +1, t)-connectivity.

The following example shows that, t)-weak connectivity does notimply strorgf1)-
connectivity.

Example 5.2. LetG(V, E)bethe graphdefined by := {A, B}U{v; ; :i,j =1,2,3}
andE = {(A, vl,j) : j =12 3}U {(vi,j, vi+1,j) =12 ] =123}V {(vg’j, B) :

j =12, 3}U{(U1.’1, v1.2), (vg,z, U2,3), (v3,3, vg,l)}. The grapr is graphically dlsplayed
in Fig. 1. Then it is straightforward to show thAtand B are weakly(3, 1)-connected
but not strongly 2-connected (.

Theorem 5.1 shows that, for at most one malicious node, effidleAj-secure message
transmission betweef andB is possible in the multicast graph defined in Example 5.2.
Note that this multicast graph is only strongly 1-connected, and so Franklin—Wright's
results have no bearing on this example.
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Fig. 1. Figure for Example 5.2.

Similarly, for anyn > 2 the following example gives a grajih and two verticesA
and B such thatA and B are weakly(n, 1)-connected but not weakly 3-connected.

Example 5.3. LetG(V, E) be the graph defined by = {A, BjU{v;j 11 =1,2; j =
1, ...,nfandE = {(A, vy j) : j.= L. onmU{(uyj, v )= 1,...,”}.U{(U2’j, B) :
J=L....nU{(uat,v2j) i ] =2,...,[n/2]} U {(v2nj2)41, v2,§) - ] = [n/2] +

2,...,n}. The graphG is graphically displayed in Fig. 2. Then it is straightforward to
show thatA and B are weakly(n, 1)-connected but not weakly 3-connected3n

Then Theorem 5.1 shows that, for at most one malicious node, effi@eb)-secure
message transmission betwe¥®andB is possible in the grapB defined in Example 5.3.

The result by Franklin and Yung [8] shows that secure message transmission between
A and B is impossible in this graph when there are two malicious nodes. However,

if n > 2t + 1 and we use nonmulticast channels, then secure message transmission
is possible betweei and B againstt malicious nodes (see, e.g., [6]). It follows that

in certain cases multicakelpsadversaries “more,” which contrasts with Franklin and
Wright's result [7] that in certain cases multichsirtsadversaries “more.”

Fig. 2. Figure for Example 5.3.
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We close our paper by showing that itN$-hard to decide whether a given multicast
graph is strongly-connected. Given a gragh(V, E), We say that a subs® of V is
neighborhood independeiftany two nodes inv; have no common neighbor &. We
first prove the following lemma.

Lemmab5.4. Given a graph GV, E) and a number tit is NP-complete to decide
whether there exists a neighborhood independent set V of size t

Proof. Itis clear that the specified problem ishP. Whence it suffices to reduce the
following NP-complete problem IS (Independent Set) to our problem. The independent
set problem is:

Instance A graphG |1 (Vg, Eg) and a numbet.
Question Does there exist a node 9¢ét C Vg of sizet such that any two nodes W
are not connected by an edgelg ?

The inputG | (Vg, Eg), to IS, consists of a set of vertice¥g = {v1, ..., vy} and a set
of edgesEg. In the following we construct a graph(G1) := G(V, E) such that there
is an independent set of sizén G| if and only if there is a neighborhood independent
set of size in G.

LetV := Vg UV’ whereV’' = {v;j : (vi,vj) € Eg,i < j}, andE = {(vi, vi}),
(ij, vj) s vij € VIU{(uij, virj) © iy, v € V') Itis straightforward to check that,
for any neighborhood independent 8&tC V, if Vo NV’ # @ then|Vy| = 1. Itis also
clear that for any two vertet, v € Vi, u andv have no common neighbor if(G ) if
and only if(u, v) ¢ Eg. Hence there is a neighborhood independent set of $iz& if
and only if there is an independent set of dize G1. O

Theorem 5.5. Itis NP-complete to decide whether a given multicast graph is strongly
t-connected

Proof. It is clear that the specified problem is MP. Whence it suffices to reduce
the NP-complete problem NIS (Neighborhood Independent Set) in Lemma 5.4 to our
problem.

The inputG(Vg, Eg), to NIS, consists of a set of verticég = {vy,...,vp} and a
set of edge<£g. In the following we construct a multicast graphiG) = MG(V, E)
and two noded\, B € V such that there is a neighborhood independent set ot size
G if and only if A andB are stronglt-connected.

LetV :={A, B}U Vg andE := Eg U {(A, v), (v, B) : v € Vg}. Itis clear that two
pathsP; and P, connectingA and B which go throughy; andv; respectively are node
disjoint and have no common neighbor (excépand B) if and only if v; andv; have
no common neighbor i (Vg, Eg). Hence there is a neighborhood independent set of
sizet in G if and only if A andB are stronglyt-connected inf (G). O

Similarly, we can show that the corresponding problem for w@ak)-connectivity
is cd\P-hard.
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Theorem 5.6. It is coNP-hard to decide whether a given multicast graph is weakly
(n, t)-connected

Proof. It suffices to reduce the following diP>-complete problem coVC (co-Vertex
Cover) to our problem. The co-VC problem is:

Instance A graphGC(Vg, Eg) and a numbet.
Question Does there not exist a node 3ét C Vg of sizet such that for each edge
(u, v) € Eg, at least one ofi andv belongs tov;?

The inputGC(Vg, Eg), to coVC, consists of a set of verticeg = {vq, ..., vm} and
a set of edgekg = {ey, ..., & }. In the following we construct a graph(GC) =
G(V, E) such that there does not exist a vertex cover of sime GC if and only if
f (GC) is weakly(n, t)-connected.

LetV := Vg UV’ U{A, B} whereV’' = {v;j : (vi,vj) € Eg,i < j}, andE =
{(A vij), (vij, B) tvij € VIU{(ui, v ), (uij, vj) :vij € V'}. For anyt-size subset
Vi€V, letVo = (ViNVe) U{ui @ (v, vj) € Vi}. Then itis straightforward to check
that the following condition holds:

e There exists a paiii, j) such thaw; ; has no neighbor iW; if and only if V- is not
a vertex cover oC(Vg, Eg).

Hence f (GC) is weakly (n, t)-connected (withesses by the vertex disjainpaths:
A— v j — B (vj € V))ifand only if GC does not have a vertex cover of sizell

Indeed, itis straightforward to show that the above problem belon§§ {that is, the
second level of the polynomial time hierarchy). It remains open whether this problem is
coNP-complete, orz}-complete, or neither.
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