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Abstract. Problems of secure communication and computation have been studied
extensively in network models. Goldreich et al., Franklin and Yung, and Franklin and
Wright have initiated the study of secure communication and secure computation in
multirecipient (multicast) models. A “multicast channel” (such as ethernet) enables
one processor to send the same message—simultaneously and privately—to a fixed
subset of processors. In their recent paper, Franklin and Wright have shown that if
there aren multicast lines between a sender and a receiver and there are at mostt
malicious (Byzantine style) processors, then the conditionn > t is necessary and
sufficient for achieving efficient probabilistically reliable and probabilistically private
communication. They also showed that ifn > d3t/2e, then there is an efficient protocol
to achieve probabilistically reliable and perfectly private communication. They left
open the question whether there exists an efficient protocol to achieve probabilistically
reliable and perfectly private communication whend3t/2e ≥ n > t . In this paper, by
using a different authentication scheme, we answer this question affirmatively and study
related problems.
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1. Introduction

If two parties are connected by a private and authenticated channel, then secure com-
munication between them is guaranteed. However, in most cases, many parties are only
indirectly connected, as elements of an incomplete network of private and authenticated
channels. In other words they need to use intermediate or internal nodes. Achieving
participants’ cooperation in the presence of faults is a major problem in distributed
networks. The interplay of network connectivity and secure communication has been
studied extensively (see, e.g., [1], [3], [5], [6], and [12]). For example, Dolev [5] and
Dolev et al. [6] showed that, in the case oft Byzantine faults, reliable communication is
achievable only if the system’s network is 2t + 1 connected. Hadzilacos [12] has shown
that connectivityt + 1 is required to achieve reliable communication in the presence of
t faulty participants even if those faults are not malicious.

Goldreich et al. [11], Franklin and Yung [8], and Franklin and Wright [7] have initiated
the study of secure communication and secure computation inmultirecipient(multicast)
models. A “multicast channel” (such as ethernet) enables one participant to send the same
message—simultaneously and privately—to a fixed subset of participants. Franklin and
Yung [8] have given a necessary and sufficient condition for individuals to exchange
private messages in multicast models in the presence of passive adversaries (passive
gossipers). For the case of active Byzantine adversaries, many results have been presented
by Franklin and Wright [7]. Note that Goldreich et al. [11] have also studied fault-tolerant
computation in the public multicast model (which can be thought of as the largest possible
multirecipient channels) in the presence of active Byzantine adversaries. Specifically,
Goldreich et al. [11] have made an investigation of general fault-tolerant distributed
computation in the full-information model. In the full information model no restrictions
are made on the computational power of the faulty parties or the information available
to them. (Namely, the faulty players may be infinitely powerful and there are no private
channels connecting pairs of honest players). In particular, they present efficient two-
party protocols for fault-tolerant computation of any bivariate function.

There are many examples of multicast channels. A simple example is a local area
network like an ethernet bus or a token ring. Another example is a shared cryptographic
key. By publishing an encrypted message, a participant initiates a multicast to the subset
of participants that are able to decrypt it.

We abstract away the concrete network structures and consider multicast graphs.
Specifically, a multicast graph is a graphG(V, E). A vertex A ∈ V is called a neighbor
of another vertexB ∈ V if there there is an edge(A, B) ∈ E. In a multicast graph, we
assume that any message sent by a nodeAwill be received identically by all its neighbors,
whether or notA is faulty, and all parties outside ofA’s neighbor learn nothing about
the content of the message. These neighbor networks have been studied by Franklin and
Yung in [8]. They have also studied the more general notion of hypergraphs, which we
do not need.

As Franklin and Wright [7] have pointed out, unlike in the simple channel model, it is
not possible to apply protocols directly over multicast lines to disjoint paths in a general
multicast graph, since disjoint paths may have common neighbors. Franklin and Wright
have shown that in certain cases the change from a simple channel to a multicast channel
hurts the adversary more than it helps, because the adversary suffers from the restriction
that an incorrect transmission from a faulty processor will always be received identically
by all of its neighbors.
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Franklin and Wright [7] showed that if there aren multicast lines (that is,n paths with
disjoint neighborhoods) between a sender and a receiver and there are at mostt malicious
(Byzantine style) processors, then the conditionn > t is necessary and sufficient for
achieving efficient probabilistically reliable and probabilistically private communication.
They also showed that there is an efficient protocol to achieve probabilistically reliable
and perfectly private communication whenn > d3t/2e, and there is an exponential
bit complexity protocol for achieving probabilistically reliable and perfectly private
communication whend3t/2e ≥ n > t . However, they left open the question whether
there exists an efficient protocol to achieve probabilistically reliable and perfectly private
communication whend3t/2e ≥ n > t . In this paper, using a different authentication
scheme, we answer this question affirmatively and study related problems: the use of
multicast line protocols when the lines are embedded in a more general multicast graph.
There are limits to what we can expect to achieve in the most general case. We also show
that it isNP-complete to decide whether a multicast graph hasn disjoint multicast lines
(that is,n paths with disjoint neighborhoods).

Note that, similar to Franklin and Wright [7], we only consider the scenario when the
underlying graph is known to all nodes. For the scenario that the graph is unknown, the
protocols may be completely different, see [2].

We present our model in Section 2. We review the relevant result of [7] in Section 3.
In Section 4 we present a solution to the Franklin–Wright open question. In Section 5
we consider the applicability of multicast line protocols to general multicast graphs.

2. Model

Throughout this paper,n denotes the number of multicast lines andt denotes the number
of faults under the control of the adversary. We write|S| to denote the number of
elements in the setS. We writex ∈R S to indicate thatx is chosen with respect to the
uniform distribution onS. Let F be a finite field, and leta,b,M ∈ F. We define auth
(M,a,b) := aM + b (following [7], [10], [13], and [14]). In this paper we introduce
a multiple authentication scheme. That is, forkey := (a,b, c,d) ∈ F4 andM ∈ F, let
auth4(M, key) := aM3+ bM2+ cM+ d. Note that the main advantage of the function
auth4() is that each authentication keykey= (a,b, c,d) can be used to authenticate
three different messagesM0, M1, andM2 without revealing any information about any
component of the authentication key. While for the function auth() each authentication
key (a,b) can only be used to authenticate one message (that is, it is a kind of one-
time pad) (see [15]), each authentication key(a,b, c,d) in our scheme can be used to
authenticate three messages. Note that den Boer [4] used similar polynomials to construct
one-time authentication schemes.

Theorem 2.1. Let key := (a,b, c,d) be chosen uniformly fromF4, Mi ∈ F, and
si := auth4(Mi , key) for i = 0,1,2. Then, for any key0 := (a0,b0, c0,d0) ∈ F4,

Pr[a = a0|view0] = Pr[b = b0|view0]

= Pr[c = c0|view0] = Pr[d = d0|view0] = 1

|F| ,

where view0 := (M0, s0,M1, s1,M2, s2).
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Proof. By the condition, one derives the following three equations with four unknowns:

M3
0a+ M2

0b+ cM0+ d = s0,

M3
1a+ M2

1b+ cM1+ d = s1,

M3
2a+ M2

2b+ cM2+ d = s2.

Since the coefficient matrix of the above equations is a Vandermonde matrix, no value
of a can be ruled out. That is, everya is equally likely given the values(M0, s0, M1,
s1, M2, s2). (A similar argument applies forb, c, or d.) This completes the proof of the
theorem.

Following Franklin and Wright [7], we consider multicast as our only communication
primitive. A message that is multicast by any node in a multicast neighbor network is
received by all its neighbors with privacy (that is, nonneighbors learn nothing about what
was sent) and authentication (that is, neighbors are guaranteed to receive the value that
was multicast and to know which neighbor multicast it). We assume that all nodes in
the multicast graph know the complete protocol specification and the complete structure
of the multicast graph. In a message transmission protocol, the senderA starts with
a messageM A drawn from a message spaceM with respect to a certain probability
distribution. At the end of the protocol, the receiverB outputs a messageM B. We
consider a synchronous system in which messages are sent via multicast in rounds. During
each round of the protocol, each node receives any messages that were multicast by its
neighbors at the end of the previous round, flips coins and performs local computations,
and then possibly multicasts a message. We also assume that the message spaceM is a
subset of a finite fieldF.

We consider two kinds of adversaries. A passive adversary (or gossiper adversary)
is an adversary who can only observe the traffic throught internal nodes. An active
adversary (or Byzantine adversary) is an adversary with unlimited computational power
who can controlt internal nodes. That is, an active adversary will not only listen to
the traffic through the controlled nodes, but also control the message sent by those
controlled nodes. Both kinds of adversaries are assumed to know the complete protocol
specification, message space, and the complete structure of the multicast graph. At the
start of the protocol, the adversary chooses thet faulty nodes. A passive adversary can
view the behavior (coin flips, computations, message received) of all the faulty nodes. An
active adversary can view all the behavior of the faulty nodes and, in addition, control
the message that they multicast. We allow for the stronger adversary. (An alternative
interpretation is thatt nodes are collaborating adversaries.)

For any execution of the protocol, letadv be the adversary’s view of the entire protocol.
We write adv(M, r ) to denote the adversary’s view whenM A = M and when the
sequence of coin flips used by the adversary isr .

Definition 2.2 (see [7]).

1. A message transmission protocol isδ-reliable if, with probability at least 1− δ,
B terminates withM B = M A. The probability is over the choices ofM A and the
coin flips of all nodes.
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2. A message transmission protocol isε-privateif, for every two messagesM0,M1 and
everyr ,

∑
c |Pr[adv(M0, r ) = c] − Pr[adv(M1, r ) = c]| ≤ 2ε. The probabilities

are taken over the coin flips of the honest parties, and the sum is over all possible
values of the adversary’s view.

3. A message transmission protocol isperfectly privateif it is 0-private.
4. A message transmission protocol is(ε, δ)-secureif it is ε-private andδ-reliable.
5. An (ε, δ)-secure message transmission protocol isefficientif its round complexity

and bit complexity are polynomial in the size of the network, log(1/ε) (if ε > 0)
and log(1/δ) (if δ > 0).

3. Background: Reliable Communication over Neighbor Networks

In this section we review Franklin and Wright’s [7] protocols for reliable communication
over multicast lines. The reader familiar with these protocols can skip this section. For
two verticesA andB in a multicast graphG(V, E), we say thatA andB are connected
by n interiorly neighborhood-disjoint linesif there aren lines p1, . . . , pn ⊆ V with the
following properties:

• For each 1≤ j ≤ n, the j th line pj is a sequence ofmj + 2 nodesA = X0, j , X1, j ,
. . . , Xmj+1, j = B whereXi, j is a neighbor ofXi+1, j .
• For eachi1, i2, j1, and j2 with j1 6= j2, the only possible common neighbors of

Xi1, j1 andXi2, j2 areA andB.

Without loss of generality, in this section we assume that partyA (the message trans-
mitter) and partyB (the message recipient) are connected byn interiorly neighborhood-
disjoint lines, and we assume thatm1 = m2 = · · · = mn.

Basic Propagation Protocol[7]. In this protocol, A tries to propagate a valuesA

to B.

• In round 1,A multicastssA.
• In roundρ for 2≤ ρ ≤ m+1, eachXρ−1, j (1≤ j ≤ n) expects to receive a single

element fromXρ−2, j . Let uρ−1, j be this value if a value was in fact received, or a
publicly known default element otherwise. At the end of roundρ, Xρ−1, j multicasts
uρ−1, j .
• In roundm + 2, B receives a single element from eachXm, j , or substitutes the

default element. LetsB
j be the value received or substituted on linej .

From now on when a party substitutes the default element, we just say that the party
substitutes.

Full Distribution Protocol [7]. In this protocol, each internal nodeXi, j tries to trans-
mit an elementsi, j to bothA andB.

• In round 1, eachXi, j (1≤ i ≤ m,1≤ j ≤ n) multicastsi, j to Xi−1, j andXi+1, j .
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• In roundρ for 2≤ ρ ≤ m+ 1:
— For 1≤ j ≤ n andρ ≤ i ≤ m, eachXi, j expects to be the intended recipient of

an element fromXi−1, j (initiated byXi−ρ+1, j ). Let ui, j be the received value or a
default value if none is received.

— For 1≤ j ≤ n and 1≤ i ≤ m− ρ + 1, Xi, j expects to be the intended recipient
of an element fromXi+1, j (initiated by Xi+ρ−1, j ). Let vi, j be the received value
or a default value if none if received.

— For 1≤ j ≤ n, B expects to be the intended recipient on thej th line of a single
element (initiated byXm−ρ+2, j ). Let sB

m−ρ+2, j be the received value or a default
value if none is received.

— For 1≤ j ≤ n, A expects to be the intended recipient on thej th line of a single
element (initiated byXρ−1, j ). Let sA

ρ−1, j be the received value or a default value if
none is received.

— Xi, j multicastsui, j to Xi+1, j if ρ ≤ i ≤ m, andvi, j to Xi−1, j if 1 ≤ i ≤ m−ρ+1.

Fact 3.1[7]. If there are no faults on the jth line, then sAi, j = sB
i, j for all 1 ≤ i ≤ m.

Further, if Xi, j is the only fault on the jth line, then sAi, j = sB
i, j .

Reliable Transmission Protocol[7]. In this protocol,A reliably transmits a message
M A to B.

• The nodes on all then lines execute an instance of the Full Distribution Protocol,
which takes place during rounds 1 throughm+ 1. The element thatXi, j initiates is
(ai, j ,bi, j ) which is randomly chosen fromF2. Let (aA

i, j ,b
A
i, j ) and(aB

i, j ,b
B
i, j ) be the

values thatA andB receive or substitute as the element initiated byXi, j .
• The nodes on all then lines execute an instance of the Basic Propagation Protocol

from A to B, which takes place during roundsm+2 through 2m+3. The element that
A initiates is{(i, j,M A,auth(M A,aA

i, j ,b
A
i, j )) : 1 ≤ i ≤ m,1 ≤ j ≤ n}. In round

2m+ 3, B receives or substitutes{(i, j,M B
i, j,k,u

B
i, j,k) : 1 ≤ i ≤ m,1 ≤ j ≤ n} on

thekth line, 1≤ k ≤ n.
• Let rk(M) := { j : ∃i (M = M B

i, j,k anduB
i, j,k = auth(M B

i, j,k,a
B
i, j ,b

B
i, j ))}, that is, for

any messageM , rk(M) denotes the set of all line indicesj such thatM is “correctly”
authenticated by some keys(aB

i, j ,b
B
i, j ) according to the informationB received on

thekth line. B outputsM B that maximizes maxk |rk(M B)|.

Fact 3.2[7]. If δ > 0, n > t , and |F| > mn2/δ, then the Reliable Transmission
Protocol is an efficientδ-reliable message transmission protocol.

4. Reliable and Private Communication over Neighbor Networks

4.1. Survey of Franklin–Wright’s Results

As in the previous section, we assume that partyA (the message transmitter) and party
B (the message recipient) are connected byn interiorly neighborhood-disjoint lines.
Franklin and Wright [7] showed the following results regarding privacy in multicast
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networks:

1. If n > t , δ > 0, andε > 0, then there is an efficient(ε, δ)-secure message
transmission protocol betweenA andB.

2. If n > d3t/2e andδ > 0, then there is an efficient(0, δ)-secure message transmis-
sion protocol betweenA andB, that is, aδ-reliable and perfectly private message
transmission protocol.

3. If t < n ≤ d3t/2e andδ > 0, then there is an exponential bit complexity(0, δ)-
secure message transmission protocol betweenA andB.

4.2. The Franklin–Wright Open Problem

Franklin and Wright left open the question whether it is possible to achieve perfect
privacy efficiently whent < n ≤ d3t/2e. That is, does there exist a polynomial time
(0, δ)-secure message transmission protocol betweenA andB whent < n ≤ d3t/2e?
We give an affirmative answer to this question.

4.3. The Solution

Intuitively, our protocol proceeds as follows. First, using the Full Distribution Protocol
from the preceding section, each internal nodeXi, j transmits a random authentication
key keyi, j = (ai, j ,bi, j , ci, j ,di, j ) ∈R F4 to both A and B. Secondly, using the Basic
Propagation Protocol,B transmits toA a randomri, j ∈R F authenticated by the key
keyi, j for each 1≤ i ≤ m,1 ≤ j ≤ n. Thirdly, for each 1≤ j ≤ n, A decides whether
A andB agree on at least one authentication key on thej th line. Informally, let

K A := {(i j , j ) : A believes thatkeyA
i j , j is the first key

agreed upon byA andB on thej th line}.
The formal definition ofK A is given in the following protocol. Fourthly,A encrypts
the messageM A using the sum of the padsaA

i j , j
((i j , j ) ∈ K A) and, using the Reliable

Transmission Protocol, transmits toB the setK A and the ciphertext. Lastly,B decrypts
the message.

Perfectly Private Transmission Protocol.

• The nodes on all then lines execute an instance of the Full Distribution Protocol,
which takes place during rounds 1 throughm+ 1. The element thatXi, j initiates
is keyi, j = (ai, j ,bi, j , ci, j ,di, j ) which is randomly chosen fromF4. Let keyA

i, j :=
(aA

i, j ,b
A
i, j , c

A
i, j ,d

A
i, j ) andkeyB

i, j := (aB
i, j ,b

B
i, j , c

B
i, j ,d

B
i, j ) be the values thatA and B

receive or substitute as the element initiated byXi, j .
• For eachi, j , B choosesr B

i, j ∈R F. The nodes on all then lines execute an instance
of the Basic Propagation Protocol fromB to A, which takes place during rounds
m+ 2 through 2m+ 3. The element thatB initiates is

〈sB, 〈auth4(s
B, keyB

i, j ) : 1≤ i ≤ m,1≤ j ≤ n〉〉,
wheresB := 〈〈r B

i, j ,auth4(r B
i, j , keyB

i, j )〉 : 1 ≤ i ≤ m,1 ≤ j ≤ n〉 and〈· · ·〉 denotes
the ordered set of its elements (without loss of generality, we assume that we can
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uniquely and efficiently recover its elements from the ordered set〈· · ·〉). In round
2m+ 3, A receives or substitutes〈sA

k , 〈uA
i, j,k : 1 ≤ i ≤ m,1 ≤ j ≤ n〉〉 on thekth

line for 1≤ k ≤ n. For each triple(i, j, k), let vA
i, j,k be defined in such a way that

sA
k := 〈〈r A

i, j,k, v
A
i, j,k〉 : 1≤ i ≤ m,1≤ j ≤ n〉.

• Let Lk := { j : ∃i (uA
i, j,k = auth4(sA

k , keyA
i, j ))}, that is, Lk denotes the set of

all line indices j such thatsA
k is correctly authenticated by some keyskeyA

i, j ac-
cording to the informationA received on thekth line, and letk0 be the line that
maximizes|Lk0| = maxk |Lk|. Let K A := {(i j , j ) : ∀(0 < i < i j )(v

A
i, j,k0

6=
auth4(r A

i, j,k0
, keyA

i, j )) andvA
i j , j,k0

= auth4(r A
i j , j,k0

, keyA
i, j )}. If |K A| ≥ |Lk0|, then go

to the next step, otherwise,A terminates the protocol with failure.
• A computeszA = M A +∑(i j , j )∈K A aA

i j , j
.

• In rounds 2m+ 4 through 4m+ 7, the nodes on all then lines execute an instance
of the Reliable Transmission Protocol fromA to B. The element thatA initiates is
〈zA, 〈K A〉〉. Let 〈zB, 〈K B〉〉 be the value received byB as the output of the Reliable
Transmission Protocol.
• B computesM B := zB −∑(i j , j )∈K B aB

i j , j
.

The Perfectly Private Transmission Protocol provides efficient(0, δ)-secure message
transmission provided that the fieldF used by auth4() satisfies|F| ≥ mn(2n + 3)/δ.
Since reliable communication is not possible whent ≥ n, this protocol provides matching
upper and lower bounds for perfect privacy and probabilistic reliability.

Theorem 4.1. If δ > 0, n > t , and |F| > mn(2n + 3)/δ, then the Perfectly Private
Transmission Protocol is an efficient(0, δ)-secure message transmission protocol.

Proof. To see that the Perfectly Private Transmission Protocol is 0-private, letw0

denote the number of lines with no faults,w1 the number with exactly one fault, andw+
the number with two or more faults. Thenn = w0+w1+w+ andt ≥ w1+ 2w+. Since
n > t , it follows thatw0 > w+. By Fact 3.1, no matter whether the transmission fromB
to Aduring roundsm+2 to 2m+3 succeeds or not,|K A| ≥ |Lk0| ≥ w0+w1 > w++w1.
Whence there is a(i l , l ) ∈ K A such that thel th line is a nonfaulty line, andkeyA

il ,l = keyB
il ,l .

By Theorem 2.1, the adversary gets no information aboutaA
il ,l

given the viewadvM A,
whereadvM A consists of the following information:

1. 〈〈r B
i, j ,auth4(r B

i, j , keyB
j )〉 : 1≤ i ≤ m,1≤ j ≤ n〉;

2. 〈sB, 〈auth4(sB, keyB
i, j ) : 1≤ i ≤ m,1≤ j ≤ n〉〉;

3. at most one randomly guessed (by the adversary) correct authenticator of some
random message.

It should be noted that the above item 3 in the adversary’s viewadvM A is important for
the following reasons: with nonzero probability the first transmission fromB to A may
fail (i.e., in roundsm+ 2 through 2m+ 3). That is, the adversary may create a bogus
(r B

i, j )
′ (which is different fromr B

i, j ) and guess the value auth4((r B
i, j )
′, keyB

i, j ) correctly.
Then at the end of round 2m+ 3, A may choose a wrongK A. That is, there may be an
item (i j ′ , j ′) ∈ K A such thatkeyA

i j ′ , j ′ is not the first key agreed upon byA andB on the
j ′th line. It is easy for the adversary to decide whether such kind of an item exists in
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K A. When such an item exists, the adversary knows that he may have guessed a correct
authenticator of the message(r B

i, j )
′. Since

zA = M A + aA
il ,l +

∑
(i j , j )∈K A

j 6=l

aA
i j , j ,

one derives that everyM A is equally likely givenadvM A. Since this is the only relevant
information aboutM A in adv, one derives that Pr[adv(M0, r ) = c] = Pr[adv(M1, r ) =
c] for every pair of messagesM0 andM1, adversary’s coin flipsr , and the possible view
c. It follows that∑

c

|Pr[adv(M0, r ) = c] − Pr[adv(M1, r ) = c]| = 0.

In the following we prove reliability. Let

K AB := {(i j , j ) : ∃i (keyA
i, j = keyB

i, j ) and
∀(0< i < i j )(keyA

i, j 6= keyB
i, j )},

KEY A := ∑(i, j )∈K A aA
i, j , and KEYAB := ∑(i, j )∈K AB aA

i, j . Note that, by a simple argu-
ment as in the proof of Fact 3.2, it is straightforward that the first transmission fromB to A
(i.e., in roundsm+2 through 2m+3) succeeds with probability at least 1−mn2/|F|. Let
FRT denote the event that the first transmission fromB to A (i.e., in roundsm+2 through
2m+ 3) succeeds. In the following we compute the probability that KEYA = KEY AB

given FRT. We first define two notations. For any(i, j ), let

T A(i, j ) :=
{

1 if vA
i, j,k0
= auth4(r A

i, j,k0
, keyA

i, j ),

0 otherwise;

and

T AB(i, j ) :=
{

1 if keyA
i, j = keyB

i, j ,

0 otherwise.

It is straightforward that for any(i, j ), one derives

Pr[T AB(i, j ) = T A(i, j )|FRT, T AB(i, j ) = 1] = 1. (1)

For any (i, j ) such thatT AB(i, j ) = 0 and T A(i, j ) = 1, one derivesvA
i, j,k0

=
auth4(r A

i, j,k0
, keyA

i, j ). Since FRT implies thatvA
i, j,k0
= auth4(r B

i, j , keyB
i, j ) andr B

i, j = r A
i, j,k0

,
one derives

aB
i, j (r

B
i, j )

3+ bB
i, j (r

B
i, j )

2+ cB
i, j r

B
i, j + dB

i, j = aA
i, j (r

A
i, j,k0

)3+ bA
i, j (r

A
i, j,k0

)2+ cA
i, j r

A
i, j,k0
+ dA

i, j ,

which implies thatr B
i, j is a solution of the equation

(aB
i, j − aA

i, j )(r
B
i, j )

3+ (bB
i, j − bA

i, j )(r
B
i, j )

2+ (cB
i, j − cA

i, j )r
B
i, j + (dB

i, j − dA
i, j ) = 0. (2)
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SincekeyA
i, j andkeyB

i, j are fixed before the random choice ofr B
i, j , and (2) has at most

three solutions, we have the following relation:

Pr[T AB(i, j ) = T A(i, j )|FRT, T AB(i, j ) = 0, r B
i, j ]

=
{

0 if r B
i, j is a solution of (2),

1 otherwise.

This implies that

Pr[T AB(i, j ) = T A(i, j )|FRT, T AB(i, j ) = 0]

=
∑

r B
i, j∈F

Pr[T AB(i, j ) = T A(i, j )|FRT, T AB(i, j ) = 0, r B
i, j ] · Pr[r B

i, j ]

≥ 1− 3

|F| . (3)

Combining (1) and (3), for any(i, j ) one derives

Pr[T AB(i, j ) = T A(i, j )|FRT]≥ 1− 3

|F| .

Hence we have

Pr
[
KEY A = KEY AB |FRT

] ≥ ∏
1≤i≤m
1≤ j≤n

Pr
[
T A(i, j ) = T AB(i, j )|FRT

]
≥

∏
1≤i≤m
1≤ j≤n

(
1− 3

|F|
)

≥ 1− 3mn

|F| .

Note that the last inequality is obtained by the Bernoulli inequality, that is,(1+ x)mn ≥
1+mnxfor anyx ≥ −1. Let SRT denote the event that the second reliable transmission
from A to B (i.e., in rounds 2m+ 4 through 4m+ 7) succeeds. Then

Pr[M A = M B] ≥ Pr[FRT∧SRT∧(KEY A = KEY AB)]

≥ Pr[(KEY A = KEY AB)|FRT,SRT] · Pr[FRT,SRT]

= Pr
[
KEY A = KEY AB |FRT

] · Pr[FRT] · Pr[SRT]

≥
(

1− 3mn

|F|
)(

1− mn2

|F|
)2

≥ 1− mn(2n+ 3)

|F| .

Note that we have used the following properties in the above computation:

1. FRT and SRT are independent;
2. SRT and the event(KEY A = KEY AB) are independent.

Since|F| > mn(2n+ 3)/δ, it follows that Pr[M B = M A] > 1− δ.
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5. Weak Connectivity

In the more general setting of multicast graph, there is a channel from each node to
its neighbor nodes. We say that two nodesA and B of a multicast graph arestrongly
t-connected(which was implicitly introduced by Franklin and Wright [7]) if there are
t interiorly neighborhood-disjoint paths connectingA and B. Franklin and Wright [7]
have observed that the multicast lines protocol can be simulated on any strongly (t +1)-
connected multicast graph. That is, ifA andB are strongly (t + 1)-connected, then our
result in the previous section shows that(0, δ)-secure message transmission betweenA
andB is possible. In the following we show that this condition is not necessary.

Franklin and Yung [8] define that two nodesA andB in a multicast graphG(V, E)
areweakly t-connectedif for any setV1 ⊆ V\{A, B} with |V1| < t , the removal of
neighbor(V1) and all incident edges fromG(V, E) does not disconnectA andB, where
neighbor(V1) = V1 ∪ {v ∈ V : ∃u ∈ V1(u, v) ∈ E}\{A, B}. Franklin and Yung [8]
show that it is coNP hard to decide whether a given graph is weaklyt-connected.

Let A andB be two nodes on a multicast graphG(V, E) andt < n. We say thatA and
B areweakly(n, t)-connectedif there aren vertex disjoint pathsp1, . . . , pn betweenA
andB and, for any vertex setT ⊆ (V\{A, B})with |T | ≤ t , there exists ani (1≤ i ≤ n)
such that all vertices ofpi have no neighbor inT . Obviously, if two vertices are weakly
(n, t)-connected then they are weakly (t + 1)-connected.

Theorem 5.1. If A and B areweakly (n, t)-connectedfor some t< n, then the Per-
fectly Private Transmission Protocol in the previous section is an efficient(0, δ)-secure
message transmission between A and B.

Proof. It follows straightforwardly from the proof of Theorem 4.1.

Franklin and Yung [8] show that, in the context of at-passive adversary, weak(t+1)-
connectivity is necessary and sufficient for achieving private communications. Theo-
rem 5.1 provides a sufficient condition for achieving perfect privacy and probabilistic
reliability against at-active adversary in a general multicast graph. It is an open question
whether the condition in Theorem 5.1 is also necessary.

It is easily observed that strong (t+1)-connectivity implies weak(t+1, t)-connectivity.
The following example shows that(n, t)-weak connectivity does not imply strong (t+1)-
connectivity.

Example 5.2. LetG(V, E)be the graph defined byV := {A, B}∪{vi, j : i, j = 1,2,3}
andE := {(A, v1, j ) : j = 1,2,3} ∪ {(vi, j , vi+1, j ) : i = 1,2; j = 1,2,3} ∪ {(v3, j , B) :
j = 1,2,3}∪{(v1,1, v1,2), (v2,2, v2,3), (v3,3, v3,1)}. The graphG is graphically displayed
in Fig. 1. Then it is straightforward to show thatA andB are weakly(3,1)-connected
but not strongly 2-connected inG.

Theorem 5.1 shows that, for at most one malicious node, efficient(0, δ)-secure message
transmission betweenA andB is possible in the multicast graph defined in Example 5.2.
Note that this multicast graph is only strongly 1-connected, and so Franklin–Wright’s
results have no bearing on this example.
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Fig. 1. Figure for Example 5.2.

Similarly, for anyn > 2 the following example gives a graphG and two verticesA
andB such thatA andB are weakly(n,1)-connected but not weakly 3-connected.

Example 5.3. Let G(V, E) be the graph defined byV = {A, B}∪{vi, j : i = 1,2; j =
1, . . . ,n}andE = {(A, v1, j ) : j = 1, . . . ,n}∪{(v1, j , v2, j ) : j = 1, . . . ,n}∪{(v2, j , B) :
j = 1, . . . ,n} ∪ {(v2,1, v2, j ) : j = 2, . . . , bn/2c} ∪ {(v2,bn/2c+1, v2, j ) : j = bn/2c +
2, . . . ,n}. The graphG is graphically displayed in Fig. 2. Then it is straightforward to
show thatA andB are weakly(n,1)-connected but not weakly 3-connected inG.

Then Theorem 5.1 shows that, for at most one malicious node, efficient(0, δ)-secure
message transmission betweenAandB is possible in the graphG defined in Example 5.3.
The result by Franklin and Yung [8] shows that secure message transmission between
A and B is impossible in this graph when there are two malicious nodes. However,
if n > 2t + 1 and we use nonmulticast channels, then secure message transmission
is possible betweenA and B againstt malicious nodes (see, e.g., [6]). It follows that
in certain cases multicasthelpsadversaries “more,” which contrasts with Franklin and
Wright’s result [7] that in certain cases multicasthurtsadversaries “more.”

Fig. 2. Figure for Example 5.3.
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We close our paper by showing that it isNP-hard to decide whether a given multicast
graph is stronglyt-connected. Given a graphG(V, E), We say that a subsetV1 of V is
neighborhood independentif any two nodes inV1 have no common neighbor inG. We
first prove the following lemma.

Lemma 5.4. Given a graph G(V, E) and a number t, it is NP-complete to decide
whether there exists a neighborhood independent set V1 ⊆ V of size t.

Proof. It is clear that the specified problem is inNP. Whence it suffices to reduce the
following NP-complete problem IS (Independent Set) to our problem. The independent
set problem is:

Instance: A graphGI (VG, EG) and a numbert .
Question: Does there exist a node setV1 ⊆ VG of sizet such that any two nodes inV1

are not connected by an edge inEG?

The inputGI (VG, EG), to IS, consists of a set of verticesVG = {v1, . . . , vn} and a set
of edgesEG. In the following we construct a graphf (GI ) := G(V, E) such that there
is an independent set of sizet in GI if and only if there is a neighborhood independent
set of sizet in G.

Let V := VG ∪ V ′ whereV ′ = {vi, j : (vi , vj ) ∈ EG, i < j }, andE := {(vi , vi, j ),

(vi, j , vj ) : vi, j ∈ V ′} ∪ {(vi, j , vi ′, j ′) : vi, j , vi ′, j ′ ∈ V ′}. It is straightforward to check that,
for any neighborhood independent setV1 ⊆ V , if V1 ∩ V ′ 6= ∅ then|V1| = 1. It is also
clear that for any two vertexu, v ∈ VG, u andv have no common neighbor inf (GI ) if
and only if(u, v) /∈ EG. Hence there is a neighborhood independent set of sizet in G if
and only if there is an independent set of sizet in GI .

Theorem 5.5. It is NP-complete to decide whether a given multicast graph is strongly
t-connected.

Proof. It is clear that the specified problem is inNP. Whence it suffices to reduce
the NP-complete problem NIS (Neighborhood Independent Set) in Lemma 5.4 to our
problem.

The inputG(VG, EG), to NIS, consists of a set of verticesVG = {v1, . . . , vn} and a
set of edgesEG. In the following we construct a multicast graphf (G) = MG(V, E)
and two nodesA, B ∈ V such that there is a neighborhood independent set of sizet in
G if and only if A andB are stronglyt-connected.

Let V := {A, B} ∪ VG andE := EG ∪ {(A, v), (v, B) : v ∈ VG}. It is clear that two
pathsP1 andP2 connectingA andB which go throughvi andvj respectively are node
disjoint and have no common neighbor (exceptA and B) if and only if vi andvj have
no common neighbor inG(VG, EG). Hence there is a neighborhood independent set of
sizet in G if and only if A andB are stronglyt-connected inf (G).

Similarly, we can show that the corresponding problem for weak(n, t)-connectivity
is coNP-hard.
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Theorem 5.6. It is coNP-hard to decide whether a given multicast graph is weakly
(n, t)-connected.

Proof. It suffices to reduce the following coNP-complete problem coVC (co-Vertex
Cover) to our problem. The co-VC problem is:

Instance: A graphGC(VG, EG) and a numbert .
Question: Does there not exist a node setV1 ⊆ VG of size t such that for each edge
(u, v) ∈ EG, at least one ofu andv belongs toV1?

The inputGC(VG, EG), to coVC, consists of a set of verticesVG = {v1, . . . , vm} and
a set of edgesEG = {e1, . . . ,en}. In the following we construct a graphf (GC) :=
G(V, E) such that there does not exist a vertex cover of sizet in GC if and only if
f (GC) is weakly(n, t)-connected.

Let V := VG ∪ V ′ ∪ {A, B} whereV ′ = {vi, j : (vi , vj ) ∈ EG, i < j }, and E :=
{(A, vi, j ), (vi, j , B) : vi, j ∈ V ′} ∪ {(vi , vi, j ), (vi, j , vj ) : vi, j ∈ V ′}. For anyt-size subset
V1 ⊆ V , let V2 = (V1 ∩ VG) ∪ {vi : (vi , vj ) ∈ V1}. Then it is straightforward to check
that the following condition holds:

• There exists a pair(i, j ) such thatvi, j has no neighbor inV1 if and only if V2 is not
a vertex cover ofGC(VG, EG).

Hence f (GC) is weakly (n, t)-connected (witnesses by the vertex disjointn paths:
A→ vi, j → B (vi, j ∈ V ′)) if and only if GC does not have a vertex cover of sizet .

Indeed, it is straightforward to show that the above problem belongs to6
p
2 (that is, the

second level of the polynomial time hierarchy). It remains open whether this problem is
coNP-complete, or6 p

2 -complete, or neither.
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