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Abstract. Twodistinct, rigorous views of cryptography have developed over the years,
in two mostly separate communities. One of the views relies on a simple but effective
formal approach; the other, on a detailed computational model that considers issues
of complexity and probability. There is an uncomfortable and interesting gap between
these two approaches to cryptography. This paper starts to bridge the gap, by providing
a computational justification for a formal treatment of encryption.
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1. Two Views of Cryptography

A fairly abstract view of cryptographic operations is often adequate for the design,
analysis, and implementation of systems that use cryptography. For example, it is often
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convenient to ignore the details of an encryption function, and to work instead with a
high-level description of what encryption is supposed to achieve.

At least two distinct abstract views of cryptographic operations have developed over
the years. They are both consistent and they have both been useful, but they come
from two mostly separate communities and they are quite different. In one of them,
cryptographic operations are seen as functions on a space of symbolic (formal) expres-
sions; their security properties are also modeled formally (e.g., [5], [14], [17]-[19],
[29]-[31], [33], [35]-[38], and [42]}: In the other, cryptographic operations are seen as
functions on strings of bits; their security properties are defined in terms of the probabil-
ity and computational complexity of successful attacks (e.qg., [8]-[10], [12], [23]-[27],
and [45]).

There is an uncomfortable gap between these two views. In this paper we call attention
to this gap and start to bridge it. Representing the two views, we give two accounts of
symmetric (shared-key) encryption: a simple one, based on a formal system, and a more
elaborate one, based on a computational model. Our main theorem is a soundness result
that relates the two accounts. It establishes that secrecy properties that can be proved in
the formal world are true in the computational world. Thus, we obtain a computational
justification for the formal treatment of encryption.

As we relate the two accounts of encryption, we identify and make explicit some
important choices. In particular, our main theorem excludes certain encryption cycles
(such as encrypting a key with itself). A restriction along these lines is essential within the
prevailing computational approach; in contrast, formal methods typically ignore cycles.
We also consider, for example, whether two ciphertexts may manifest whether they were
produced using the same key.

We believe that this paper suggests a profitable line of further research. It will take a
significant research effort to relate the views of the people who invent, implement, break,
and use cryptography. Continuing this work, it would be worthwhile to consider other
cryptographic operations (such as signatures and hash functions), and to treat complete
security protocols (such as key-distribution protocols) in addition to basic algorithms.

Connections between the formal view and the computational view should ultimately
benefit both:

e These connections should strengthen the foundations of formal cryptology, and
help in elucidating implicit assumptions and gaps in formal methods. They should
confirm or improve the relevance of formal proofs about a protocol to concrete
instantiations of the protocol, making explicit requirements on the implementations
of cryptographic operations.

e Methods for high-level reasoning seem necessary for computational cryptology
as it treats increasingly complex systems. Formal approaches suggest such high-
level reasoning principles, and even permit automated proofs. In addition, some
formal approaches capture naive but powerful intuitions about cryptography; a link
with those intuitions should increase the appeal and accessibility of computational

cryptology.

1 In this context, “formal” means “symbolic,” as in “formal languages” and “formal logic.” It does not mean
“rigorous”—and indeed both views of cryptography have led to rigorous definitions and proofs.
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The next section is a more detailed discussion of the two views of cryptography; it
also mentions related work. The rest of the paper proceeds as follows.

In Section 3 we define a class of expressions and an equivalence relation on those
expressions. The expressions represent data, of the sort used in messages in security
protocols; the equivalence relation captures when two pieces of data “look the same”
to an adversary, treating encryption as a formal operator. These definitions are simple
and purely syntactic. In particular, they do not require any notion of probability or
computational complexity. They are typical of the definitions given in formal treatments
of cryptography, and directly inspired by some of them.

Then, in Section 4, we present a computational model with strings of bits, probabilities,
and complexities. In this model we define secure encryption in terms of computational
indistinguishability; our definition is similar, but not identical, to those of semantic
security [8], [25].

Finally, in Section 5, we relate equivalence to computational indistinguishability. We
associate a probability ensemble with each formal expression; our main theorem estab-
lishes that equivalent expressions induce computationally indistinguishable ensembles.
For example, the two expressions that represent two pieces of data encrypted under afresh
key will be equivalent. This equivalence can be read as a secrecy property, namely that
the ciphertexts do not reveal the data. Our main theorem implies that the two expressions
correspond to computationally indistinguishable ensembles.

2. Background and Related Work

This section explains the two views of cryptography, still informally. It points to a few
examples of work informed by those two views; there are many more. It also describes
some related research.

The Formal View

There is a large body of literature that treats cryptographic operations as purely formal.
There, for example, the expressioi }x may represent an encrypted message, with
plaintextM and keyK. All of {M}«, M, andK are formal expressions, rather than
sequences of bits. Various functions can be applied to such expressions, yielding other
expressions. One of them is decryption, which prodiddsom {M}« andK. Crucially,

there is no way to recove or K from {M}k alone. Thus, the idealized security
properties of encryption are modeled (rather than defined). They are built into the model
of computation on expressions.

This body of literature starts with the work of Dolev and Yao [18], DeMillo et al. [16],
Millen et al. [36], Kemmerer [31], Burrows et al. [14], and Meadows [35]. It includes
many different agendas and approaches, with a variety of techniques from the fields of
rewriting, modal logic, process algebra, and others. Over the years it has been used in the
design of protocols, it has helped develop confidence in some existing protocols, and it
has enabled the discovery of many attacks. It has also led to the development of effective
methods and tools for automated protocol analysis; Lowe’s and Paulson’s works are two
recent examples of these advances [33], [38].
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This formal perspective is fairly easy to apply for the users of encryption, for example
for protocol designers. It captures an important intuition: an encrypted message reveals
its plaintext only to those that know the corresponding decryption key, and it reveals
nothing to others. This assertion is a simple (and simplistic) all-or-nothing statement,
which can be conveniently built into a formal method. In particular, it does not require
any notion of probability or of computational complexity: there is no need to say that
an adversary may obtain some data but only with low probability or after an expensive
computation. (However, probability and computational complexity are compatible with
formalism, as demonstrated by the work of Lincoln et al. [32].)

Those who employ the formal definitions often warn that a formal proof does not
imply a guarantee of security. One of the reasons for this caveat is the gap between
the representation of encryption in a formal model and its concrete implementation. At
the very least, it is desirable to know what assumptions about encryption are necessary.
Those assumptions have seldom been stated explicitly, and not in enough detail to permit
systematic discussion and rigorous proofs. We aim to remedy this situation.

A somewhat similar situation arises from the use of the random-oracle model in cryp-
tography [11]: proofs that assume random oracles do not automatically yield guarantees
when the oracles are instantiated. However, we do not know of any natural examples
where this gap has manifested itself (see [15]).

The Computational View

Another school of cryptographic research is based on the framework of computational
complexity theory. A typical member of that school would probably say that the for-
mal perspective is naive and disconnected from the realities of concrete cryptographic
algorithms and protocols. Keys, plaintexts, and ciphertexts are all just strings of bits.
An encryption function is just an algorithm. An adversary is essentially a Turing ma-
chine. Good protocols are those in which adversaries cannot do “something bad” too
often and efficiently enough. These definitions are all about success probabilities and
computational cost.

This computational view originates in the work of Blum and Micali [12], Yao [45],
and Goldwasser and Micali [25]. It has strengthened the scientific foundations of cryp-
tography with a sophisticated body of definitions and theorems. It has also played a
significant role in the development and study of particular protocols.

As an important example of the computational approach, we sketch a notion of secure
encryption. Specifically, we choose to treat symmetric encryption, following Bellare
et al. [8]. An encryption scheme is defined as a triple of algoritiins- (IC, £, D).
Algorithm K (the key generator) makes random choices and then outputs a letring
Algorithm £ (the encryption algorithm) flips random coing map string& andm into
a string&(m, r). Algorithm D (the decryption algorithm) maps stringsandc into a
string Dk (c). We expect thaDy (Ex(m, r)) = m for appropriateék, m, andr.

An adversary for an encryption schefie= (I, £, D) is a Turing machine which has
access to an oracle. We imagine realizing this oracle in one of two ways. In the first, the
oracle chooses (once and for all) a random kegnd then encrypts each querysing
&k and fresh random coins. In the second, the oracle chooses (once and for all) a key
k, and then, when presented with a quenencrypts a string of 0 bits of equal length,
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using fresh random coins. An adversamth/antages the probability that the adversary
outputs 1 when the oracle is realized in the first way minus the probability that the
adversary outputs 1 when the oracle is realized in the second way. An encryption scheme
is regarded as good if an adversary’s maximal advantage is a slow-growing function of
the adversary’s computational resources. This definition of security can be worked out
rigorously and elegantly in both asymptotic and concrete versions (see Section 4.3). In
any case, it is based on notions of probability and computational power.

Related Work

The desire to relate the two views of cryptography is not entirely new (e.g., [3], [28],
and [34]). Nevertheless, there have been hardly any research efforts in this general direc-
tion. The work of Pfitzmann et al. [39] (which is simultaneous to ours and independent)
starts from motivations similar to our own. It proves that some reactive, cryptographic
systems satisfy high-level (noncryptographic) specifications, under computational as-
sumptions on cryptographic operations. These results do not concern a formal model of
cryptography, such as the one studied in this paper, but the relation to a formal model
of cryptography is mentioned as an interesting subject for further work. Also relevant is
the work of Lincoln et al. [32], which develops a rich process-algebraic framework that
draws on both views of cryptography. Further afield, Abadi et al. [1], [2] and Lynch [34]
relate the formal view of cryptography with higher-level (noncryptographic) descrip-
tions of security mechanisms. Finally, Volpano and Smith [43] analyze the complexity
of attacking programs written in a simple, typed language; however, this language does
not include cryptographic primitives.

As we compare two accounts of encryption, we arrive at the concept of which-key
concealing encryption, with which ciphertexts do not manifest whether they were pro-
duced using the same key (see Section 4.2). Independently and concurrently, the work of
Fischlin and that of Bellare et al. study this concept from different perspectives [7], [20].

3. Formal Encryption and Expression Equivalence

In this section we present the formal view of cryptography, specifically treating sym-
metric encryption. We describe the space of expressions on which encryption operates,
and what it means for two expressions to be equivalent.

As explained in the introduction, the expressions represent data, of the sort used in
messages in security protocols. Expressions are built up from bits and keys by pairing and
encryption. The equivalence relation captures when two pieces of data “look the same”
to an adversary that has no prior knowledge of the keys used in the data. For example,
an adversary (with no prior knowledge) cannot obtain the Kefrom the ciphertexts
{0}k and{1}« ; therefore, the adversary cannot decrypt and distinguish these ciphertexts,
so they are equivalent. Similarly, the pai& {0}x) and (0, {1}x) are equivalent. On
the other hand, the pait&, {0}k ) and(K, {1}x) are not equivalent, since an adversary
can obtainK from them, then decrypiO}x or {1}x and obtain O or 1, respectively,
thus distinguishing the pairs. In this section we formalize these informal arguments
about equivalence; the soundness theorem of Section 5 provides a further justification
for them.
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3.1. Expressions

We write Bool for the set of bits{0, 1}. These bits can be used to spell out numbers
and principal names, for example. We wrKeys for a fixed, nonempty set of sym-
bols disjoint fromBool. The symbolK, K’, K”, ... andK3, K», ... are all inKeys.
Informally, elements of the séteys represent cryptographic keys, generated randomly
by a principal that is constructing an expression. Formally, however, keys are atomic
symbols, not strings of bits. We writéxp for the set ofexpressionsiefined by the
grammar?

M, N = expressions
K key (forK e Keys)
i bit (for i € Bool)
(M, N) pair
{M}g encryption (fork e Keys)

Informally, (M, N) represents the pairing & andN, which might be implemented by
concatenation plus markers, afid } « represents the encryption bf underK, which

might be implemented using a symmetric algorithm like DES, in CBC mode and with a
random initialization vector. Pairing and encryption can be nested, as in the expression
({0, KN}k ks K).

We emphasize that the elementsExp are formal expressions (essentially, parse
trees, abstract syntax trees) rather than actual keys, bits, concatenations, or encryptions.
In particular, they are unambiguous: for examggld, N) equals(M’, N’) if and only
if M equalsM’ andN equalsN’, and it never equalsM’} . Similarly, {M}x equals
{M’}k- if and only if M equalsM’ andK equalsK’. However, according to definitions
given below,{M}x and{M’}x- are equivalent even whed and M’ are different and
whenK andK’ are different.

There are several possible extensions of the set of expressions:

e We could allow expressions of the forfivl}, where an arbitrary expressidhis
used as the encryption key.

e We could distinguish encryption keys from decryption keys, as in public-key cryp-
tosystems.

These extensions are useful in modeling realistic protocols, but would complicate our
definitions and theorems. We therefore leave them for further work.

It is also important to consider a restriction to the set of expressions. We sag that
encryptsK’ in M if there exists an expressidth such thaf{ N}« is a subexpression o
andK’ occursinN. For exampleK encrypts bottK; andK; in ({{K1}k,}« , 0). Foreach
M, this defines a binary relation on keys, the “encrypts” relation. (As a variant, a more
liberal definition that ignores occurrenceskofas a subscript may also be adequate for

2 An equivalent way to defin&xp is as the language generated by the context-free grammar with start
symbolE, nonterminal€E andK, terminals “0”, “1”, “(", ©)", “,", “ {", “}", and the set of elements iKeys,
and the productions:

E—O0|1](E,B) K| {E},
K — K foreach K € Keys.
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our purposes.) We say thiat is cyclic (or acyclig if its associated “encrypts” relation is
cyclic (or acyclic, respectively). For exampl& }x and({K }k-, {K'}k) are both cyclic,
while ({K}k-, {0}k) is acyclic.

Cycles, such as encrypting a key under itself, are a source of errors in practice (e.g.,
[44]); they also lead to weaknesses in common computational models, as explained in
Section 4. Moreover, cycles can often be avoided in practice—and they should generally
be avoided given what is, and is not, known about them. The soundness theorem of
Section 5 deals only with acyclic expressions. In contrast, cycles are typically permitted
(without discussion!) in formal methods.

3.2. Equivalence

Next we give a formal definition of equivalence of expressions. It draws on definitions
from the works of Syverson and van Oorschot, Schneider, Paulson, and others [38], [40],
[41]. Some of the auxiliary definitions concern how expressions can be analyzed and
synthesized; such definitions are quite common in formal methods for protocol analysis.
Equivalence relations are useful in semantics of modal logics: in such semantics, one says
that two states in a computation “look the same” to a principal only if the principal has
equivalent expressions in those states. Equivalence relations also appear in bisimulation
proof techniques [4], [13], where one requires that bisimilar processes produce equivalent
messages.

First, we define arentailmentrelationM F N, whereM and N are expressions.
Intuitively, M = N means thalN can be computed frorv. Formally, we define the
relation inductively, as the least relation with the following properties:

M FO0andM + 1,

MM,

if M = N;andM F N, thenM - (N1, No),
if M = (Ng, N»), thenM + N; andM F Ny,
if M =N andM F K, thenM F {N}g,

if M F {N}x andM + K, thenM F N.

This definition ofM - N models what an attacker can obtain frdrwithout any prior
knowledge of the keys used M. For example, we have

({{K1}k, ks K3) F K3
and

({{K1}k, 1}k, Ka) F {K1}k,
but not

({({K1}k,ks» Ka) = Ky (false).

It is simple to derive a more general definition from this one: obtaifihfrom M
with prior knowledge ofK is equivalent to obtainind from (M, K) with no prior
knowledge.

Next, we introduce the box symbal, which represents a ciphertext that an attacker
cannot decrypt. We define the &t of patternsas an extension of the set of expressions,
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with the gramma#:

P,Q:= patterns
K key (for K € Keys)
i bit (fori € Bool)
(P.Q pair
{P}k encryption (forK € Keys)
] undecryptable

Intuitively, a pattern is an expression that may have some parts that an attacker cannot
decrypt.
We define a function that, given a set of kélyand an expressiohll, reduceM to
a pattern. Intuitively, this is the pattern that an attacker can s&kiirthe attacker has
the keys inT:

p(K,T) = K (for K € Keys),
pi,T) =i (fori € Bool),
P((M, N), T) = (p(M, T), p(N, T)),

B {P(M, T)}k if KeT,
PM}k, T) = {g otherwise.

Further, we define a pattern for an expression without an auxiliary setit using the
set of keys obtained from the expression itself:

pattern(M) = p(M, {K € Keys| M I K}).

Intuitively, this is the pattern that an attacker can selinsing the set of keys obtained
from M. (As above, we assume that the attacker has no prior knowledge of the keys used
in M, without loss of generality.) For example, we have

pattern(({{K1}k,}ks» K3)) = ({O}k,, Ka)
becausdK e Keys | ({{K1}k,}ks> K3) F K}is {K3} and
P(({{K1}k, ks, Ka), {Ks}) = ({O}ks, Ka).
Finally, we say that two expressions aguivalentf they yield the same pattern:
M=N if and only if patterniM) = pattern'N).
For example, we have
{{K1tk,tkss K3) = ({{O}k, ks, K3)
since both expressions yield the pattéf}«,, Ks).
3 An equivalent way to defin@at is as the language generated by the context-free grammar with start

symbol P, nonterminald® andK, terminals “0”, “1”, “(", )", ", “ {", “}", “ 0", and the set of elements in
Keys, and the productions:

P—0|1|(P.P)|K|{P)k IO,
K — K foreach K e Keys.
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We may view keys as bound names, subject to renaming (as in the spi calculus [5]). For
example, althougli{O}« , K) and ({O}k-, K’) are not equivalent, we may say that they
are equivalent up to renaming. More generally, we dedigpgivalence up to renaming
=, as follows:

MZ=N if and only if there exists a bijectiom on Keyssuch that M = No,

whereNo is the result of applying as a substitution tdl. Although this relatiore is
looser than=, our soundness theorem treats it smoothly, without difficulty. Therefore,
we focus or=. In informal discussions, we often do not distinguish the two relations,
calling them both equivalence.

3.3. Some Examples and Some Subtleties

In this section we give a few more examples. Some of the examples indicate assumptions
and choices built into the definition of equivalence. These are fairly subtle but important,
and it is useful to be explicit about them. We revisit them in Section 4.

0= 0, of course.

02 1, of course.

{0}k = {1}k.

(K, {0}k) Z (K, {1}k), but(K, {({O}k', O)}k) = (K, {({1}k/, O)}k).

e K # K’andK = K’, since keys are subject to renaming withbut not with=.

e {0}k = {1}k and even{O}x = {1}k, although the two ciphertexts are under
different keys.

e ({K'}k, {0}k) = ({K'}k, {1}k/) and even({K'}k, {O}k) = ({K'}k, {1}k’), simi-
larly.

e {0}k = {K}k, despite the encryption cycle {i }k .

e {((1,D, 1 1). (AL D. L DN}k = {Ok-

Informally, we are assuming that a plaintext of any size can be encrypted, and
that the size of the plaintext cannot be deduced from the resulting ciphertext without
knowledge of the corresponding decryption key. This property justifies equivalences
such as the one above, where the two plaintexts are of different sizes. In an imple-
mentation, it can be guaranteed by padding plaintexts up to a maximum size, and
truncating larger expressions or mapping them to some fixed string (see Section 4).

We could easily refine the equivalence relation to make it sensitive to sizes, for
example, by introducing a symbal, for each sizen. The resulting definitions
would be heavier.

e ({O}k, {O}k) = {0}k, {1}k)-

Informally, we are assuming that an attacker who does not have a key cannot even
detect whether two plaintexts encrypted under the key are identical. For example,
the attacker should not be able to tell that the same plaintext appears twice under
K in ({O}k, {0}k ), hence({0}k, {O}k) = ({O}k, {1}k). In an implementation, this
sort of equivalence can be guaranteed by randomization of the encryption function
(see Section 4).

We could easily refine the equivalence relation to make it sensitive to message
identities (for example, as in [4]); but, again, the resulting definitions would be
heavier.
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e ({0}, {1}x) = ({0}, {1}k").

Informally, we are assuming that an attacker who does not have a key cannot
even detect whether two ciphertexts use that same key. For example, the attacker
should not be able to tell that the same key is used twicgdyk , {1}k ), hence
({0}, {L}k) = ({0}, {L}k).

Again, an alternative definition would be possible, with some complications.

4. The Computational View: Encryption Schemes and Indistinguishability

In this section we provide a computational treatment for symmetric encryption (adapt-
ing those of [8] and [25]). First we describe the functions that constitute a symmetric
encryption scheme, and then we describe when an encryption scheme should be called
secure. Actually, there are a few different possibilities for defining security, and we dis-
cuss several of them. The notion that we focus on—which we call type-0 security—is
stronger than the customary notion of security (that is, semantic security, and notions
equivalent to it [8], [21], [25]). Nonetheless, one can achieve type-0 security under stan-
dard complexity-theoretic assumptions. We focus on type-0 security because it matches
up with the formal definitions of Section 3. Other computational notions of security can
be paired with analogous formal ones.

4.1. Preliminaries

Elements of an encryption schemd.et String = {0, 1}* be the set of all finite strings,
and let|x| be the length of strink. Let Plaintext, Ciphertext, and Key be nonempty
sets of finite strings. Led be a particular string irlaintext. Encrypting a string not in
Plaintext will result in a ciphertext that decrypts @ We assume that i € Plaintext,
thenx’ € Plaintext for all X’ of the same length as. Let Key be endowed with some
fixed distribution. (Ifkey is finite, the distribution oriey is the uniform one.) LeCoins
be a synonym fof0, 1}* (the set of infinite strings), anearameter (the set ofsecurity
parametersbe a synonym for*1(the set of finite strings of 1 bits).
An encryption scheméT, is a triple of algorithms/C, £, D), where

K: Parameter x Coins — Key,
E: Key xString x Coins — Ciphertext,
D: Key xString — Plaintext,

and each algorithm is computable in time polynomial in the size of its input (but without
consideration for the size @fins input). Algorithm/C is called the&key-generatiomlgo-

rithm, £ is called theencryptionalgorithm, andD is called thedecryptionalgorithm. We
usually write the first argument tbor D, the key, as a subscript. When we omit mention
ofthe finalargumentt& or £ this indicates the corresponding probability space, or, when
used as a set, the support of that probability space (thatis, the strings which are output with
nonzero probability). We require that for glle Parameter, k € (), andr € Coins, if

m € Plaintext, thenDy (E(m, r)) = m, while if m & Plaintext, thenDy (Ec(m, r)) = 0.

For example, the encryption function could treat an out-of-domain message as though it
was0. We insist that&q (x)| depends only omn and|x| whenk € K(n).
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The definition above is for probabilistic, stateless encryption. One can be a bit more
general, allowing the encryption algorithm to maintain state. We do not pursue this
generalization here.

Other basic concepts A functione: N — R is negligibleif () € n=*®. This
means that for alt > 0 there existaN. such thats(n) < n=° for all > N.. An
ensemblgor probability ensembleis a collection of distributions on string®) =
{D,}, one for each;. We writex <- D, to indicate thaix is sampled fromD,, and

write Pr[x & D,: E] for the probability of evenE whenx is sampled fronD,,. Let
D ={D,}andD’ = {D;]} be ensembles. We say tHatand D’ areindistinguishable
(or computationally indistinguishabjeand writeD ~ D', if for every probabilistic
polynomial-time adversar, the function

s(n) d=8fPr[x i D,: A(n,x) = 1] — Pr[x i Dj]: A, x) = 1]
is negligible.

4.2. Aspects of Encryption-Scheme Security

In this section we consider some possible attributes of encryption schemes, and also
consider encryption cycles. These issues already appear in Section 3 in a formal setting;
here we explore them further in a computational setting.

Attributes (present or absehtof a secure encryption schemeWe single out three
characteristics of an encryption scheme. The first and third are well known, while the
second seems not to have received attention till now.

e Repetition concealing versus repetition revealing.

Given ciphertexts andc’, can one tell if their underlying plaintexts are equal? If
so, we call the scheme repetition revealing; otherwise, it is repetition concealing. A
repetition-concealing scheme must be probabilistic (or stateful); making encryption
schemes repetition concealing is one motivation for probabilistic encryption [25].

e Which-key concealing versus which-key revealing.

If one encrypts messages under various keys, can one tell which messages were
encrypted under the same keys? If so, we call the scheme which-key revealing;
otherwise, it is which-key concealing. Though some standard instantiations of en-
cryption schemes are which-key concealing, others are not (for example, stan-
dard asymmetric encryption methods based on RSA), and standard definitions for
encryption-scheme security (like those in [8] and [25]) do not guarantee which-key
concealment. Demanding that an encryption scheme be which-key concealing is
useful in contexts beyond that of the present paper (for example, in achieving forms
of anonymity). The current work of Bellare et al. undertakes a thorough treatment
of which-key concealing encryption [7].

e Message-length concealing versus message-length revealing.

Does a ciphertext reveal the length of its underlying plaintext? If so, we call the
scheme message-length revealing; otherwise, itis message-length concealing. Most
encryption schemes are message-length revealing. The reason is that implementing
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message-length concealing encryption invariably entails padding messages to some
maximal length, and it may therefore be quite inefficient. Message-length conceal-
ing encryption is possible when the message space is finite, or when all ciphertexts
are infinite streams (rather than finite strings as stated in our definitions).

These three characteristics are orthogonal, and all eight combinations make sense. We
call these eight notions of security type-0, type-1,, type-7, with the numbering de-
termined as follows: concealing corresponast0 bit and revealingota 1 bit, and we
interpret the three characteristics above as a 3-bit binary number, the most significant
bit being for repetition concealing or revealing, then which-key concealing or revealing,
finally message-length concealing or revealing. With this terminology, the conventional
concept of encryption-scheme security, ever since the work of Goldwasser and Mi-
cali [25], has been type-3 security: a ciphertext may reveal the length of the message
and which key is being used, but it should not reveal if two ciphertexts are encryp-
tions of the same message. However, this concept of security is not the only reasonable
one.

Encryption cycles Given a typea (n € {0, ..., 7}) secure encryption schené =

(K, £, D), one can construct a tygesecure encryption scheniE = (K, £, D) with

the following propertyTl’ would be completely insecure if the adversary were given (for
example, as an additional input) even a single encryptieh & (k) of the underlying

key k. Goldwasser and Micali were aware of this (in the public-key setting) when they
published their work [25].

It is not only encryptind underk that is problematic; longer cycles may also cause
problems. For example, even if an encryption scheme is type-3 secure, it may not be safe
to encrypt a messadpunder a keya and then, reversing the rolesa&ndb, to encrypta
underb. For all we know, the concatenation of the two ciphertexts might trivially reveal
botha andb. For probabilistic encryption, for cycles of length greater than one, we do
not have any example to demonstrate that this problem can actually arise, but the hybrid
arguments [25] often used to prove encryption schemes secure, and which we use here,
do not work in the presence of such cycles.

Therefore, as discussed in Section 3, we focus on expressions without encryption cy-
cles. Inreturn, we can rely on standard-looking definitions and tools in the computational
setting.

4.3. Definitions of Encryption-Scheme Secufityped0, 1, 3)

The formal treatment in Section 3 corresponds to type-0 security (repetition concealing,
which-key concealing, and message-length concealing), so we define this notion more
precisely. An explanation of the notation follows the definition.

Definition 1 (Type-0 Security). Lefl = (K, £, D) be an encryption scheme, bete
Parameter be a security parameter, and lebe an adversary. Define

def

Advl, (A = Prik K < K(n): ASO-E&O () = 1]

— Prik <& K(p): ASO-&O () — 1],
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Encryption schemél is typeQ securef for every probabilistic polynomial-time adver-
sary A, Adv%[n](A) is negligible (as a function of).

We are looking at the difference of two probabilities:

o First, we focus on the first probability. The quantity in brackets describes an experi-
ment that is performed, and then an event. In this experiment, one first chooses two
keys,k andk’, independently, by running the key-generation algoritkmrhen
one runs adversarg, with two oracles: a left oraclé and a right oracle. If the
adversary asks the left oracfea querym e String, the oracle returns a random
encryption ofm under keyk. That is, the oracle computesf— &k(m) and returns
c. If the adversary asks the right oragje querym e String, the oracle returns a
random encryption ofn under keyk’, similarly. Independent coins are used each
time a string is encrypted (but the kdyandk’ stay fixed).

e Next, we consider the second probability. In this experiment, a singlekksy
selected by running the key-generation algoritkiniThe adversary again has two
oracles, a left oraclé and a right oraclg, and these oracles again expect queries
m € String. However, now the oracles behave in the same way. When asked a query
m, the oracles ignore the query, samplé— &k(0), and returrc. Independent coins
are used each time a string is encrypted (but thekkehays fixed).

ThetypeQ advantages the difference in the above probabilities. One can imagine that
the adversary is trying to distinguish a good encryption box from a false one. A good
encryption box encrypts the specified query using the selected key. A false encryption
box ignores the query and encrypts a fixed message under a fixed random key. Intuitively,
a scheme is type-0 secure if no computationally efficient adversary can do a good job of
telling apart the two encryption boxes on the basis of their irgutput behavior.

Various other equivalent formalizations for type-0 encryption are possible. For ex-
ample, it adds no power for there to be more than two oracles. (In the first experiment,
each oracle would encrypt queries under its own key; in the second, every oracle would
encryptO under a common key.) Likewise, it takes away no powekif-) is replaced
with & (0) in the first experiment.

We also give detailed definitions of type-1 and type-3 security. (Recall that type-1
means repetition concealing and which-key concealing, and that type-3 means repetition
concealing.) The definitions resemble that of type-0 security. In these definifigns,
is an oracle that returns < &«(m) on inputm, as above, ané(0') is an oracle that

returnsc <= &(0™) on inputm.

Definition 2 (Type-1 Security). Lefl = (K, £, D) be an encryption scheme, lete
Parameter be a security parameter, and lebe an adversary. Define

Advh o (A) E Prik K &z AROEO () = 1]
— Prk < K(p): AKODEOD () — 1),

Encryption schemél is type-l secureif for every probabilistic polynomial-time adver-
sary A, Adv%l[n](A) is negligible (as a function of).
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Definition 3 (Type-3 Security). Lefl = (K, £, D) be an encryption scheme, lete
Parameter be a security parameter, and lebe an adversary. Define

def

Advi (A = Prk < Kap: ASO () = 1]

—Prk <& K@p): AEOD @) = 1].

Encryption schemél is type-3 securdf for every probabilistic polynomial-time adver-
saryA, Adv%[n](A) is negligible (as a function of).

4.4. Achieving Typeé3 and Typel Security with Standard Tools

Since type-3 security is standard but type-0 and type-1 security are not, we show that
type-0 and type-1 security can be achieved using standard assumptions and constructions.
Although this fact is not necessary for our soundness theorem, it provides support for
the hypotheses of the theorem.

Block ciphers Letg > 1 be a number (the blocksize) and iédck = {0, 1}°. LetKey
be a finite nonempty set. Therbbock cipheris a functionE: Key xBlock — Block such
that, for evenk e Key, we have thaEy(-) = E(k, -) is a permutation. Example block
ciphers include those specified in NIST's Data Encryption Standard (DES) and NIST’s
Advanced Encryption Standard (AES).

One measure of security for a block cipher is

AdVEP(A) = Prk < Key: AB© = 1] — Prjz < Perm(g): A7 =1].

Here Permg) denotes the set of all permutations @ 1}#. Informally, the adversary
A'is trying to distinguish the block ciphdt, as it behaves on a random Keyfrom a

random permutation. We think of E as a good block cipher ikdvi"(A) is small as
long asA is of reasonable computational complexity.

Block cipher modes of operation Block ciphers are the most common building block
for making symmetric encryption schemes. Two well-known ways to do this are CBC
mode and CTR mode. In CBC mode (with a random initialization vector) the encryption
of a plaintextx = X - - - X, using keyk € Key, wheren > 1 and|x| = {0, 1}#, is

YoVY1 - - - Yn Whereyq < Block andy; = Ex(yi_1®x)foralll <i < n.InCTR mode the
encryption of a plaintext using keyk is the concatenation of < Block with the xor ofx

and thgx|-bit prefix of the concatenation & (r ), Ex(r +1), Ex(r +2),....Herer +i is

the B-bit string that encodes the sumroftreated as an unsigned number) ahodulo
28.1n [8], Bellare et al. establish the (type-3) security of these two modes of operation.

CBC and CTR modes are which-key concealingven though the results just mentioned

do not indicate that CBC mode or CTR mode are which-key concealing, these schemes
are in fact which-key concealing and those results can be used to show it, as we now
sketch. LeflT = (IC, £, D) be an encryption scheme, latbe an adversary, and define

AdvEd = Prik < Key(): A% () = 1]

() =1].

kOl

— Prk Vil Key(n): A"
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By $/¢0)l we denote an oracle which, on input compute < &(m) and returns a
random string of lengtlc|. (By an assumption stated aboye,depends only on and
Im|.) Informally, the adversary cannot tell if it is given a real encryption oracle or an
oracle that returns a random string (of the appropriate length) in response to every query.
The proofs of security in [8] actually establish that CBC mode and CTR mode are
good schemes accordingAav'@™®, assuming that the underlying block ciplteis secure
according toadvP™. To complete the picture, we claim that any good scheme according
to Adv'@is also type-1 secure. (This claim is not hard to prove, though we omit doing
so here.) Therefore, CBC mode and CTR mode (as defined above) are type-1 secure:
repetition concealing, which-key concealing, but message-length revealing.

Hiding message lengths for ty@esecurity Finally, we have to conceal message
lengths. This step is standard, provided the message space is finiié.£&iC, £, D)

be a type-1 secure encryption scheme itlintext = {0, 1}*. Let Plaintext’ C String be

a finite set, with a particular eleme@it To make a type-0 secure encryption scheme we
just encode all messagesRsintext’ into strings of some fixed length, and then encrypt
these using. That is, we choose any convenient functemcodé-) which (reversibly)
takes strings irPlaintext’ to a subset of0, 1}¢, for some numbef. The encryption
schemdl’ = (K, £, D’), with message spacgaintext’, is defined by letting, (m) =
Ek(encod€ém)) for m € Plaintext’, settingSy (m) = & (0') form ¢ Plaintext’, and defining

D’ in the obvious way. Type-1 security of immediately implies type-0 security of'.

5. The Computational Soundness of Formal Equivalence

In this section we relate the two views of cryptography. We proceed in two steps. First,
we show how to associate an ensemble to an expredsj@iven an encryption scheme

I1. Then we show that, under appropriate assumptions, equivalent expressions give rise
to indistinguishable ensembles.

5.1. Associating an Ensemble to an Expression

LetIT = (K, &, D) be an encryption scheme and#et Parameter be a security param-

eter. We associate to each formal expressioa Exp a distribution on strings ] i,

and thereby an ensembl®f]] ;. This association constitutes concrete semantics for ex-
pressions (in the style of programming-language semantics or logic semantics); it works
as follows:

e First, we map each key symbHl that occurs inM to a string of bitsr (K), using
the key generataC(n).

e We map the formal bits 0 and 1 to standard string representations for them.

e We obtain the image of a formal paiM, N) by concatenating the images of the
componentdV andN.

¢ We obtain the image of a formal encryptipi }x by calculatingt; «,(x), where
X is the image oM.

e In all cases we tag string representations with their types (that is, with the strings

“key”, “bool”, “pair”, “ciphertext”) in order to avoid any ambiguities.
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algorithm INITIALIZE, (M)
for K € Keys(M) do 7(K) < K(n)

algorithm CONVERT(M)

if M = K where K € Keys then
return (7(K), “key” )

if M = b where b € Bool then
return (b, “bool” )

if M = (M, M) then
return ( CONVERT(M;), CONVERT(My), “pair”)

if M = {M;}k then
2 & CoNVERT (M)
Y = ET([\’)(‘T)
return (y, “ciphertext” )

Fig.1. Howto map (probabilistically) an expressibhto a string @NVERT(M), given an encryption scheme
I = (K, &, D) and a security parameter

This association is defined more precisely in Fig. 1. In the figure we W&y M) for
the set of all key symbols that occur M, and write(xg, . .., Xx) for an ordinary string
encoding of the tupley, ..., Xc<. The auxiliary initialization procedurelITIALIZE ,,(M)
maps every key symbol ikeyg M) to anindependently chosen kegK ). The probability
of a string in [M ] iy, is that induced by the algorithmaBiverT(M) of Fig. 1.

5.2. Equivalence Implies Indistinguishability

Next we prove that equivalent expressions correspond to indistinguishable ensembles
(that is,M = N implies [M]n ~ [ N]n), assuming that the expressions are acyclic
and that the underlying encryption scheme is type-0 secure.

We start with a few simple examples, instantiating the claim Ma& N implies

[MIn ~ [N]n:

e Since 0= 0, we conclude that [0f ~ [0] . The two ensembles being compared
put all the probability mass on a single poit@, “bool”).

e SinceK = K’, we conclude that K] ~ [K’]n. The two ensembles being
compared are identical: they are induced by the key genefator

e Since{0}x = {1}k, we conclude that {0}k n =~ [{1}k - This indistinguisha-
bility is nontrivial: it relies on the assumption that the encryption scheme is type-0
secure.

e Although {0}k = {K}k, we cannot conclude anything about hoyd]k ] may
relate to [{K }« 1 1, because of the encryption cycle{id }k .

Reconsidering some of the other examples of Section 3.3 can also be instructive.
Our theorem is:

Theorem 1. Let M and N be acyclic expressions and Iethe a typed secure en-
cryption schemeSuppose that M= N. Then[M] g ~ [ N] .
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Proof. The proof is a hybrid argument, as in [25]. (See [22] for a discussion of this
technique.) One must be particularly careful in forming the hybrids, relying on acyclicity.
Because of the generality of the claim, the description of the hybrid argumentis somewhat
complex. Therefore, we include a running exampléalics. We also break up the proof

into several phases.

Key renaming The first phase of the proof deals with renaming keys. Roughly, its
goal is to modify the expressiord and N by renaming keys so thatatternM) =
pattern(N), still, and M has “hidden” keysKj, ..., Ky and N has “hidden” keys
Ki, ..., Ky, whereK, encryptsK; only when!l > i, and bothM and N have “re-
coverable” keysh, ..., J,.

As above KeygM) is the set of all keys that occur M. First we partitiorKeygM),
separating those keys that the adversary can recover from the rest:

recoverabléM)
hidden M)

(K € KeysM) | M + K},
KeysM) — recoverabléM).

Let u = | recoverabléM)| and letm = | hiddenM)|. We form a directed grapBy =
(Vm, Em) whose vertices ar¥y, = hidden M) and where there is an akk — K’ in
Ew if and only if K encryptsK’ in M. (Recall thatK encryptsK’ in M if there is a
subexpressiofiM;}x of M whereK’ occurs inM;.) The acyclicity ofM means that
Gw is acyclic and, as a consequence, we can rename the ké&gy#M) so that the
hidden keys ar&y, ..., Km, the recoverable keys adg, ..., J,, andK, — K; € En
implies| > i. In other words, a deeper key M gets a smaller number. We Ibt’ be
the resulting expression.

We start our running exampl&uppose that M is the expression
{O}ke (K1 1}k, K2 {O}k, {Kelk, {K1 Ka}k, {11 Bk, O {Ki}k, {Ks}k,-

Here we have omitted commdsr readability, and also parenthese$he parentheses
are irrelevant in this examp)éut we should hold them fixed as the example is devejoped
for concretenessve may think of elements as being grouped left-to-rigithata b ¢ d

is short for(((a, b), ), d). In this examplewe have

KeysM) = {Ky, Ky, K3, K4, Ks, Kg},
recoverabléM) = {K,, Ks},
hiddenM) = {Ky, K3, K4, Kg}.
The graph Gy = (Vm, Em) has vertices = {Kj, K3, K4, Kg} and arcs K —

Ki, Ky = K3, K4 — Kg, and Kg — Kj;. We renamegKy, K», Kz, K4, Ks, Kg) to
(K1, J1, Ky, Ky, J, K3), obtaining a new expression’M

{O}k, {K1 1}k, J1 {O}k, {Ks}k, {K1 Ko}k, {111}, 0 {Ki}k, {J2}s,.
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BecauseM = N, and by the definition of equivalence up to renaming, there exists
a functiono on KeygN) such thatpatternM) = patternNo). The keys that occur
in this pattern are those in the se¢xoverabléM) andrecoverabléNo), which are
therefore equal. Moreover, the value ®fon hiddenN) is irrelevant, since the keys
in this set get obliterated with the symbol So, by acyclicity, we can again rename
those keys tK4, ..., K, in such a way thakK, encryptsK; only if I > i. This re-
naming is much as iM, so we omit its justification. We obtain a functieri and
an expressiomN’ such thatN’ = No’, M’ = N’, recoverabléM’) = recoverabléN’)
= {J1,...,Ju}, hiddenN") = {Kg,..., Ky}, and K, encryptsK; in N’ only if
I >i.

Continuing our exampldet N be the expression

{1 Lk, {Ks}k, K1 {Ks}k, {Kg}k, {1}ks {1 1 Lk, 0 {0 O}k, {Ks}k,,

so recoverableN) = {Kq, K3} and hiddetiN) = {K;, Ks, Kg}. We rename&K,, K,
Ks, Ks, Kg) to (J1, K3, Jp, K1, K5), obtaining a corresponding expressiori:N

{1 Lk, {Jo)ks 1 {J2}ks {Kolks {1}k, {11 15, 0{0 O}k, {2}

Note that N (and N) have a different number of hidden keys thah(&hd M). On the
other handthey have the same number of recoverable;kiys equality is implied by
the definition of equivalence

In sum, we can thus apply renamings¥band N, obtainingM’ and N’ such that
pattern(M’) = pattern(N’), M’ has hidden key¥Ki,..., Ky, N’ has hidden keys
Ky, ..., Ky, if K| encryptsKj, thenl > i inbothM’ andN’, and both have recoverable
keysJi, ..., J,.

The hybrid patterns Mand N. In the next phase of the proof we introduce patterns
(that is, extended expressiond), My, ..., Mp andNg, N, ..., N, so that these pat-
terns form a chain betwedvl” andN’. Relying on the functiorp from Section 3.2, we
let

M; = p(M’, recoverabl¢M’) U {K4, ..., KD,

whereKy, ..., Ky, are the hidden keys dfl’ andi € {0, ..., m}. In particular, we have
Mgy = patternM’) and M, = M’. Similarly, for j € {0, ..., n}, we let

N; = p(N’, recoverabléN’) U {Kq, ..., K;}

and in particular obtailNy = patternN’) and N, = N’. Intuitively, M; and N; are
the patterns that the adversary seed/ihand N’, respectively, if the adversary has a
priori knowledge of the otherwise hidden kels, ..., K;. The ordering of the keys
guarantees that this knowledge does not permit the discovery of other hidden keys.
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In our examplewe have

Ms: {0}k, {K1 1}k, Ji {0}k, {Ka}k, (K1 K2}k, {1113, 0{Ki}k, {J2}s

Msg: {Olk, O {0, O 0O {111, 0{Kulks {2}y
Mo: O O Ji {0}k, a | {111,0 O ({3},
Mi: O O Jy O O O {111}320 O {‘JZ}J1
Mg: O O Jy O O O {111}320 O {‘]2}-]1
l

No: O O J, O O d {1113,0 O {J}y
Ni: O o J O O Lk, {113,0 O {&}y
Ny O o J O O {k, {113, 0{0 0Ok, {J}s

Na3: {11k, {J2}ks d{d

—

ks {K2bks  {Uk, {1115 0{0 Ok, {J2}s,

Note that pattercM’) = Mg = Ng = pattern(N’).

Defining ensembles for the patterns &hd N. Next we map each of the patterns
Mo, ..., Mm, N, ..., N, to an ensemble Wolr, ..., [ Mmln, [ Nolm, .-, [ Nnl .
respectively. We define this mapping by extending the conversion algorithm of Fig. 1 so
that it applies to patterns, not just to expressions. The extension is simple: any time it
encounters the symbal, it returns the encryption d¥ using a new, fixed key, which is
used for no other purpose. More precisely, we extend the algorithm of Fig. 1 by adding
to INITIALIZE the line

7(Ko) < K(n)
and adding to ONVERT the lines

if M = Othen

Y < ko) (0)
return (y, “ciphertext”

Finding a large gap Clearly [MIgp = [M’]n, sinceM and M’ differ only in
their indexing, and similarly Nln = [N’]n. Therefore, our goal is to show that
[M1n~[N]n.

We argue by contradiction: we assume that there is an adveisiduat distinguishes
[MTn and [N']n, in order to contradict the type-0 security Gf According to the
definitions, the adversar runs in polynomial time, and the function

A =Prly < [MTn: A y) = 1] = Prly < [N'Tn: A, y) = 1]

is not negligible, that is, for some constanfor some infinite sel, A(n) > n~¢ for all
neN.ForO<i <mand 1< j <n,we define

P = Prly & [Milm: A y) = 1],
g = Prly < [NiTnpg: A, y) = 1.
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Below, we sometimes omit the argumentor notational simplicity. SinceM’ = My,
andN’ = N, we have that = py, — gn. In addition, we have thgty = qo becausévi’
andN’' yield the same pattern, so we also have that

A = (Pm— Pm-1) + (Pm-1— Pm-2) + -+ (P1 — Po)
+ (@o—0qu) + (U1 — ) + -+ + (Oh—1 — On)-

We thus haven+ n summands that add up toBy the triangle inequality, there is either
i € {1,...,m}suchthatp — pi_1 > A/(m+n) or there isj € {1, ..., n} such that
gi—1—0 > A/(m+n). Moreover, a suitable indexor j exists for eacly € N, so there
isanindex or j that works for infinitely many, € , since the number of summands
is finite and fixed. Let be such an index; the case of an indes exactly analogous.
Hence, there exists an infinite S8t € N such thatp; (n) — pi_1(n) = A(n)/(M+ n)
for eachn € N/,

In our example we are assuming that there is some adversary A with a good ad-
vantage say 0.50, in distinguishing[ Ma] ;7 and [ Na] iy, that is [M] g, and
[ N1 gy So the adversary A will distinguish one of the following with advantage at least
0.50/7: [Ma] npyy and [ Ma]npyp; [ Ml and [ M2l ngyys [ M2l ngy and [ Mol ngp;
[ M1] nyy and Mo] rapyy; [ NoJl gy @nd [ NaJ rapyy; [ NaJl gy @nd [ NaJ gy or [ Nell gy
and[ Nz] rip;) - For examplgsuppose that it i Ma] ;) and[ Mz] ;- Then A answers
1 substantially more often when given samples ffdviy ] ri;,;) than when given samples
from [ M2] ripy;.-

This step of the proof (finding a large gap) is nonconstructive. The nonconstructiveness
is convenient for our exposition. However, it can be avoided using standard methods, as
in [21]: one may simply choose the gap location at random.

Contradicting the typ& security offl1.  Using A, we construct an adversa#y that
violates the type-0 security @1. The definition ofAg is in Fig. 2. SinceAq attacks the
type-0 security of an encryption scheme, it has access to two ordcks]lg. Those
oracles can be instantiated in one of two ways. In one case the draslé (-), for

a randomly chosek; & K(n), while the oracleg is &,(-), for a randomly chosen

ko & KC(n). In the other case the oracfeis &, (0), for a randomly choseky & K),
while the oracley is again&, (0).
We have

pi(n) = Prlki, ko < K(n): Agk‘ ), Eip )

p_1(n) = Prlko & K(n): Ao &

(n) = 1],
(n) =1].

These equalities hold becaus®N¥ERT2(M’) returns a sample from ;7 when

f =& () andg = &, (-), and @NVERT2(M’) returns a sample fromNli_1] 1 when

f = &, (0) andg = &, (0). In both cases, notice that encryption under a recover-
able keyK corresponds to encryption under the associated ky. Encryption under

a hidden keyK in {Kg, ..., Kj_1} also corresponds to encryption under the associ-
ated keyt (K), while encryption under a hidden key {1, ..., Ky} results in0
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algorithm Aé"’(r/)
for K € Keys(M') do 7(K) < K(n)
y & CONVERT2(M)
b An, y)
return b

algorithm CONVERT2(M™)
if M* = K where K € Keys then
return (7(K), “key” )
if M* = b where b € Bool then
return (b, “hool” )
if M* = (M}, M3) then
return ( CONVERT2 (M), CONVERT2(M3), “pair™ )
if M* = {M{}k then
if K € {]] ...... /‘,31\'1,..4‘1\"54]} then
2 & CONVERT2(M)
Y < Er ey (2)
return (y, “ciphertext” )
else if K = K; then
2 & CONVERT2(M{)

y & fx)

return (y, “ciphertext” )
else if K € {Kij1,..., K.} then

y < 9(0)

return (y, “ciphertext” )

Fig. 2. Given an adversanj that distinguishes /T from [M/_, 1, the adversary violates the type-0
security ofI1, using the oracles andg. As in the rest of the proofK1, ..., Ky, are the hidden keys and
..., J,. are the recoverable keys bf’.

encrypted undeky. For the first equality, encryption under the hidden k&ycorre-
sponds to encryption undkr, for the second, encryption undiér results ind encrypted
underkg.

We therefore also have

Eii (), Eig ()

AdvD, (Ao) = Prlki. ko < K(n): A

— Prlko < K(p): A
pi (7)) — pi—1().

(m) =1]

(0), &, (0)
T ) =1]

For infinitely many values of (those greater thafm + n) in A”’), we obtain

\

AdVY (Ao) = A(n)/(M+n)

n~¢/(m+n)
’7_(C+1)-

\

>

Hence, the functiomdv%[n](Ao) is not negligible. This conclusion contradicts the hy-
pothesis that the encryption scheies type-0 secure, as desired.
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Completing our examp]&ve suppose that A answelrsubstantially more often when
given samples frorfiMs] rj,; than when given samples frofMz] i}, as aboveWe
use A to show that the encryption schehiids not type® secure by constructing a
successful adversarypfAgainstIl. This adversary relies on two oracles f angwvgth
two instantiations eaciT he two instantiations come from the definition of tfysecurity
With the first instantiationA, creates a sample frofiMz] rij,; and then calls AWith the
second instantiationA creates a sample frofiM;] ;) and then calls ATherefore
Ao answersl substantially more often in the first case O

Theorem 1 gives an asymptotic statement of security. From its proof one can, as
always, extract a corresponding concrete-security statement. This statement would say
the following. LetM andN be acyclic expressions withandn keys and lengthigvl | and
N[, respectively. (The length of an expression is just the number of rules used to generate
it.) Suppose thaM = N. Assume further tham, n > 1, thus excluding only trivial
cases. Fix a security parameteand an encryption schenié. Let A be an adversary
that runs in timet and achieves advantagey) = Prly < [MInp: An,y) = 1]

— Prly < [N]np: A, y) = 1] in distinguishing M]np,; and [N] ;. Then
there exists an adversady that breaks the type-0 security 0f[n] with advantage

g0 = AdVOn[n](AO) > ¢/(m + n). Moreover, there exist constardsand«’ such that

Ap makes at most mdm, n} queries to its encryption oracles, these queries having
length at most:’ - max{|M|, [N[}; and the running time ofq is at mostt + « - Try, -

(IM] + |N]), whereTpy, is the maximum time to choose a key fra(n) plus the
time to encrypt a message of length at mastmax{|M|, |N|} bits using the key. The
numberse and«’ depend only on encoding conventions and details of the model of
computation.

One may wonder whether a converse to Theorem 1 holds, that is, whether indis-
tinguishability implies equivalence. Such a converse fails for a fairly trivial reason: if
applying the algorithm of Fig. 1 to the expressiddsand M’ gives rise to encryp-
tions of strings outside the message spRleatext of the encryption schemH, then
identical ensembles may be associated Wwittand M” even whenM and M’ are not
equivalent. We have not explored whether the converse holds ®iheiext is large
enough.

6. Conclusions

The formal approach to cryptography often deals with simple, all-or-nothing assertions
about security. The computational approach, on the other hand, makes delicate use of
probability and computational complexity. However, one may intuit that the formal as-
sertions are valid in computational models, if not absolutely at least with high probability
and against adversaries of limited computational power. In this paper we develop this in-
tuition, applying it to the study of encryption. We prove that the intuition is correct under
substantial but reasonable hypotheses. This study of encryption is a step—perhaps mod-
est but hopefully suggestive—toward treating security protocols and complete systems,
and toward combining the sophistication of computational models with the simplicity
and power of formal reasoning.
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