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Abstract. For the most compelling applications of threshold cryptosystems, security
against chosen cipher text attack is a requirement. However, prior to the results presented
here, there appeared to be no practical threshold cryptosystems in the literature that
were provably chosen ciphertext secure, even in the idealized random oracle model.
The contribution of this paper is to present two very practical threshold cryptosystems,
and to prove that they are secure against chosen ciphertext attack in the random oracle
model. Not only are these protocols computationally very efficient, but they are also non-
interactive, which means they can be easily run over an asynchronous communication
network.
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1. Introduction

In a threshold cryptosystem the secret key of a public key cryptosystem is shared among
a set of decryption servers, so that a quorum of servers can act together to decrypt a
given ciphertext. Just as for ordinary, non-threshold cryptosystems, a natural and very
useful notion of security is that of security against chosen ciphertext attack. In this paper
we consider the problem of designing threshold cryptosystems that are secure against
chosen ciphertext attack. Our goal is to design a practical scheme, and provide strong
evidence that it cannot be broken.

∗ A preliminary version of this paper appears in theProceedings of EuroCrypt’98
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Even though the most compelling applications of threshold cryptosystems seem to
require chosen ciphertext security, prior to the results presented here, there appeared to
be no practical threshold cryptosystems in the literature that were provably secure—
even in the random oracle model, where one models a cryptographic hash function as a
random oracle.

Our main contribution is to present and analyze two such schemes which are secure
in the random oracle model. The first scheme, which we callTDH1 (for Threshold
Diffie–Hellman), is secure assuming the hardness of thecomputationalDiffie–Hellman
problem [DH]. The second scheme,TDH2, is secure under the stronger assumption
of the hardness of thedecisionalDiffie–Hellman problem, but is more efficient than
TDH1.

2. Background and Related Work

2.1. Chosen Ciphertext Security

In the context of ordinary, non-threshold cryptosystems, the notion of security against
chosen ciphertext attack was developed by Naor and Yung [NY], Rackoff and Simon
[RS], and Dolev et al. [DDN]. These definitions are further explored and developed in
[BDPR] and [BS].

In a chosen ciphertext attack, the adversary is given access to adecryption oraclethat
allows him to obtain the decryptions of ciphertexts of his choosing. Intuitively, security in
this setting means that an adversary obtains (effectively) no information about encrypted
messages, provided the corresponding ciphertexts are never submitted to the decryption
oracle.

2.2. Threshold Cryptosystems

In a k out of n threshold cryptosystem there is a single public encryption key, but the
corresponding private decryption key is shared among a set ofn decryption servers in
such a way thatk of them must cooperate to decrypt a message.

We consider only simple client/server protocols. That is, to decrypt a message, a
client presents a ciphertext to be decrypted to a server, who responds with adecryption
share. The client should be able to inspect the decryption share and verify its correctness
or “validity.” After collecting valid shares fromk servers, the client can combine these
shares to obtain the decryption of the ciphertext.

Such client/server protocols are attractive since they require no interaction or syn-
chronization among the servers, and as such can be easily and efficiently run on an
asynchronous communications network, with absolutely no reliance on network latency
guarantees. In practice, this is an important property, since it allows the servers to be
geographically distributed, and it allows the use of inexpensive public communication
networks, rather than the expensive, private networks that would be required to provide
a guaranteed latency.

For ak out ofn threshold cryptosystem, the adversary first corruptsk− 1 decryption
servers. After corrupting these servers, the key generation algorithm is run, and the
adversary obtains the shares of the secret key held by the corrupted servers.
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During the course of the attack, the adversary submits ciphertexts to the uncorrupted
decryption servers; whenever the adversary submits a ciphertextψ to a server, the server
responds with its decryption share ofψ .

Intuitively, security in this setting means that the adversary obtains (effectively) no
information about encrypted messages, provided their corresponding ciphertexts are
never submitted to an uncorrupted server.

Note that we only analyze the situation where the adversarystatically corrupts the
servers, i.e., it makes its decision as to who to corrupt independently of the observed
network traffic.

One important difference between chosen ciphertext attack in the non-threshold and
threshold settings is that in the latter the adversary sees not only the decryption of chosen
ciphertexts, but also the decryption shares of these ciphertexts. This extra information
that is available to the adversary can make security proofs more challenging.

2.3. Applications of Threshold Cryptosystems

One of the main motivations for a threshold cryptosystem is that it allows one to construct
a third-party decryption service in a distributed, secure, fault-tolerant fashion, without
a significant increase in the size or the cost of creating a ciphertext compared with a
standard cryptosystem. To be at all useful, the third party should not decrypt everything
that comes its way and give it to just anybody, but should implement some kind of useful
decryption policy. To implement such a policy securely, in addition to chosen ciphertext
security, one needs an additional facility: the ability to attach alabel to the ciphertext
during the encryption process. Such a label is a bit string that contains information
that can be used by the third party to determine if the decryption request is authorized,
according to its policy and its current state. One can think of the label as being a part of
the ciphertext, so that changing the label changes the ciphertext; security against chosen
ciphertext attack would then imply, in particular, that one cannot subvert the third party’s
policy by simply swapping labels.

Perhaps the most obvious example of this iskey recovery. Here, two parties who wish
to communicate securely generate a session key, and encrypt the session key under a
third party’s public key. The party that creates the encryption attaches a label containing
the identities of the two parties, and the current time. This labeled ciphertext is sent
along the wire, along with the encrypted conversation. A law enforcement agency may
be authorized via a court order to tap the line, and request that the third party decrypt
the ciphertext containing the session key. To protect individual privacy, the court order
specifies to whom the wiretap applies and a time interval. To enforce this policy, the
third party only decrypts a ciphertext if the information in its label is consistent with the
given court order.

There are other similar scenarios where a secret of some sort needs to be “escrowed”
by encrypting it under a trusted third party’s public key, and where this third party only
decrypts ciphertexts according to a particular decryption policy. One such example is
the recent work of [ASW] onfair exchange, where an “off line” trusted third party is
used to enforce fairness.

Another application of threshold decryption is to maintain causal order among client
requests for a distributed or replicated service [RB], [CKPS]. In this scenario, clients



78 V. Shoup and R. Gennaro

make requests to a distributed service. One wants each server to process the same requests
in the same order, and in addition, one wants to prevent an adversary from inserting
requests that depend on other requests that have been issued but not yet processed. This
can be achieved using a threshold cryptosystem that is secure against chosen ciphertext
attack, as discussed rather informally in [RB] and more rigorously in [CKPS].

Yet another application of threshold decryption isverifiable signature sharing[FR],
[CG2]. In a signature sharing scheme, one party wants to distribute verifiably shares
of a digital signature to a group of players so that later, a quorum of these players can
combine their shares to reconstruct the digital signature. One way to implement this is to
combine an algorithm to encrypt verifiably a signature under a public key, and have the
corresponding decryption key distributed using a threshold cryptosystem. The verifiable
encryption can be done using the algorithms in [ASW]. The use of a label can also
be helpful here to control the circumstances under which the digital signature will be
reconstructed.

A label might also contain the identity or public key of the intended recipient, allowing
the decryption service to direct the cleartext to that recipient only.

The usefulness of labeled ciphertext was already observed by Lim and Lee [LL1]
(who called it anindicator). In a non-threshold cryptosystem, labeled ciphertexts can be
implemented by simply embedding a hash of the label in the cleartext before encrypting.
The decryption service is given a ciphertext and a label, computes the cleartext, and
compares the value of the embedded hash with the hash of the given label. If these
match, and the decryption policy authorizes the given label, then the cleartext is released.
If the underlying cryptosystem is secure against chosen ciphertext attack, then so too
will be the cryptosystem with labeled ciphertexts. This implementation is not suitable
for threshold cryptosystems since the attacker who is mounting the chosen ciphertext
attack may be cooperating with some of the decryption servers. Those servers would
have to see the decrypted labeled plaintext before it is output, thus it would be too late
at that point to check if the label is correct, since the attacker has already seen the result
of the decryption operation.

2.4. Constructions of Chosen Ciphertext Secure Cryptosystems

A number of ordinary, non-threshold chosen ciphertext secure cryptosystems have been
proposed in the literature.

In addition to formal definitions, [NY], [RS], and [DDN] present provably secure
cryptosystems (without random oracles). However, all of these schemes rely on theoret-
ical constructions of non-interactive zero-knowledge proofs [BDMP], and as such are
quite impractical.

To overcome the above inefficiency problem some practical cryptosystems intended
to be secure against chosen ciphertext attack were proposed by Damg˚ard [Da], Zheng
and Seberry [ZS], and Bellare and Rogaway [BR1], [BR2]. The scheme in [BR1] was
proven chosen ciphertext secure in the random oracle model, using any one-way trap-
door permutation, such as RSA [RSA]. The scheme in [BR2], known as OAEP, was
also claimed to be chosen ciphertext secure, using any one-way trapdoor permutation;
however, it was shown in [Sh5] that the proof was invalid and could not be repaired using
standard techniques, at least for an arbitrary one-way trapdoor permutation. It was also
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shown in [Sh5] that OAEP when instantiated with low-exponent RSA was in fact chosen
ciphertext secure, and this result was extended to arbitrary-exponent RSA in [FOPS].

Recently, the first truly practical cryptosystem that is provably secure against chosen
ciphertext attackwithout using random oracles was discovered by Cramer and Shoup
[CS]. The security of this scheme is based on the hardness of the decisional Diffie–
Hellman problem. For the historical record, we should point out that the results in
[CS] follow and build on the results in a preliminary version of this paper [SG]. The
paper [Sh4] presents a variant of the scheme in [CS] that is both more practical and
(potentially) more secure. Subsequent to [CS] and [SG], Fujisaki and Okamoto [FO]
presented a cryptosystem that can be proven secure against chosen ciphertext attack
in the random oracle model under the computational Diffie–Hellman assumption; this
result was refined and extended in [Po] and [BLK].

Although the schemes in this paper are presented as threshold cryptosystems, they
can also be used as ordinary cryptosystems, and as such are the first cryptosystems in
the literature based on the Diffie–Hellman problem that are chosen ciphertext secure in
the random oracle model. The subsequent schemes of [FO] and [Po] are more efficient;
however, they cannot be readily transformed into threshold cryptosystems. The papers
[TY], [ABR1], and [ABR2] also present schemes based on the Diffie–Hellman problem,
but to date, they are not known to be chosen ciphertext secure, even in the random oracle
model (at least, assuming a standard intractability assumption).

2.5. Difficulties in Securing Threshold Cryptosystems against Chosen
Ciphertext Attack

Threshold cryptosystems are part of a general approach known asthreshold cryptogra-
phy, introduced by Boyd [Bo], Desmedt [De], and Desmedt and Frankel [DF]. In particu-
lar, in [DF] a threshold cryptosystem based on the Diffie–Hellman problem is presented.
The techniques developed later by De Santis et al. [DDFY] yield a corresponding system
based on RSA [RSA]. These schemes can be shown to withstand chosen plaintext attack,
but they are not known to withstand chosen ciphertext attack.

It should be observed that none of thepractical non-threshold schemes mentioned
above can be readily transformed into threshold schemes that are chosen ciphertext
secure. To see why, consider the scheme in [BR1], which is representative. This scheme
uses a trapdoor permutationf and hash functionsG andH ; to encrypt a messagem, a
randomr in the domain off is chosen, and the ciphertext is( f (r ),m⊕G(r ), H(r,m)).
The output length ofG is equal to that ofm, and the output length ofH is large enough to
make it difficult to find collisions. Given a ciphertext(s, c, v), the decryption algorithm
computesr = f −1(s), m = G(r ) ⊕ c, andv′ = H(r,m). If v′ = v, it outputsm, and
otherwise “?”.

The proof of security relies in a critical way on the fact that the decryption algorithm
makes the “validity test”v = v′ before generating an output.

Now consider turning this into a threshold scheme, and assume we can effectively
share the trapdoor for the functionf . The problem is that the above validity test cannot
be performed untilafterthe individual shares off −1(s)are generated and then combined.
As mentioned above, we must assume that the adversary can see these shares, making the
validity test pointless, and giving the adversary the ability to invertf at chosen points.
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This destroys any hope of proving security using current techniques. Of course, one
could use general techniques for multi-party computation, but this would be extremely
impractical.

The above difficulty was noted by Lim and Lee [LL1], who observed that a publicly
checkable validity test would be useful in this regard. Lim and Lee proposed two practical
systems based on this observation; however, both schemes were subsequently broken by
Frankel and Yung [FY].

Interestingly, one can readily convert all of theimpracticalschemes mentioned above
into secure (but impractical) threshold schemes. It is instructive to see why this is so.
All of these schemes use a publicly checkable validity test, which is essentially a non-
interactive zero-knowledge proof of knowledge of the plaintext. The key to the proof
of security is that one can simulate the adversary’s view with a simulator that has a
trapdoor that allows it to extract the plaintext from the given proof of knowledge in a
decryption request, thus allowing the simulator to respond correctly to the request. It
is essential that this proof of knowledge allows the simulator to extract the plaintext
“on line,” without any “rewinding.” Assuming the underlying decryption function can
be effectively shared, such a scheme can then be transformed into a threshold scheme
where each decryption server performs the validity testbeforegenerating a decryption
share.

Since the publication of the Cramer–Shoup cryptosystem [CS], several threshold im-
plementations of it have been designed and proved secure (also without random oracles)
[CG1], [Ab], [JL]. The validity test of the Cramer–Shoup cryptosystem isnot publicly
checkable, which, as we have seen, makes it difficult to distribute the decryption function
efficiently. Nevertheless, the above results show how the special algebraic structure of
the validity test can be exploited to obtain a protocol that is much more efficient than a
general multi-party computation. We should stress, however, that none of the schemes
in [CG1], [Ab], and [JL] are nearly as practical as the schemes we present in this paper.
In particular, none of these schemes is a simple, non-interactive, client/server proto-
col like ours. All of them require either a large degree of synchronized interaction or
storage for a large number of pre-shared secrets (proportional to the total number of
decryption requests that may be performed over the lifetime of the system). It remains
an open problem to construct a truly practical, non-interactive, client/server threshold
cryptosystem secure against chosen ciphertext attack, whose security proof does not rely
on the random oracle model.

2.6. The Random Oracle Model

The random oracle model was first used by Fiat and Shamir [FS], and later given a
more rigorous treatment by Bellare and Rogaway [BR1]. It has proved to be quite useful
in analyzing a wide range of cryptographic schemes and protocols. See, for example,
[BR1]–[BR3], [BMP], [CKS], [PS2], and [Sh3].

The random oracle methodology works as follows. Consider a cryptographic scheme
that makes use of cryptographic hash functions (like SHA-1 or MD5). Instead of analyz-
ing the security of this scheme directly, we analyze its security in anidealizedmodel of
computation where the hash functions are replaced by “black boxes” that output random
strings. More specifically, all parties involved, including the adversary, do not evaluate
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the hash function directly, but only have oracle access to this function; moreover, the
function implemented by this oracle is arandomfunction: whenever the oracle is queried
at a new input, it outputs a random bit string independent of all other oracle outputs.
Note that the oracle implements a function, in the sense that if it is given the same input
twice, the two outputs are the same.

The basic tenet of the random oracle model approach is to view a proof of security in
the random oracle model as “strong evidence” that the scheme is actually secure in the
standard model, i.e., the “real world.”

When one instantiates the random oracle with an actual hash function, it is important
to apply the following “rule of thumb”: the actual hash function should be in some vague
sense “independent” of other computations performed by the algorithms in the scheme;
i.e., there should be no “obvious” interactions or correlations between the hash function
and other computations.

When the random oracle is instantiated with a hash function, this hash function (i.e.,
its description as an algorithm) becomes known to the adversary, and so a real world
adversary could of course exploit special properties of the hash function, which is some-
thing that he could not do with a random oracle. Thus, a proof of security in the random
oracle model at most implies security in the real world against adversaries who never
look at the description of the hash function, and only access it as a black box, as in the
random oracle model.

The limitations of the random oracle model were demonstrated by Canetti et al.
[CGH]. They exhibit cryptographic schemes that are secure in the random oracle model,
but are trivially insecure in the real world withanyinstantiation of the random oracle. The
schemes they exhibit are quite unnatural, and their results in no way uncover weaknesses
in any protocols in the literature that have been proven secure in the random oracle model.
One lesson to be drawn from their work is that the above-mentioned “rule of thumb”
cannot be formulated as a simple syntactic constraint, and that the application of this
“rule” is destined to remain an “art” rather than a “science.”

Despite these limitations, the random oracle model seems to be a very good heuristic.
All things being equal, a proof of security in the real world is to be preferred; however,
if substantially more efficient schemes can be designed that can only be analyzed in
the random oracle model, then these schemes deserve a place in the security engineer’s
toolbox. Certainly, a proof of security in the random oracle model is far better than no
proof of security at all.

2.7. TheTDH0Cryptosystem

In this section we discuss a simple threshold cryptosystem, based on the computational
Diffie–Hellman assumption, which we callTDH0. This cryptosystem (in both threshold
and non-threshold form) has been claimed in several papers to be chosen ciphertext
secure; however, we argue that these claims are unjustified—even in the random oracle
model.

Say we have a groupG of prime orderq with generatorg, hash functionsH andH ′,
and a public keyh = gx. To encrypt a messagem with label L, we chooser ∈ Zq at
random, and computeu = gr andc = H(hr )⊕m. The ciphertext consists ofu, c, and
a non-interactive proof of knowledge of logg u. It is straightforward to share the secret
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key, and a decryption server only generates a decryption share if the proof of knowledge
is valid.

For the non-interactive proof of knowledge, we could use Schnorr’s [Sc] signature
scheme with “public key”u and “private key”r . More specifically, to generate this
proof of knowledge, we computew = gs for randoms ∈ Zq, e = H ′(c, L ,u, w),
and f = s+ re ∈ Zq. The proof of knowledge consists of the pair(e, f ). The entire
ciphertext is thenψ = (c, L ,u,e, f ). To verify the validity of the ciphertext, one checks
thate= H ′(c, L ,u, w), wherew = g f /ue.

Intuitively, this strategy makes sense, since if the adversary proves that he “knows”
the decryption of a ciphertext, then giving the adversary this decryption should not help
him. The trouble is, this intuition cannot be transformed into a formal proof of security.
TDH0may very well be secure, but it does not seem possible to prove, using known
techniques, a reduction to any standard cryptographic assumption,even in the random
oracle model.

The problem is a bit subtle. Schnorr’s interactive identification scheme (from which
the signature scheme is derived using the Fiat–Shamir heuristic) is a proof of knowledge
(see [FFS] and [BG] for definitions). However, the corresponding knowledge extrac-
tor does not operate “on line”—it must “rewind” the adversary. More specifically, in
our setting, if the adversary requests the decryption ofψ = (c, L ,u,e, f ), we have to
rewind the adversary back to the point where it queried the random oracleH ′ with input
(c, L ,u, g f /ue), and feed the adversary a different challengee′. Then if we run the ad-
versary forward, we hope that he makes a valid decryption requestψ ′ = (c, L ,u,e′, f ′),
with f ′ such thatg f /ue = g f ′/ue′ . If and when he does this, we can computer = logg u
asr = ( f − f ′)/(e− e′). Once we haver , we can decrypt the originalψ .

Unfortunately, when one tries to turn the above idea into a proof, one discovers that
the running time of the simulator can blow up exponentially. A similar phenomenon was
observed by Pointcheval and Stern [PS1] in the context of blind digital signatures.

We illustrate the problem with an example. In this example, we just considerTDH0
as an ordinary, non-threshold scheme, since this is simpler, and is sufficient to illus-
trate the point. Our adversary works as follows. He generates a sequence of ciphertexts
ψ1, . . . , ψt , of the formψi = (ci , Li ,ui ,ei , fi ), for 1≤ i ≤ t . The adversary generates
these ciphertexts in the usual way, except that to generateui = gri , he computesri as
some sort of hash ofe1, . . . ,ei−1. Likewise, the messagemi that he encrypts is also a
hash ofe1, . . . ,ei−1. The adversary generates these ciphertexts in this order, accessing the
random oracle forH ′ to generatee1, . . . ,et . Next, he proceeds to obtain decryptions—in
reverse order—of ψt , . . . , ψ1. To summarize, the adversary accesses the random oracle
t times, obtaininge1, . . . ,et , and then accesses the decryption oraclet times, submitting
ψt , . . . , ψ1 for decryption.

Now, imagine how a simulator would work. We want to simulate the responses to the
adversary’s random oracle and decryption oracle requests, without knowing the secret
key x of the cryptosystem. When the adversary makes his first decryption request,ψt ,
we have to rewind the adversary to the point where he obtained the challengeet from
the random oracleH ′, and feed the adversary a different challengee′t . Then we run him
forward, and when he presents a correspondingψ ′t for decryption, we extractrt , and
so we can easily decryptψt . Now we let the adversary move forward to the second
decryption request,ψt−1. As before, we rewind the adversary to the point where he
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obtained the challengeet−1 from from the random oracleH ′, and feed the adversary
a different challengee′t−1. When we run him forward, before the adversary makes his
request to decrypt the correspondingψ ′t−1, he inconveniently asks us first to decrypt a
ciphertextψ ′′t = (c′′t , L ′′t ,u

′′
t ,e
′′
t , f ′′t ). Unfortunately, we cannot directly respond to this

request, since (in general)r ′′t 6= rt andm′′t 6= mt ; this is because bothr ′′t andm′′t are
computed as a hash ofe1, . . . ,et−2,e′t−1 ande′t−1 6= et−1. So we will recursively have
to rewind the adversary back to the point where he obtainede′′t from the random oracle,
and run him forward again, just so that we can respond to the decryption request forψ ′′t .

It should now be clear that this adversary will force the simulator to run for time
proportional to 2t . We do not claim thatTDH0is insecure, but any proof of security will
have to circumvent this exponential blow up in the simulation. Because of this difficulty,
it appears that current proof techniques are not adequate to prove the security ofTDH0.

One could circumvent all this by straightaway assuming an on-line knowledge ex-
tractor; that is, we simplyassumethat any algorithm that can create a valid proof of
knowledge can be transformed into an algorithm that simultaneously outputs a corre-
sponding witness. Such an assumption is made by Tsiounis and Yung [TY] in the analysis
of a non-threshold version ofTDH0. A similar type of assumption is made by Damg˚ard
[Da] and Zheng and Seberry [ZS]. This type of assumption, however, is not very accept-
able: it is completely non-standard, and it is not an “intractability assumption” in the
usual sense of the term.

Other papers ([Ja], [DK], as well as a preliminary version of [TY]) have claimed that
TDH0is secure, without offering any proof at all beyond a vague argument that “since
the Schnorr signature scheme is a proof of knowledge, accessing the decryption oracle
does not help.” As we have seen, the notion of a “proof of knowledge” is not always that
useful, especially when the “knowledge extractor” requires rewinding.

3. A Formal Security Model

In this section we present a formal model for ak out ofn threshold cryptosystem. Before
giving the details, we briefly sketch the overall workings of such a system.

For simplicity, in the following we assume that the system is initialized by a trusted
dealer that gives the decryption servers a share of the private key. It is important to notice
though that this trusted dealer can be replaced by a secure communication protocol among
the servers at the end of which a public key is generated and the servers have shares of
the matching decryption key. For the specific case of our threshold cryptosystemsTDH1
andTDH2, we can use the key generation protocol of [GJKR].

Operation of the cryptosystem runs as follows.
There is a trusted dealer and a setP1, . . . , Pn of decryption servers.
In an initialization phase, the dealer is run, creating a public keyPK, a verification

key VK, and private keysESK= (SK1, . . . ,SKn). For 1≤ i ≤ n, the private keySKi is
given to serverPi .

A user who wants to encrypt a message with a given label can run the encryption
algorithm, using the public key.

A user who wants to decrypt a ciphertext gives the ciphertext to the servers, requesting
a decryption share. The label is embedded in the ciphertext, and so each server can make
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its own decision as to the appropriateness of generating a decryption share. The user can
verify the validity of the shares using the given verification key. When the user collects
valid shares from at leastk servers, he can apply a combining algorithm to obtain the
decryption.

More formally, a threshold cryptosystem consists of the following algorithms:

• A probabilistic key generation algorithmG that takes as input a security parameter
3, the numbern ≥ 1 of decryption severs, and the threshold parameterk (1≤ k ≤
n); it outputs

(PK,VK, ESK) = G(3,n, k),

wherePK is thepublic encryption key, VK is thepublic verification key, and ESK=
(SK1, . . . ,SKn) is the list ofprivate keys.
• A probabilistic encryption algorithmE that takes as input the public keyPK and a

cleartextm, and a labelL, and outputs a ciphertextψ = E(PK,m, L).
• A label extraction algorithmL which takes as input a ciphertextψ , and outputs a

labelL = L(ψ).
• A probabilistic decryption share generation algorithmD that takes as input a private

keySKi and a ciphertextψ , and outputs adecryption shareσ = D(SKi , ψ).
• A share verification algorithmV that takes as input the public verification keyVK,

a ciphertextψ , and decryption shareσ , and outputsV(VK, ψ, σ ) ∈ {0,1}.
• A combining algorithmC that takes as input the public verification keyVK, a cipher-

textψ , and a set of decryption shares, and outputs a cleartextm = C(VK, ψ, S).
The combining algorithm is also allowed to output a special “?” symbol that is
distinct from all possible cleartext messages.

All of these algorithms should run in time polynomial in the length of their inputs
(with the convention that inputs toG are encoded in unary).

Before going further, we introduce some further conventions.

• We assume that the private keySKi encodes the indexi of server Pi in some
canonical way, and we say that “SKi belongs to serverPi .”
• We assume that a decryption shareσ encodes in some canonical way the index of

the server that (supposedly) created it. If this index isi , then we say that “σ belongs
to severPi .”
• We call a decryption shareσ a genuinedecryption share ofψ if it is a possible

output ofD(SKi , ψ) for some 1≤ i ≤ n.
• We call a decryption shareσ avalid decryption share ofψ if V(VK, ψ, σ ) = 1.
• We say a setS of decryption shares isfull if it containsk shares, no two of which

belong to the same server.

There are a number of basic consistency conditions that should hold. For any output
(PK,VK, ESK) of G(3,n, k), the following conditions should hold:

• Correctness of label extraction. For any messagem, any labelL, and any outputψ
of E(PK,m, L), we haveL(ψ) = L.

This condition merely ensures that the encryption algorithm embeds the label in
the ciphertext in a canonical way.
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• Completeness of share verification. Any genuine decryption share of a ciphertext
ψ is also a valid decryption share ofψ .
• Correctness of decryption. Given
— any plaintextm and labelL,
— any outputψ of E(PK,m, L),
— any full setSof genuine decryption shares ofψ ,

we haveC(VK, ψ, S) = m.

The two basic properties that we want a threshold cryptosystem to have aresecurity
against chosen ciphertext attackandconsistency of decryptions.

Security against chosen ciphertext attackmeans that any polynomial time adversary
has a negligible advantage in the following game.

GameA.

A1 The adversary chooses to corrupt a fixed set ofk− 1 servers.
A2 The key generation algorithm is run. The private keys of the corrupted servers are

given to the adversary, while the other private keys are given to the uncorrupted
servers, and kept secret from the adversary. The adversary of course receives the
public key and verification key as well.

A3 The adversary interacts with the uncorrupted decryption servers in an arbitrary
fashion, feeding them ciphertextsψ , and obtaining decryption shares.

A4 The adversary chooses two cleartextsm0 andm1 (of the same length) and a label
L. These are given to an “encryption oracle” that choosesb ∈ {0,1} at random,
and gives the “target” ciphertextψ ′ = E(PK,mb, L) to the adversary.

A5 The adversary continues to interact with the uncorrupted servers, feeding them
ciphertextsψ 6= ψ ′.

A6 At the end of the game, the adversary outputsb′ ∈ {0,1}.

The adversary’s advantage is defined to be the absolute difference between 1/2 and
the probability thatb′ = b.

We assume the adversary runs in time polynomial in a given security parameter3.
For technical reasons, it is convenient to assume that the adversary’s running time is
strictly polynomial bounded; i.e., it always halts after a polynomially bounded number
of steps, regardless of its coin tosses, and regardless of the outputs of the key generation
algorithm, the uncorrupted decryption servers, and the encryption oracle. The adversary
is allowed to choosen andk as he likes, but their values must be bounded by a fixed
polynomial in3, and may also have to satisfy further constraints imposed by a partic-
ular cryptosystem. When we say that a quantity, such as the adversary’s advantage, is
negligible, this means that as a function of3, it is less than than 1/Q(3), for any fixed
polynomial in Q, and for sufficiently large3. To say that a quantity is non-negligible
means that there is a polynomialQ(3) such that for infinitely many3, the quantity is
at least 1/Q(3).

Consistency of decryptionsmeans that any polynomial time adversary has a negligible
chance of winning the following game. The adversary interacts with the system exactly
as in stepsA1–A3 above. The adversary wins this game if he can produce a ciphertextψ

and two full setsS, S′ of valid decryption shares such thatC(VK, ψ, S) 6= C(VK, ψ, S′).
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4. Basic Tools

4.1. Threshold Secret Sharing

Let q be a prime, and 1≤ k ≤ n < q. Shamir’s [Sh1]k out of n secret sharing
scheme overZq works as follows. We have a secretx ∈ Zq. We choose random points
f1, . . . , fk−1 ∈ Zq, set f0 = x, and define the polynomialF(X) = ∑k−1

j=0 f j Xj . For
1 ≤ i ≤ n, let xi = F(i ) ∈ Zq be thei th share ofx. Just for notational purposes, we
denotex as its own 0th share, so we havex = x0 = f0.

If any subset ofk − 1 shares is revealed, then no information aboutx is obtained,
whereas ifk shares are revealed,x is completely determined, and can be computed
by interpolation. Actually the following property holds: forS ⊂ Zq of cardinalityk,
any i ∈ Zq, and any j ∈ S, there exists an easy-to-compute elementλS

i j ∈ Zq, such
that

F(i ) =
∑
j∈S

λS
i j xi j .

4.2. Intractability Assumptions

Let G be a group of prime orderq, generated by an elementg ∈ G.
Thecomputational Diffie–Hellman problemis this: givengx andgy for randomx, y ∈

Zq, computegxy.
Thedecisional Diffie–Hellman problemis this: given a tuple that is either of the form

(gx, gy, gxy) or (gx, gy, gz), wherex, y, z ∈ Zq are random, determine which is the
case.

Clearly, the second problem is no harder than the first, but it is not known if they are
equivalent. The only known method for solving either problem is to solve thediscrete
logarithm problem: givengx, computex. For suitable groups, such as a large prime-order
subgroup of the multiplicative group modulo a large prime, all of these problems are
widely conjectured to be intractable.

Triples of the form(gx, gy, gxy) are calledDiffie–Hellman triples(with respect to the
baseg).

4.3. Zero-Knowledge Proof of Discrete Logarithm Identities

Let G be a group of prime orderq with generatorsg, ḡ. Let EDLogg,ḡ be the language
of pairs(u, ū) ∈ G2 such that logg u = logḡ ū.

Our cryptosystems will heavily rely on a zero-knowledge proofof membershipfor the
languageEDLogg,ḡ. It is important to notice that our proofs techniques do not require
a proof of knowledge (which would create the problems encountered with theTDH0
cryptosystem).

The following is a well-known zero-knowledge proof system forEDLogg,ḡ, due to
Chaum and Pedersen [CP]. Although it also happens to be a proof of knowledge we do
not use that property in our schemes.



Securing Threshold Cryptosystems against Chosen Ciphertext Attack 87

Let (u, ū) ∈ EDLogg,ḡ be given, so there existsr ∈ Zq such thatu = gr andū = ḡr .

• The prover choosess ∈ Zq at random, computesw = gs andw̄ = ḡs, and sends
w, w̄ to the verifier.
• The verifier choosese∈ Zq at random, sending this to the prover.
• The prover sendsf = s+ re to the verifier. The verifier checks thatg f = wue and

ḡ f = w̄ūe.

It is well known that this proof system is sound: the verifier can be cheated into
accepting a pair not in the language with probability at most 1/q. For completeness, we
recall the argument. Suppose(u, ū) /∈ EDLogg,ḡ. That is,u = gr and ū = ḡr ′ , with
r 6= r ′. Suppose a cheating prover presents(u, ū) to a verifier, along with a pair(w, w̄),
wherew = gs andw̄ = ḡs′ . Now, if the verifier is to accept, then we must have that
g f = wue andḡ f = w̄ūe. This implies that(s−s′)+e(r −r ′) = 0. So, sincer −r ′ 6= 0,
there is at most one challenge to which the cheating prover can hope to respond, and the
verifier generates this challenge with probability 1/q. Actually, it is evident from this
argument that a stronger soundness condition holds: the verifier will accept with at most
probability 1/q if either (u, ū) /∈ EDLogg,ḡ or (w, w̄) /∈ EDLogg,ḡ.

It is also well known that this proof system can be simulated in zero-knowledge
against anhonestverifier. By making the challengee a hash of(u, w, ū, w̄), then in the
random oracle model, this becomes a non-interactive zero-knowledge proof of language
membership.

Note that ifḡ is not a generator forG, i.e., ḡ = 1, the above proof system can still be
used to ensure that̄u = 1. Thus, we can view the above proof system more generally
as a proof that(ḡ,u, ū) is a Diffie–Hellman triple, wherēg is an arbitrary element of
G. It is also easily seen that the above proof system ensures that(ḡ, w, w̄) is also a
Diffie–Hellman triple.

5. TheTDH1Cryptosystem

We now describe the threshold cryptosystemTDH1.
TDH1works over an arbitrary groupG of prime orderq, with generatorg; for sim-

plicity, assume that messages and labels arel -bit strings. It uses four hash functions:

H1: G→ {0,1}l , H2: {0,1}l × {0,1}l × G× G→ G, H3, H4: G3→ Zq.

Key generation. For ak out ofn scheme, the key generation algorithm runs as follows
(we assumeq > n). Random pointsf0, . . . , fk−1 ∈ Zq are chosen, defining a polynomial
F(X) = ∑k−1

j=0 f j X j ∈ Zq[X]. For 0≤ i ≤ n, setxi = F(i ) ∈ Zq andhi = gxi . For
notational convenience, we setx = F(0) andh = h0 = gx.

The public keyPK consists of a description of the groupG, along with the group
elementsg andh. The public verification keyVK consists of the public keyPK, along
with the tuple(h1, . . . , hn) of group elements. For 1≤ i ≤ n, the secret keySKi consists
of the public keyPK along with the indexi and the valuexi ∈ Zq.

To be technically complete, the key generation algorithm takes a security parameter
3 as input. The security parameter is used in selecting an appropriate group.
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Encryption. The algorithm to encrypt a messagem ∈ {0,1}l with label L ∈ {0,1}l
runs as follows. We chooser, s ∈ Zq at random, and compute

c = H1(hr )⊕m, u = gr , w = gs, ḡ = H2(c, L ,u, w),

ū = ḡr , w̄ = ḡs, e= H3(ḡ, ū, w̄), f = s+ re.

The ciphertext isψ = (c, L ,u, ū,e, f ).
Note that with overwhelming probability,̄g 6= 1, i.e., ḡ generatesG. In addition to

an ordinary ElGamal encryption, consisting of thec andu, the above ciphertext also
includes the group elementū, along with a non-interactive proof, consisting ofe and f ,
that logg u = logḡ ū.

Label extraction. Given an appropriately encoded ciphertextψ = (c, L ,u, ū,e, f ),
the label extraction algorithm simply outputsL.

Decryption. Decryption serveri does the following, given ciphertextψ = (c, L ,u,
ū,e, f ). It checks if

e= H3(ḡ, ū, w̄), where w = g f /ue, ḡ = H2(c, L ,u, w), w̄ = ḡ f /ūe. (1)

If this condition does not hold, it outputs(i, “?”). Otherwise, it proceeds as follows. It
choosessi ∈ Zq at random, and computes

ui = uxi , ûi = usi , ĥi = gsi , ei = H4(ui , ûi , ĥi ), fi = si + xi ei . (2)

Its output is(i,ui ,ei , fi ).
Note that the check (1) verifies the non-interactive proof that logg u = logḡ ū. Also,

the decryption share includes a non-interactive proof that(u, hi ,ui ) is a Diffie–Hellman
triple, i.e., thatui = uxi . This is needed to ensure consistency of decryption.

Share verification. The share verification algorithm is given the verification keyVK,
a ciphertextψ , and a decryption share belonging to some serveri . The verification
algorithm first tests if (1) holds. If this does not hold, then a decryption share is valid if
and only if it is of the form(i, “?”). Otherwise, the share is considered valid if and only
if it is of the form (i,ui ,ei , fi ), and

ei = H4(ui , ûi , ĥi ), where ûi = u fi /uei
i , ĥi = g fi /hei

i . (3)

Note that the check (3) ensures that(u, hi ,ui ) is a Diffie–Hellman triple.

Combining shares. The share combining algorithm takes as input the verification key
VK, a ciphertextψ , and a full set of valid decryption shares ofψ . If the test (1) does not
hold, then we output “?” (all the decryption shares are of the form(i, “?”) in this case).
So we can assume that the set of decryption shares is of the form

{(i,ui ,ei , fi ): i ∈ S},
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whereS⊂ {1, . . . ,n} has cardinalityk. Then, using the notation defined in Section 4.1,
the recovery algorithm outputs

m= H1

(∏
i∈S

u
λS

0i
i

)
⊕ c.

Theorem 1. In the random oracle model, the TDH1cryptosystem is secure against
chosen ciphertext attack, assuming the computational Diffie–Hellman problem in G is
hard.

Proof. We show how to use an adversary that can guess bitb in gameA to solve
the computational Diffie–Hellman problem. It is clear that if the adversary is able to
guess bitb, then he must query the functionH1 at the same point that the encryption
oracle did. We simulate the adversary’s view up to the point that this happens. After this
point, the simulation is no longer accurate, but it does not matter: we already solved the
computational Diffie–Hellman problem. Actually, the output of our algorithm is simply
a list of all points at whichH1 was queried, which with non-negligible probability will
contain the solution to the computational Diffie–Hellman problem. The Diffie–Hellman
self-corrector in [Sh2] can be used to transform this into an algorithm that outputs a
single, correct solution to the computational Diffie–Hellman problem.

We now give the details of the simulation. Letα, β ∈ G be random elements inG for
which we want to solve the computational Diffie–Hellman problem to the baseg. That
is, we want to computeγ = αlogg β .

At any point in the simulation, the adversary may query one of the random oracles.
The simulator responds by first checking if the value of the hash function has already
been defined at the given point; if so, it responds with the defined value; otherwise, it
chooses a random value, defines the value of the hash function at the given point to be
this value, and responds with this value.

The simulator itself may at some point choose to define the value of a hash function
at a chosen point. Such “backpatching” is allowable so long as the hash function has not
already been defined at the chosen point.

Now suppose the adversary in stepA1 chooses to corrupt a subset ofk − 1 servers.
Without loss of generality, we can assume these are serversP1, . . . , Pk−1. Let S =
{0, . . . , k− 1}, and we writeλi j instead ofλS

i j .
Now in stepA2, we proceed as follows. We choosex1, . . . , xk−1 ∈ Zq at random, and

we seth = α. Note that with overwhelming probability,h 6= 1, and we assume this in
what follows. Fork ≤ i ≤ n, we computehi = hλi 0

∏k−1
j=1 gxj λi j .

Next, we have to describe how to simulate the “encryption oracle” in stepA4, and
how to simulate each query to one of the non-corrupt decryption servers.

We deal first with the encryption oracle. The adversary gives a labelL ′ and two
messages,m0 andm1, to the encryption oracle. We ignore the messages completely.
Instead, we simply choosec′ ∈ {0,1}l andt ′,e′, f ′ ∈ Zq at random. We then set

u′ = β, ḡ′ = gt ′ , ū′ = (u′)t ′ , w′ = g f ′/(u′)e
′
, w̄′ = (ḡ′) f ′

/(ū′)e
′
.

We then backpatch, definingH2(c′, L ′,u′, w′) = ḡ′ andH3(ḡ′, ū′, w̄′) = e′. The output
of the encryption oracle isψ ′ = (c′, L ′,u′, ū′,e′, f ′).
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It is easily verified that this backpatching is allowable, at least with overwhelm-
ing probability. Also, one sees thatu′, ḡ′, and ū′ have the right distribution; namely,
(u′, ḡ′, ū′) is a random Diffie–Hellman triple. The rest is just a standard zero-knowledge
simulation.

Thus, the simulation is statistically close to perfect, as long as the adversary does not
queryH1 at the point(u′)logg h = γ . Note that the simulator cannot detect when and if
this event occurs—that would be tantamount to solving the decisional Diffie–Hellman
problem. Nevertheless, if this does occur, we will already have a solution to the given
computational Diffie–Hellman problem in our list of inputs to theH1 oracle, so we do
not care if the view presented to the adversary by the simulator is inaccurate after this
occurs.

We next deal with the simulation of the uncorrupted decryption servers. First, whenever
the adversary queriesH2 at a point other than(c′, L ′,u′, w′), we arrange that the simulator
defines the valuēg at that point by first choosingt ∈ Zq at random, and then computing
ḡ = ht , so that the simulator knows logh ḡ (but the adversary is oblivious to this). Note
thatt 6= 0 with overwhelming probability, and we assume this in what follows.

Now supposePi is given a valid ciphertextψ 6= ψ ′, whereψ = (c, L ,u, ū,e, f ).
Now, (c, L ,u, ū,e, f ) determines via the validity condition (1) corresponding variables
ḡ, w, w̄.

We first argue that we can assume that(c, L ,u, w) 6= (c′, L ′,u′, w′). On the contrary,
suppose that(c, L ,u, w) = (c′, L ′,u′, w′). Then of coursēg = ḡ′. However, with
overwhelming probability, we must also have(ū, w̄) = (ū′, w̄′); this follows immediately
from the strong soundness condition discussed in Section 4.3. It then follows thate= e′,
sincee = H(ḡ, ū, w̄) = e′. From this, it follows that f = f ′, since the equation
w = g f /ue uniquely determinesf , oncew,u, andeare determined. This then contradicts
our assumption thatψ 6= ψ ′.

So assume(c, L ,u, w) 6= (c′, L ′,u′, w′). We can assume that the adversary has
already queriedH2 at the point(c, L ,u, w), so that we havēg = H2(c, L ,u, w) = ht ,
wheret 6= 0 is known to the simulator, as discussed above.

Now supposeu = gr , wherer is not known to the simulator. We want to compute
hr . However, by the soundness of the proof that logg u = logḡ ū, we can assume that
ū = ḡr , and hence(ū)1/t = (ḡ)r/t = hr .

So the simulator can computehr , but we are not quite done. We want to simulate
the output of serverPi , who is supposed to outputui = hr

i , along with a proof that
(u, hi ,ui ) is a Diffie–Hellman triple. However,ui can be computed by the simulator as
ui = (ū)λi 0/t

∏k−1
j=1 uxj λi j . Once we haveui , we can readily produce a zero-knowledge

simulation of the proof that(u, hi ,ui ) is a Diffie–Hellman triple, backpatchingH4 as
necessary.

That completes the proof of Theorem 1.

Theorem 2. In the random oracle model, theTDH1cryptosystem satisfies the consis-
tent decryption property.

This theorem follows immediately from the soundness of the equality of discrete
logarithm protocol in Section 4.3.
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6. TheTDH2Cryptosystem

CryptosystemTDH2 is very similar toTDH1. The main difference is that the group
element ḡ, instead of changing with each encryption, is chosen at key-generation
time.

We now give the details. As before, we have a groupG of prime orderq with generator
g. We need three hash functions:

H1: G→ {0,1}l , H2: {0,1}l × {0,1}l × G4→ Zq, H4: G3→ Zq.

Key generation. Same as forTDH1, except that a random generatorḡ ∈ G is chosen
which is also part of the public key.

Encryption. The algorithm to encrypt a messagem ∈ {0,1}l with label L ∈ {0,1}l
runs as follows. We chooser, s ∈ Zq at random, and compute

c = H1(hr )⊕m, u = gr , w = gs, ū = ḡr , w̄ = ḡs,

e= H2(c, L ,u, w, ū, w̄), f = s+ re.

The ciphertext is(c, L ,u, ū,e, f ).
As in TDH1, the encryption includes a non-interactive proof that logg u = logḡ ū.

Label extraction. Same as inTDH1.

Decryption. Decryption serveri does the following, given ciphertext(c, L ,u, ū,e, f ).
It checks if

e= H2(c, L ,u, w, ū, w̄), where w = g f /ue, w̄ = ḡ f /ūe. (4)

If this condition does not hold, it outputs(i, “?”). Otherwise, it computesui ,ei , fi as in
(2), creating an output(i,ui ,ei , fi ).

Share Verification. Same as forTDH1, except that we use the test (4), instead of the
test (1).

Combining shares. Same as forTDH1, except that we use the test (4), instead of the
test (1).

Theorem 3. In the random oracle model, the TDH2cryptosystem is secure against
chosen ciphertext attack, assuming the decisional Diffie–Hellman problem in G is hard.

Proof. Again, the proof is by reduction, and we assume the adversary queries, with
non-negligible probability,H1 at the same point in gameA that was queried by the
encryption oracle in stepA4.

Let (α, β, γ ) be a random instance of the decisional Diffie–Hellman problem. This
triple is drawn from one of two distributions: that ofDiffie–Hellman triples, where
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α = gx, β = gy, andγ = gxy, for randomx, y ∈ Zq, or from that ofrandom triples,
whereα = gx, β = gy, andγ = gz, for randomx, y, z ∈ Zq. The job of the simulator
is to distinguish between these two distributions. It outputs a 1 or a 0, and to be an
effective test, the expected value of its output on the two distributions should differ by a
non-negligible amount.

We simulate the view of the adversary in gameA as follows.
As in the proof of Theorem 1, we assume the adversary corrupts playersP1, . . . , Pk−1

in stepA1. In stepA2 we seth = α ( = gx), generatex1, . . . , xk−1 ∈ Zq at random,
and solve forhk, . . . , hn as in the proof of Theorem 1. We also chooset ∈ Zq at random
and setḡ = ht ( = gxt). Note that with overwhelming probability, we haveh 6= 1 and
t 6= 0, and we assume this in what follows.

Now we discuss how to simulate the adversary’s view of the encryption oracle in step
A4, given a labelL ′. We choosec′ ∈ {0,1}l at random. We setu′ = β ( = gy) and
ū′ = γ t , which is eithergxyt or gzt, depending on the distribution from which(α, β, γ )
was drawn. We then choosee′, f ′ ∈ Zq at random, and computew′ = g f ′/(u′)e

′
and

w̄′ = ḡ f ′/(ū′)e
′
. We then backpatch, settingH2(c′, L ′,u′, w′, ū′, w̄′) = e′. The output

of the encryption oracle is(c′,u′, ū′,e′, f ′).
The simulation of the uncorrupted servers is essentially just as it was in the proof

of Theorem 1: the key is that the simulator knowst 6= 0 with ḡ = ht , and so given a
valid ciphertext(c, L ,u, ū,e, f ) 6= (c′, L ′,u′, ū′,e′, f ′), it is easy to argue that with
overwhelming probability logg u = logḡ ū, which implies we can computeux as(ū)1/t ,
and simulate the rest of the server’s output just as before.

The simulator itself never directly queries or backpatchesH1, except on behalf of the
adversary. If the adversary ever queriesH1 atγ , we stop and output 1; otherwise, if the
adversary terminates without queryingH1 atγ , we output 0.

That completes the description of the simulator.
Consider the joint distribution of(h, ḡ,u′, ū′). In the case where(α, β, γ ) is drawn

from the Diffie–Hellman triple distribution,(h, ḡ,u′, ū′) is (statistically indistinguish-
able from) a random element ofG4, subject to the condition̄g 6= 1 and logg u′ = logḡ ū′.
In the case where(α, β, γ ) is a random triple,(h, ḡ,u′, ū′) is (statistically indistinguish-
able from) a random element ofG4, subject to the condition that̄g 6= 1. In either case,
γ is determined byγ = (ū′)logḡ h;moreover, if(α, β, γ ) is a Diffie–Hellman triple, then
the relationγ = (u′)logg h also holds.

We now argue as follows. In the case where(α, β, γ ) is drawn from the Diffie–
Hellman triple distribution, the simulation of gameA is statistically close to perfect until
the adversary queriesH1 at γ = (u′)logg h, at which point we stop and output a 1. By
our assumption about the behavior of the adversary, and the fact that the simulation is
accurate up to this point, this happens with non-negligible probability.

Now, if in the case where(α, β, γ ) is a random triple the simulator outputs a 1 with
negligible probability, we are done: the simulator is an effective test for distinguishing
Diffie–Hellman triples from random triples.

Otherwise, suppose that in the case where(α, β, γ ) is a random triple the simulator
outputs 1 with non-negligible probability. As mentioned above,(h, ḡ,u′, ū′) is essentially
just a random element inG4 (with ḡ 6= 1). The other random variablese′, f ′, w′, and
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w̄′ are also just random, subject to relations that make the “proof” that logg u′ = logḡ ū′

look legitimate; in fact, the relation logg u′ = logḡ ū′ does not in general hold, and the
“proof” is entirely bogus, but that is irrelevant.

The point is that if the adversary makes the simulator output a 1, it can essentially
compute(ū′)logḡ h given random(h, ḡ,u′, ū′) ∈ G4.

As we show below, we can use this adversary to solve the following “inverse” Diffie–
Hellman problem with the non-negligible probability: given randomα′ = gt andβ ′ =
gv, computeγ ′ = gv/t . It is easy to see that the “inverse” Diffie–Hellman problem
is random self-reducible, just like the computational Diffie–Hellman problem. Also,
the self-corrector for the computational Diffie–Hellman problem in [Sh2] can be easily
modified to yield a self-corrector for the “inverse” Diffie–Hellman problem. It is easy
to see that this “inverse” Diffie–Hellman problem is equivalent (under polynomial-time
reduction) to the computational Diffie–Hellman problem. In particular, we can solve an
instance of the computational Diffie–Hellman by making two queries to an “inverse”
Diffie–Hellman oracle.

Now the details. The new simulation proceeds as follows. The input to the simulator
is α′, β ′ as above. First choosex ∈ Zq at random, set̄g = (α′)x ( = gxt), and run the
actual key generation algorithm for the cryptosystem, in particular, settingh = gx. Since
this new simulator knows the private decryption key, it can without any trouble respond
to arbitrary decryption requests.

Now consider the encryption oracle in stepA4, given labelL ′. We choosec′ ∈{0,1}l
at random,e′, f ′ ∈ Zq at random, andu′ ∈ G at random. We then set̄u′ = β ′ ( =
gv). We computew′ = g f ′/(u′)e

′
and w̄′ = ḡ f ′/(ū′)e

′
. We then backpatch, setting

H2(c′, L ′,u′, w′, ū′, w̄′)=e′. The output of the encryption oracle is(c′, L ′,u′, ū′,e′, f ′).
This new simulator halts when the adversary halts, outputting the list of all queries

made toH1.
It is straightforward to verify that the view of this adversary relative to this new

simulator is identical to the view of the adversary relative to the original simulator on a
random triple, at least up until the point that it queriesH1 at

γ = (ū′)logḡ h = (gv)x/xt = gv/t = γ ′.

So, if the adversary causes the first simulator on a random triple to output 1 with non-
negligible probability, then this same adversary causes this new simulator to output a list
containing the desired solutionγ ′ to the given instance of the “inverse” Diffie–Hellman
problem.

That completes the proof of Theorem 3.

Theorem 4. In the random oracle model, theTDH2cryptosystem satisfies the consis-
tent decryption property.

Just as forTHD1, this theorem follows immediately from the soundness of the equality
of discrete logarithm protocol in Section 4.3.
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7. Implementation Issues

To implement these schemes, one has to choose concrete hash functions. This is relatively
straightforward, but see [BR1] for a detailed discussion. One technicality that we have
to deal with here, though, is the hash functionH1 in TDH1, whose output is supposed
to be an element of the groupG. For example, consider the case wherep is a prime,
p − 1 = mq, (m,q) = 1, andG is the group of orderq in Z∗p. We could implement
H1 by raising the output of a standard hash function (viewed as a number) to the power
m modulo p. This gives us an element inG. Note that the decryption and recovery
algorithms must also check that the given group elements lie inG. It is straightforward
to modify the proof of security to deal with this.

Unfortunately, this implementation ofH1 is quite costly, as it requires extra exponen-
tiations, some to the powerm, which is typically much larger thanq.

TheTDH2scheme does not suffer from this problem. Moreover, inTDH2, the group
elementḡ is fixed (per public key). In practice, this makes quite a difference, as one
can pre-compute a table that makes exponentiation to the baseḡ far more efficient than
when it is constantly changing [BGMW], [LL2]. This speeds up the encryption algorithm
significantly. Of course the same can be done forg already inTDH1.

8. Conclusion

We have proposed two new threshold cryptosystems,TDH1andTDH2, that are provably
secure in the random oracle model assuming, respectively, that the computational and
decisional Diffie–Hellman problems are hard.

TDH2 requires a stronger intractability assumption thanTDH1, but is much more
efficient. Moreover,TDH2is not much less efficient than the very simpleTDH0scheme
in Section 2.7, which is not known to be secure in the random oracle model.

We close with three open problems: (1) determine the security ofTDH0; (2) find a
practical threshold cryptosystem based on RSA that is provably secure against chosen
ciphertext attack (even using the random oracle model); (3) find a practical threshold
cryptosystem that is provably secure against chosen ciphertext attack, without using the
random oracle model; to date, the most practical such schemes known [CG1], [Ab], [JL]
require either synchronized interaction or a large number of pre-shared secrets, which
makes them much less practical than the schemes presented here.
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