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Abstract. This paper is concerned with generalisations of Paillier’s probabilistic en-
cryption scheme from the integers modulo a square to elliptic curves over rings. Paillier
himself described two public key encryption schemes based on anomalous elliptic curves
over rings. It is argued that these schemes are not secure. A more natural generalisation
of Paillier’s scheme to elliptic curves is given.
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1. Introduction

Paillier [9] developed a probabilistic, homomorphic public key encryption scheme based
on arithmetic in the ring of integers moduloN2 whereN is a product of two large primes.
This scheme has found many applications in cryptography (such as [4]). In [11] Paillier
tried to generalise this scheme to the elliptic curve setting by using anomalous elliptic
curves over rings. In Section 6 we show that the scheme of Section 4 of [11] is not secure,
as the private key can be easily recovered from the public data. In Section 7 we argue
that the scheme of Section 3 of [11] cannot be securely implemented.

The idea of using anomalous elliptic curves over rings for public key cryptosystems
first appeared in Okamoto and Uchiyama [8]. Their goal was to “trapdoor” the elliptic
curve discrete logarithm problem on an elliptic curve over a ringZ/NZ whereN is a
productpq of primes, by using the fact that it is easy to solve the elliptic curve discrete
logarithm problem on an anomalous curve over a prime fieldFp using the methods of
[12], [13] and [15]. However, Okamoto and Uchiyama realised that their attempts to
build such a system were unsuccessful, in that it was possible to derive the factorisation
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130 S. D. Galbraith

of N from the public information of their system. In general, it seems unlikely that
cryptosystems based on anomalous elliptic curves over rings can be secure.

In Section 9 we describe a more natural generalisation of the original Paillier scheme to
elliptic curves. The motivation behind this work is to enable elliptic curve variants of the
interesting new protocols developed using Paillier’s idea. Of course, the performance
of cryptosystems based on elliptic curves modulo large numbers is much worse than
non-elliptic curve versions of these schemes. Hence the scheme in Section 9 is mainly
of theoretical interest.

2. Elliptic Curves over Rings

We recall some facts about elliptic curves over rings.
Let R be a commutative ring (with 1) and denote byR∗ the set of invertible elements

of R. A pair a,b ∈ R such that 6(4a3 + 27b2) ∈ R∗ defines anelliptic curve y2z =
x3 + axz2 + bz3. The set ofR-valued points of the elliptic curve is denoted byE(R)
and is defined (see [7]) to be the set of equivalence classes of points(x : y : z) such
thatx, y, z ∈ R, y2z = x3 + axz2 + bz3 and such that the ideal generated byx, y, z is
R (and where the equivalence relation is(x : y : z) ∼ (x′ : y′ : z′) if and only if there
existsλ ∈ R∗ such thatλx = x′, λy = y′ andλz= z′).

SupposeR satisfies the further condition that every projectiveR-module of rank one
is free (see Section 3 of [7]). Then the usual chord and tangent operation on the setE(R)
provides a group law with identity element(0 : 1 : 0).

Let p andq be distinct primes (this notation applies to the whole paper) and letR be a
ring isomorphic toFp×Fq (for instance, by the Chinese remainder theorem we can take
R= Z/pqZ). Suppose thatE is an elliptic curve overR. Then there are natural reduction
maps fromE(R) to E(Fp) andE(Fq) and it follows thatE(R) ∼= E(Fp)× E(Fq).

More generally, the “Chinese remainder” (see Section II.2 of [5]) of two finite fields
Fpn,Fqm is a ringR which is isomorphic toFpn × Fqm. For such a ring there are natural
reduction maps fromE(R) to E(Fpn)andE(Fqm)and we findE(R) ∼= E(Fpn)×E(Fqm).

Let E be the elliptic curvey2z= x3+axz2+bz3 over a ringR. For anyd ∈ R define
thequadratic twist E(d) : y2z= x3+ (d2a)xz2+ (d3b)z3.

To add points(x1 : y1 : z1) and(x2 : y2 : z2) on an elliptic curve over a ringR one
can use the usual formulae whenz1, z2 ∈ R∗. In our setting it will often happen that
one ofz1 or z2 is not invertible. One way to avoid these problems (which applies when
both y1, y2 ∈ R∗) is to make the curves affine using the(x, z)-plane by imposing the
condition y = 1 rather than the more usual(x, y)-plane. The elliptic curve becomes
z = x3 + axz2 + bz3 and a point(x : y : z) becomes the point(x/y, z/y). Points for
which y is not invertible do not lie in this affine space. The identity element for the group
law is now(0,0) and the inverse of a point(x1, z1) is (−x1,−z1).

Explicit group formulae can easily be given. The sum of(x1, z1) and(x2, z2) when
x1 6= x2 is given by(x3, z3) where

λ = (z1− z2)/(x1− x2),

x3 = x1+ x2+ (z1− λx1)(2aλ+ 3bλ2)/(1+ aλ2+ bλ3),

z3 = λ(x3+ x1)− z1.
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To double(x1, z1) we obtain

λ = (3x2
1 + az2

1)/(1− 3bz2
1 − 2ax1z1),

x3 = 2x1+ (z1− λz1)(2aλ+ 3bλ2)/(1+ aλ2+ bλ3),

z3 = λ(x3+ x1)− z1.

These formulae are valid whenever the divisions are possible in the ring.

3. Elliptic Curves modulo N2

We recall some fragments of thep-adic theory of elliptic curves (for further details see
[14]). Let p be a prime,n a positive integer, andE an elliptic curve overZ/pZ. Define

E1(Z/pnZ) := {P ∈ E(Z/pnZ): P reduces to(0 : 1 : 0) in E(Z/pZ)}.
Obviously, an element(x : y : z) ∈ E1(Z/pnZ) hasp|x, p|z and p6 |y.

The theory of formal groups (see [14], especially Proposition VII.2.2) gives rise to a
mappingψ : p(Z/pnZ) −→ E1(Z/pnZ) which is of the formψ : x 7−→ (x : 1 : w(x))
where

w(x) = x3+ ax7+ bx9+ 2a2x11+ 5abx13+ (5a3+ 3b2)x15+ 21a2bx17+ · · · .
The image ofpj (Z/pnZ) underψ is the subgroup ofE1(Z/pnZ) given by

Ej (Z/pnZ) = {(x : 1 : z) ∈ E1(Z/pnZ): pj |x and p3 j |z}.
More importantly, the mapψ has certain homomorphic properties. In fact Proposi-

tion IV.3.2 of [14] implies that the map induced byψ is a group isomorphism from
pj (Z/pnZ)/pj+1(Z/pnZ) to Ej (Z/pnZ)/Ej+1(Z/pnZ).

The group operation is not entirely as one might expect (and this is why it does
not extend to the whole ofp(Z/pnZ)). The sum of the points(x1 : 1 : w(x1)) and
(x2 : 1 : w(x2)) is the point(x3 : 1 : w(x3)) where

x3 = (x1+ x2)+ a(−2x1x4
2 − 4x2

1x3
2 − 4x3

1x2
2 − 2x4

1x2)

+ b(−3x1x6
2 − 9x2

1x5
2 − 15x3

1x4
2 − 15x4

1x3
2 − 9x5

1x2
2 − 3x6

1x2)

+ a2(−2x1x8
2 + 8x3

1x6
2 + 16x4

1x5
2 + 16x5

1x4
2 + 8x6

1x3
2 − 2x8

1x2)+ · · · . (1)

As usual, whenN = pq then one can apply the Chinese remainder theorem to these
results and therefore deduce that #E(Z/NnZ) = MNn−1 whereM = #E(Z/NZ). We
emphasise here thatE(Z/NnZ) is a group.

One important family of points onE(Z/N2Z) arePi = (Ni : 1 : 0). It is not possible
to use the group law formula from Section 2 to computemPi since the divisions are not
defined. Instead, one must use (1), from which it follows thatmPi = Pmi.

Similarly, when working inE(Z/NnZ) one has the pointP1 = (N : 1 : w(N) =
N3 + aN7 + · · ·). To computem P1 it is necessary to use (1), for instance 2P1 =
(2N−12aN5−54bN7+· · · : 1 : (2N)3+· · ·). One can show thatNn−1P1 = (0 : 1 : 0).
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4. Anomalous Elliptic Curves

In this section we recall the definition of an anomalous elliptic curve. In the next section
we explain why it is easy to factorN = pq when given an elliptic curveE overZ/NZ
which is anomalous modulop andq.

An elliptic curveE: y2z = x3 + axz2 + bz3 over a fieldFp is calledanomalousif
#E(Fp) = p.

Let E be an anomalous elliptic curve overFp and letd be a non-square modulop.
Then the quadratic twistE(d) satisfies #E(d)(Fp) = p+2 and #E(Fp2) = #E(d)(Fp2) =
p(p+ 2).

We now explain how to construct an elliptic curveE and primesp andq, such thatE is
an anomalous elliptic curve over bothFp andFq. The first step is to choose a discriminant
D < 0, D ≡ 1 (mod 4) of an imaginary quadratic field of small class number (taking
class number one allowsE to be written with coefficients inZ, with higher class numbers
we would only store thej -invariant modulop andq). The next step is to find suitably
large primesp = (1− k2D)/4 andq = (1− k′2D)/4 wherek andk′ are large positive
integers. The CM method [1] constructs thej -invariant (usually just modulop andq)
of an elliptic curveE whose endomorphism ring has discriminantD. Since

p = (1+ k
√

D)

2

(1− k
√

D)

2

it follows that the elliptic curve overFp has tracet = ±1 (and similarly forq). Taking an
appropriate quadratic twist (determined by trial and error) gives an elliptic curve which
is anomalous overFp andFq.

Let N = pqand supposeE is an elliptic curve overZ/NZwhich is anomalous modulo
pandq. Letd be an integer so that( d

p) = ( d
q ) = −1. ThenE(d)(Z/NZ) = (p+2)(q+2).

Takingd′ such that, say,( d′
p ) = −( d′

q ) = 1 yieldsE(d′)(Z/NZ) = p(q + 2).

5. Factoring Using Elliptic Curves

Let N = pq and suppose thatE is an elliptic curve overZ/NZ. Let P = (x : y : z)
be a point ofE(Z/NZ) and supposem is a multiple of the order ofP in E(Fp). Then
mP= (x′ : y′ : z′) ∈ E(Z/NZ) reduces to the point at infinity inE(Fp) and sop|x′
and gcd(x′, N) yields a factorisation ofN. This is the key to Lenstra’s elliptic curve
factoring method [6].

Consider now the case where #E(Z/pqZ) = p(q + 2) and N = pq. If we take a
random pointP = (x : y : z) on E(Z/NZ), then, with probability at least(1− 1/p), P
will have order divisible byp (and not divisible byq) and soN P will yield a factorisation
of N using the method shown above.

In practice one cannot find a random pointP on E(Z/NZ) without knowing the
factorisation ofN (since if one choosesx at random one cannot take square roots and
compute the correspondingy). This difficulty is solved by using addition formulae which
do not requirey-coordinates (see [6] or [8] for a statement of these formulae and for
more discussion about factoringN in this way). Similarly one cannot check that a given
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value corresponds to thex-coordinate of a point onE(Fp), but this will be true with
probability roughly 1/2.

More generally, ifE is an elliptic curve overZ/NZ, then knowledge of #E(Z/NZ)
is polynomial-time equivalent to knowledge of the factorisation ofN.

6. Paillier’s Third Encryption Scheme

The third scheme of Paillier (Section 4 of [11]) concerns an elliptic curveE overZ/pqZ
which is the quadratic twist of an anomalous curve overFp and Fq. Thus, writing
N = pq, #E(Z/NZ) = (p+ 2)(q + 2).

Paillier claims that #E(R) = (p+2)(q+2)pqwhereR= Z/N2Z. This is true, due to
thep-adic theory discussed in Section 3. The argument given by Paillier relies on Hasse’s
theorem, but this would apply only if the ringRwere taken to be isomorphic toFp2×Fq2.
One construction for such a ring which does not seem to leak the factorisation ofN is
to take an integerd such that( d

p) = ( d
q ) = −1 and defineR= (Z/NZ)[t ]/(t2− d).

In either case there is a natural inclusion fromZ/NZ to R and, sinceE is defined over
Z/NZ, soE(Z/NZ) can be viewed as a subgroup ofE(R).

For this scheme the public data is the modulusN and the coefficientsa andb of the
elliptic curve E overZ/NZ. The public data also includes a pointG ∈ E(R) which
has order divisible byN. The cryptosystem is based on the fact that the owner of the
secret key{p,q} knows the group order and thus can map elliptic curve points into
the N-torsion subgroup. The discrete logarithm problem is then easily solved using the
anomalous curve methods.

It is possible to recover the factorisation ofN efficiently from the public data using
the same technique as that used by Okamoto and Uchiyama [8, Section 4]. We give
a sketch of the method (see Section 5 for details): Take random quadratic twistsE(dj )

of E and random valuesxi ∈ Z/NZ. With probability approximately 1/2 the curve
E(dj ) is anomalous modulo one of the primes (saypj ) and not anomalous modulo the
other, and with probability approximately 1/2 the valuexi is anx-coordinate of a point on
E(dj )(Fpj ). One then simply pretends that there is a pointPi = (xi : ? : 1) in E(dj )(Z/NZ)
and computesNPi using the addition formulae which only requirex-coordinates. In the
good case (which occurs with probability approximately 1/4) the addition algorithm
produces anx-coordinate which has a non-trivial and proper common divisor withN.

7. Paillier’s Second Encryption Scheme

The scheme of Section 3 of [11] concerns an elliptic curveE overZ/pqZ which is the
twist of an anomalous curve overFp. Paillier selects the other primeq randomly (soE
is just a “random” elliptic curve overFq and is assumed to have no special properties)
and definesN = p2q. The public key includes the elliptic curveE and the integerN.
Paillier claims that #E(R) = (p+ 2)p#E(Fq) whereR = Z/p2qZ. This is true, but
again the fact follows fromp-adic theory rather than from Hasse’s theorem. Taking a
quadratic twist where( d

p) = −1 yields #E(d)(Z/p2qZ) = p2#E(d)(Z/qZ) and soE(d)

can be used to factorN.
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This attack could be avoided by using a ringR which is isomorphic toFp2 × Fq.
However, I do not know of any description of such a ring which does not leak the
factorisation ofN = p2q.

Suppose instead that one takesR = Z/(pq)2Z or R isomorphic toFp2 × Fq2 (one
can use the construction forR given in the previous section). One then has #E(R) =
(p+ 2)pM (whereM is #E(Z/q2Z) or #E(Fq2) depending on the definition ofR) and
Paillier’s protocol can be applied in this setting. However, it is still possible to factor
N = pq by working with random quadratic twists ofE overZ/NZ as discussed above.

8. Generalisations

The attack used in Section 6 relies on the fact that the elliptic curveE is defined over the
subringZ/NZ of R= (Z/NZ)[t ]/(t2−d) and so we can consider the groupE(Z/NZ).
If E could be taken so that it is always defined over the full ringR (i.e., so thatj (E) ∈ R
and j (E) 6∈ Z/NZ), then the attack would fail.

However, the following lemma shows that the attack described in this paper cannot
be avoided in this manner.

Lemma 1. Let E be an elliptic curve overFp2 such that#E(Fp2) = p(p+ 2). Then
j (E) ∈ Fp.

Proof. The trace of Frobenius forE(Fp2) is t = 1−2p. Write1 = t2−4p2 = 1−4p,
K = Q(√1), π = (1+ √1)/2, and supposeOK is the maximal order ofK . The
endomorphism ring ofE is isomorphic to some orderO such thatZ[π ] ⊆ O ⊆ OK .

The prime ideal(p) splits inO as(p) = (π)(π̄) and the orderZ[π ] has conductor
coprime to p. Since(π) is a principal ideal, it follows from the theory of complex
multiplication (see Theorem 3, Chapter 13 of [2]) that the Frobenius automorphism fixes
the j -invariant ofE. In other words,j ∈ Fp.

We remark that the above result is not necessarily valid for other elliptic curves such
that #E(Fp2) = (p+ 1− t)(p+ 1+ t) whent 6= ±1.

9. The Elliptic-Curve-Based Paillier Scheme

In this section we give a very natural generalisation of the probabilistic, homomorphic
public key encryption scheme of [9] to elliptic curves over rings.

Each user chooses a modulusN = pq as a product of two odd primes (of course, mul-
tiprime variants are also possible). Users then choose a random elliptic curveE: y2z=
x3+ axz2+ bz3 overZ/NZ (i.e., gcd(N,6(4a3+ 27b2)) = 1).

Let M = lcm(#E(Fp),#E(Fq)). This number can be computed in polynomial time
using the Schoof–Atkin–Elkies algorithm whenpandq are known. As mentioned in Sec-
tion 5, knowledge ofM is polynomial-time equivalent to knowledge of the factorisation
of N = pq.
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Another approach would be to constructE, p andq together, using the CM method
[1]. This would involve choosing the primesp andq to have a certain form (and care
would have to be taken that the system is still secure).

The user also requires a pointQ = (x : y : z) which has order dividingM in
E(Z/N2Z). This point can be found by taking a random pointQ′ = (x′ : y′ : z′) and
settingQ = NQ′.

The public information for a user is the numberN, the coefficients(a,b) of the elliptic
curve, and the pointQ. The secret key is the orderM of the groupE(Z/NZ).

To encrypt a message one first obtains certified copies of the public parameters of
the recipient. Assume there is a standard way to interpret the message as an element
m ∈ Z/NZ. The encryption algorithm is to choose a random integer 1≤ r < N,
compute the point

S= rQ+ Pm

and send it to the desired recipient. Recall thatPm = (mN : 1 : 0).
To decrypt the message the owner of the secret keyM computesMS = r (MQ) +

MPm = PmM = (mMN : 1 : 0). Given thex-coordinate one can divide byN and
multiply by the inverse ofM moduloN to recoverm ∈ Z/NZ.

The security analysis of the elliptic curve scheme is very similar to that in [9]. This is
discussed further in Section 11. A significant difference between our scheme and those
of [11] is that the elliptic curveE is chosen completely at random and so the elliptic
curve itself does not give any extra information to an adversary which would help to
factoriseN.

One of the most useful properties of this scheme (and that of [9]) is the homomorphic
property: ifS1 is an encryption ofm1 andS2 is an encryption ofm2, then(S1+ S2) is an
encryption of(m1+m2).

10. Example

Let E: y2z = x3 + xz2 − 6z3 be an elliptic curve overQ. Write N = 17 · 19= 323.
Then #E(F17) = 20 and #E(F19) = 22 soM = 220. Consider the pointQ′ = (2 :
2 : 1) = (1 : 1 : 52165) ∈ E(Z/N2Z). The public key also comprises the point
Q = NQ′ = (54136 : 1 : 5949).

To encrypt the messagem = 23 we take a random numberr (in this case,r = 57)
and compute

S= rQ+ P23 = (18358 : 1 : 8804)+ (23N : 1 : 0) = (61963 : 1 : 72758).

To decrypt the ciphertextS, the owner of the secret keyM = 220 computesMS
which is equal to(215N : 1 : 0). The message is recovered by computing 215M−1 ≡
23 (mod N).

11. Security

The semantic security of the elliptic curve Paillier scheme (in the case of passive adver-
saries) depends on the hardness of the following problem: given a pointQ ∈ E(Z/N2Z)
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of order dividing #E(Z/NZ) and given a random pointS ∈ E(Z/N2Z) determine
whetherS lies in the subgroup generated byQ.

If the group order is known (equivalently, if the factorisation ofN is known), then one
can check whetherMS is zero or not. This gives a method to solve the problem in the
case that there is no large prime dividing the order ofQ whose square divides the order
of the groupE(Z/N2Z).

There does not seem to be any other obvious approach to solving this problem for
generalE andN. However, we do not have any argument that breaking the cryptosystem
is as hard as factoring (such a statement is not known for the original Paillier scheme [9]
either).

It is often possible for the user to construct the pointQ to have rather small order, in
which case the scheme would not have good security. For some applications it may be
desirable for users to prove that their public parameters have been chosen at random.

One could make the security rely on a slightly more general problem by changing
the cryptosystem as follows. Instead of the pointQ being part of the public key one
could demand that the encryptor choose some pointQ′ ∈ E(Z/N2Z) at random and
then computeQ = NQ′ as part of the encryption process. There are various problems
with this approach. The main problem is that it is impossible to find a pointQ′ without
knowledge of the factorisation ofN as one must solve polynomial equations. This
problem can be avoided by using addition formulae which only requirex-coordinates
(see Section 5 for more details). Another problem is that the encryption operation would
be less efficient. In any case, if the elliptic curveE is chosen randomly, then the group
E(Z/NZ) is likely to be cyclic (at least, apart from some small primes) and so the “more
general problem” is actually not so different to the one we stated above.

There are standard methods to obtain more robust security properties (such as se-
mantic security against an adaptive chosen ciphertext attack) from a semantically secure
encryption scheme. See [10] for further details in this context.

It is trivial to show that the powerful bit security results of Catalano et al. [3] apply to
the elliptic curve setting.

12. Generalisations

Damgård and Jurik [4] have given a generalisation of Paillier’s original scheme which
uses higher powers ofN. There are certain advantages to this approach and it is natural
to give a similar generalisation in the elliptic curve case.

The basic process is the same: one considers elliptic curves overZ/NnZ with n ≥ 3.
However, the generalisation is not entirely trivial due to subtleties relating to the formal
group.

The special pointP1 is now of the form(N : 1 : N3+aN7+· · ·)where we take terms
in the z-coordinate until the degree is greater thann. The encryption and decryption
processes are a little more subtle in this case since there is not an isomorphism between
E1(Z/NnZ) andZ/Nn−1Z. For encryption (i.e., to computem P1) one must use the
formal group law (see (1)).

For decryption it is necessary to recover the messagemgradually in terms of its base-N
representation. This can be done iteratively as follows: Given a point(x : y : z) = mP1
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one can determine the value ofm modulo N asm0 = (x/N) (mod N). One can then
subtractm0P1 (again, using (1) to compute this) to obtain a new point(x : y : z). From
this we can recoverm1 = (x/N2) (mod N) and the process is iterated.

13. Example

We give an example of the generalised method. We use the same parameters (e.g.,
N = 323 and(a,b) = (1,−6)) used in the original example except this time we work
moduloN8.

The point (1 : 1 : 52165) lifts to Q′ = (1 : 1 : 59236608128974169041) in
E(Z/N8Z). This gives

Q = N7Q′ = (18303714591156039953 : 1 : 55196583021208274577).

The public key also includes the pointP1 = (N : 1 : N3+ N7).
To encrypt the messagem = 23+ 2N + 3N2 + 5N3 + 7N4 + 5N5 + 3N6 =

737004660916410454∈ Z/N7Z one must computem P1 using (1). This givesm P1 =
(44828281409610407073 : 1 : 110845145481572967958). We now construct the ci-
phertext (with random valuer = 57 again)

S= 57Q+mP1 = (23604029167550350628 : 1 : 44212819685579361133).

To decrypt we multiply byM = 220 to get

S′ = 220S= (37521586473075957168 : 1 : 36700387693963393941).

It follows that S′ = 220mP1. Multiplying by 95031991650760699, which is 220−1

(mod N7), gives

S′′ = (220−1)S= (44828281409610407073 : 1 : 110845145481572967958).

The first part of the message may now be read directly from thex-coordinate

44828281409610407073/N = 23+ 2N + 3N2+ 5N3+ 12750860N4

but we cannot recover the whole message due to the form of the mapψ of Section 3.
Instead, we may subtract(23+ 2N + 3N2 + 5N3)P1 from S′′ to obtain the point
(1106072905579888387 : 1 : 0) where thex-coordinate in this case isN5(7+ 5N +
3N2). Hence the full message has been recovered.
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