
DOI: 10.1007/s00145-002-0007-1

J. Cryptology (2003) 16: 1–24

© 2002 International Association for
Cryptologic Research

Efficient Amplification of the Security of Weak
Pseudo-Random Function Generators

Steven Myers
Department of Computer Science, University of Toronto,

10 King’s College Road, Toronto, Ontario, Canada M5S 3G4
myers@cs.toronto.edu

Communicated by Moni Naor

Received March 2000 and revised July 2002
Online publication 6 December 2002

Abstract. We show that given a PRFG (pseudo-random function generator) G that is
(1/nc)-partially secure there exists a polynomial p such that the construction g1(x ⊕
r1)⊕ · · ·⊕ gp(n)(x ⊕ rp(n)) produces a strongly secure PRFG, where gi ∈ G and ri are
strings of random bits, and the key for the new PRFG is composed of the ri ’s and keys
for the gi ’s. This is the first “natural” construction of a (totally secure) PRFG from a
partially secure PRFG. Using results of Luby and Rackoff, this result also demonstrates
how to construct a PRPG “naturally” from a partially secure PRPG.

Key words. Pseudo-randomness, Security amplification, Function generators, XOR
Lemma.

1. Introduction

Cryptographers have noted that the Data Encryption Standard (DES) is effectively the
composition of 16 insecure permutation generators. Because DES has withstood much
cryptanalysis it is often considered to be a secure (given its small key size) pseudo-random
permutation generator (PRPG). Similarly, AES, the predecessor of DES, is also based
on the composition of at least nine insecure permutation generators, and, to date, it too
has withstood much cryptanalysis. These constructions have led some cryptographers to
attempt to provide evidence that supports the apparent observation that the composition
of permutation generators can amplify security.

Following this line of research, Luby and Rackoff [12] defined the notion of a partially
secure PRPG to be a permutation generator that produces permutations that cannot be
efficiently distinguished from random permutations by small circuits with a probability
better than 1/c, for some constant c > 1. They proved that the composition of a constant
number of partially secure PRPGs results in a partially secure PRPG with stronger
security than any of its constituent components. Unfortunately, Luby and Rackoff’s
result did not permit the construction of a PRPG from a partially secure PRPG.

1

2 S. Myers

It was known that the existence of a partially secure PRFG implied a totally secure
PRFG. The construction used the following chain of results. It is possible to construct
a weak one-way function from a partially secure PRFG; then, using Yao’s lemma [17],
[11], construct a one-way function; then, using the HILL result [7], construct a pseudo-
random number generator (PRNG); then, using GGM [5], construct a PRFG. However,
this construction is obviously neither “natural” nor efficient.

In this paper we give a natural, efficient and parallelizable construction for generating
a PRFG from a partially secure PRFG. Our proof follows from the ideas of Luby and
Rackoff [12], [2]. Further, since partially secure PRPGs are a special case of partially
secure PRFGs, we can use a partially secure PRPG to construct a PRFG. Then, using a
previous result by Luby and Rackoff [13], or more recent work by Naor and Reingold [16],
we can “naturally” and efficiently construct a PRPG from the PRFG. If F = {Fn | n ∈ N}
is a “partially secure” PRFG, then our construction is as follows:

f n
1 (x ⊕ r1)⊕ · · · ⊕ f n

m(x ⊕ rm),

where the f n
i ’s are randomly chosen from Fn , and the ri ’s are randomly chosen from

{0, 1}n . The key for this new generator consists of all the keys for the functions (fi ’s),
and all of the strings of random bits (ri ’s).

Our construction is similar to an XOR product, and in this light our proof might be
considered an XOR lemma for a PRFG. Further support for this this view is found in the
fact that our proof closely follows those of Levin’s [11] and Luby and Rackoff’s [12],
where Luby and Rackoff already followed the proof of Levin.

Given that there are relatively few proofs that show security amplification in an un-
restricted adversarial model, we think this result will be of interest to those researchers
interested in security amplification. Further, we believe that this result can be viewed
as one step in the long journey to developing a good theory for the development of
block-ciphers. Currently, block-ciphers are developed primarily using heuristics, with
little theory to guide the development of their underlying architecture. However, there are
pragmatic examples of how the proposed construction might be of use to block-cipher
designers. For instance, one pragmatic example of a partially secure PRFG might be
block-ciphers with a large set of weak keys which make the cipher easy to break in some
form or another. A block-cipher designer could use the construction on the cipher and
reasonably expect to reduce the fraction of its weak keys. In practice there are examples
of ciphers which have large numbers of weak keys. For instance, the block-cipher IDEA
has 251 weak keys [3]. Of course, as the total number of keys is 2128 this is not problematic
in this example because a randomly chosen key is very unlikely to be weak.

1.1. Related Work

There are very few results in cryptography that demonstrate the amplification of security
in a general, nonrestrictive adversarial model. The first such result was Yao’s XOR
Lemma [17], which now has several proofs [11], [8], [6]. All of these results apply to the
security amplification of weak one-way functions and weakly unpredictable predicates.
In a domain closer to that of a PRFG, Luby and Rackoff [12] give a direct product
lemma for a PRPG, where the direct product is taken via the composition of a weak
PRPG. Unfortunately, their proof falls short of demonstrating that the direct product of

Efficient Amplification of the Security of Weak Pseudo-Random Function Generators 3

a sufficient number of weak PRPGs yields a strongly secure PRPG, and the reasons for
this case are explained in further detail in Section 3. Another direct product theorem for
a PRFG is given by Myers [15], where the direct product is based on the composition and
exclusive-or of a PRFG. Unfortunately, this result also fails to achieve a strongly secure
PRFG for reasons similar to those of Luby and Rackoff [12], [2]. Further complicating
matters with Myers’ [15] result is the fact that the size of the constructed generator
is super-polynomial after ω(log n) applications of the direct product, and this further
restricts the amount of security amplification that can be performed. Therefore, our
result presents the first efficient and natural direct product theorem achieving a strongly
secure PRFG from a weakly secure PRFG in a general adversarial model.

Since Luby and Rackoff proposed their partial security model in [12], cryptographers
have developed other models where it is possible to demonstrate some forms of security
amplification. Kilian and Rogaway [10] propose a model where component permutation
generators are replaced with completely random permutation generators. Constructions
using the generators are then analyzed, and their security compared with that of a random
permutation generator. Note that in this model, since the permutation generators are
random, attacks can only be performed on the construction, and not on the underlying
component generators. Kilian and Rogaway call such attacks generic, as they do not
make use of the underlying structure of the permutation generator. In this model Kilian
and Rogaway [10] show that the DESX construction increases the effective key length
of DES. Also in the same model, Aiello et al. [1] have shown that the composition of
multiple random permutation generators results in a permutation generator that is more
secure against generic attacks than an individual constituent permutation generator.

2. Notation, Definitions and the Model

Below we introduce some notation and terminology that are used in the paper.

Notation 1. For µ, ν ∈ {0, 1}∗, let µ • ν denote their concatenation.

Notation 2. Let F l→p denote the set of all functions f : {0, 1}l → {0, 1}p, and let Fn

be the set Fn→n .

Notation 3. For α, β ∈ {0, 1}n , let α ⊕ β denote the bit-by-bit exclusive-or of α and
β. For f, g ∈ Fn , let (f ⊕ g)(α) denote f (α)⊕ g(α).

Notation 4. Let f ∈ Fn→m and r ∈ {0, 1}n . Then define the function f r
⊕: {0, 1}n →

{0, 1}m as f r
⊕(x) = f (x ⊕ r) for all x ∈ {0, 1}n .

Notation 5. For any set A, let x ∈ A be the action of uniformly at random choosing an
element x from A. For any distribution D, let x ∈ D be the action of randomly choosing
an element according to D. It will be clear from context when ∈ is used to refer to an
element in a set, and when it refers to choosing from a distribution.

4 S. Myers

Definition 1. Let D1,D2, . . . be a sequence of distributions, and let e represent a se-
ries of events e1, e2, . . . such that for all i , ei is an event of Di . We say that e occurs
with significant probability if for some constant c > 0 and for infinitely many n the
PrDn (en) ≥ 1/nc. We say that an event e occurs with negligible probability if, for all
constants c > 0 and for all sufficiently large n, PrDn (en) < 1/nc.

2.1. Circuits

In the definition of each cryptographic primitive there exists the notion of an adversary.
Abstractly, its purpose is to break an effect that a primitive is trying to achieve. Resource
bounds are imposed on the adversaries, so that they model the computational power “real
world” adversaries might feasibly have access to. There are two standard computational
models that are used to define resource bounded adversaries: uniform and non-uniform.
To clarify the proof and make it more concise we present our results with respect to
non-uniform adversaries. In Section 4.1 we discuss some of the more pertinent changes
required in order to make the proof go through in the uniform model.

A non-uniform adversary is a sequence of circuits (C1,C2, . . .), where circuit Ci is
used on inputs of size i . We wish to model efficient computation on the part of the
adversary, so we assume that the size of each circuit Ci is bounded by p(i), for some
polynomial p. The size of a circuit is defined to be the number of gates and the number
of connections between gates in the circuit. For simplicity we assume we have gates for
all 16 binary and 4 unary functions.

In order to model the adversaries of certain primitives we allow the circuits to have
access to an oracle. This is modeled by defining oracle gates to be gates of unit size
that compute a specified function. The gates are otherwise treated like normal gates. An
oracle function will normally be considered an input to the circuit.

We stress that the description of the circuit family need not be efficiently computable,
even though each circuit is of small size relative to the size of its input.

Definition 2. Let C be a circuit whose outputs are in the range {0, 1}. Then we say C
is a decision circuit. Let x be an input to C . Then we say C accepts x if C(x) = 1, and
we say that C rejects x if C(x) = 0.

Definition 3. We say a circuit C is probabilistic if it requires as input a sequence of
random bits in order to allow it to make random choices during its computation.

Notation 6. Let D be a distribution over the inputs of a decision circuit C . Then we
use as a shorthand Prd∈D(C(d)) to represent Prd∈D[C(d) = 1].

Definition 4. LetD be a distribution over the inputs of a decision circuit C . We say that
C accepts a fraction Prd∈D(C(d)) of its inputs, and rejects a fraction 1−Prd∈D(C(d))
of its inputs.

Notation 7. We write C f to represent a circuit C that has oracle gates that compute
the function f in unit time. We wish to consider this function as an “input” to the circuit,

Efficient Amplification of the Security of Weak Pseudo-Random Function Generators 5

and therefore if f is of the form {0, 1}n → {0, 1}m(n), for a polynomial m, then we say
that f is part of C’s input and it has size n.

Notation 8. Let C be a circuit with access to the oracle function f . Then let QC denote
the number of oracle gates in C . (Note: Q is short for query.)

In the remainder of the paper we assume that all circuits are standardized in the
following manner: no circuit will repeat oracle queries, and all circuits Cn in a circuit
family {Cn} will perform exactly m(n) queries, for some polynomial m (that is QCn =
m(n)). Any polynomial-sized family of circuits can be easily modified to satisfy the
above two requirements.

2.2. Function Generators

Definition 5. We call G: {0, 1}κ×{0, 1}n → {0, 1}m a function generator. We say that
k ∈ {0, 1}κ is a key of G, write G(k, ·) as gk(·) and say that key k chooses the function
gk . Let g ∈ G represent the act of uniformly at random choosing a key k from {0, 1}κ ,
and then using the key k to choose the function gk .

Let m and � be polynomials, and let N ⊆ N be an infinitely large set. For each
n ∈ N , let Gn: {0, 1}�(n) × {0, 1}n → {0, 1}m(n) be a function generator. We call
G = {Gn | n ∈ N } a function generator ensemble.

In an abuse of notation, we refer to both specific function generators and ensembles
as function generators.

Definition 6 (ε-Distinguishing Adversary). Let ε: N → [0, 1], and let D1 =
{Di

1 | i ∈ N
+} and D2 = {Di

2 | i ∈ N
+} be two sequence of distributions over oracle

gates, where Di
j is a distribution over oracle gates of input size i for j ∈ {1, 2}. If {Cn}

is an adversary with access to oracle gates, then we say it is capable of ε-distinguishing
D1 from D2 if, for some polynomial p and infinitely many n,∣∣∣∣ Pr

d1∈D1

[Cd1
n = 1]− Pr

d2∈D2

[Cd2
n = 1]

∣∣∣∣ ≥ ε(n)+ 1

p(n)
.

Notation 9. If a circuit family {Cn} ε-distinguishes G = {Gn | n ∈ N} from
{Fn | n ∈ N}, then we say {Cn} ε-distinguishes G.

Definition 7 (Pseudo-Random Function Generator Ensembles). Let m and � be poly-
nomials. For each n let Gn: {0, 1}�(n) × {0, 1}n → {0, 1}m(n) be a function generator,
computable in time bounded by a polynomial in n. Define G = {Gn | n ∈ N} to be
the function generator ensemble. Define F = {Fn→m(n) | n ∈ N}. We say that G is
(1 − ε(n)) secure if there exists no adversary {Cn}, bound in size to be polynomial in
n, which can ε-distinguish G from F . We say that G is a pseudo-random function
generator (PRFG) if it is 1 secure.

6 S. Myers

Definition 8. If G is a 1-secure generator, we say it is strongly secure. If G is 1/p(n)
secure, for some polynomial p, then we say that it is partially secure. If G is not partially
secure, then we say it is insecure.

2.3. The Chernoff Bound

Below is a well known form of the Chernoff Bound. For a proof of this result refer to
[14] or any standard book on probabilistic computation.

Lemma 1 (Chernoff Bound). Let x1, x2, x3, . . . be identical independently distributed
random variables that take the values 0 or 1 with probabilities q or p = 1− q, respec-
tively. Let Xnt = (1/nt)

∑nt

i=1 xi . Then for any k and l, there exists a t such that

Pr

[
|Xnt − p| ≥ 1

nk

]
≤ 1

2nl .

3. Result

We show that there is a “natural” construction that builds strongly secure PRFGs from
partially secure PRFGs. The construction we present uses function generators that gen-
erate functions of the form f : {0, 1}n → {0, 1}n , this is done to simplify the pre-
sentation, and the result can be easily modified to generate functions of the form
f : {0, 1}n → {0, 1}m(n), for any polynomial m. The construction is based on the operator
generator described below.

Let f1 and f2 be two functions of the form {0, 1}n → {0, 1}n . For each r1, r2 ∈ {0, 1}n
define the operator ✸n

r1•r2
, which acts on the functions f1 and f2 and produces a function

of the form {0, 1}n → {0, 1}n as defined below:

(f1✸
n
r1•r2

f2)(x) = f1(x ⊕ r1)⊕ f2(x ⊕ r2).

We define the ✸ operator generator (read Diamond) as ✸ = {✸n
r1,r2
| n ∈ N∧ r1, r2 ∈

{0, 1}n}.
Before describing the construction we formally describe how to combine two function

generators using the ✸ operator generator.

Definition 9. Let G = {Gn: {0, 1}�(n) × {0, 1}n → {0, 1}n | n ∈ N} and H =
{Hn: {0, 1}κ(n) × {0, 1}n → {0, 1}n | n ∈ N} be function generator ensembles. Let ✸ be
the operator generator defined previously. Let F = {Fn: {0, 1}�(n)+κ(n)+2·n × {0, 1}n →
{0, 1}n | n ∈ N} be the function generator defined by Fn(k1 • k2 • k3 • k4, x) =
(gn

k1
✸n

k3•k4
hn

k2
)(x), where |k1| = �(n), |k2| = κ(n) and |k3| = |k4| = n. This is written

in shorthand as F = G✸H.
Similarly, if g: {0, 1}n → {0, 1}n , then we write g✸H as short-hand for the function

generator defined by Fn(k2 • k3 • k4, x) = (g✸n
k3•k4

hn
k2
)(x), where |k2| = κ(n) and

|k3| = |k4| = n.

Efficient Amplification of the Security of Weak Pseudo-Random Function Generators 7

3.1. The Construction

Let p be a polynomial. We construct the generator F from the generator G as follows:

F = G✸ · · ·✸G︸ ︷︷ ︸
p(n)

.

Note that in order to compute a random function f ∈ Fn it is sufficient to compute

(g1(x ⊕ r1)⊕ · · · ⊕ gp(n)(x ⊕ rp(n))),

where gi ∈ Gn and ri ∈ {0, 1}n . Observe that the key for F includes p(n) keys for G and
p(n) random strings.

The random strings used in the construction are necessary for the security amplifica-
tion, and if they are omitted a counter-example to our security amplification claims can
be easily constructed, as follows. Let F be a secure PRFG from which we construct a
1
2 -secure generator G. For each f ∈ F we have a corresponding function g ∈ G that is
defined as

g(x) =
{

FBZ(f (x)) if x = 0̄,

f (x) otherwise,

where 0̄ represents a binary string of all 0’s and FBZ is a predicate that takes a string and
returns the same string with the first bit set to 0 (that is, FBZ(x1, . . . , xn) = 0, x2, . . . , xn).
Intuitively this generator is 1

2 -secure as only half of the random functions f ∈ F will
have f (0̄) commencing with the bit 0, whereas all of the functions g ∈ G will have this
property. Excluding this distinction G is a duplicate of F, and therefore its functions are
indistinguishable from random functions, and so this is the only advantage a distinguisher
has in distinguishing G from F .

Consider the construction H = G ⊕ G, this is the same construction as G✸G, but
without the random offsets r1 and r2. It has the property that for every h ∈ H there
exists g1, g2 ∈ G such that h = g1 ⊕ g2, and therefore h(0̄)’s first bit will always be
0: ensuring that H is not more than 1

2 -secure. This demonstrates that the offsets in the
Diamond construction are in fact necessary for security amplification. We stress that
our construction requires that both offsets be chosen randomly and thus are most likely
different.

For further discussion on this construction and several other plausible candidates for
security amplification see [15].

3.2. Presentation

We proceed to proving the security amplification properties of the above construction.
First we discuss some issues relating to how such proofs will be presented.

The arguments will be presented in a top-down fashion. We will begin by giving the
intuition for the highest level of an argument, and then provide the technical details.
Required lemmas will be stated, but in many cases proofs of the lemmas will be delayed
until a later point in the paper.

In what follows, there are many proofs that deal with values that are approximations to
the values of interest. Because of this, in many of the calculations there are many terms

8 S. Myers

involving inverse polynomials that represent possible approximation errors. While it
is important to ensure the calculations are correct with these error bounds, they are
cumbersome and make the calculations seem more complicated than the underlying
intuition suggests. Therefore, when intuitive explanations are presented we ignore all of
the inverse polynomial approximation errors, and assume we are only dealing with the
exact values we are trying to approximate.

We will be presenting asymptotic arguments that hold for either infinitely many or all
sufficiently large n. For clarity, in all of the formal statements of claims, lemmas and
theorems all appropriate indices will be included, but the index n will be fixed, where
appropriate, in the proofs of such statements in order to simplify notation. Therefore,
the following will hold when the index n is fixed: for any function ε: N→ R, from the
Naturals to a given range R, we use the ε to represent ε(n); for an arbitrary family of
circuits {Cn} we denote Cn by C ; and for an ensemble of function generators {Gn} we
denote Gn by G. Finally, when presenting the intuition for a given argument we will be
far more relaxed with the index n, often dropping it completely to prevent notation from
obscuring the underlying intuition. It should be clear to the reader where the appropriate
indices would appear.

3.3. Results

In order to prove the security of the construction we use the Diamond Isolation Lemma
(the name for this lemma comes from the stylistically similar Isolation Lemma used by
Levin [11] in proving Yao’s XOR Lemma [17]). Intuitively, the lemma shows that the
function generator that results from the combination of two partially secure function
generators by the ✸ operator generator is more secure than either of the two constituent
generators. More specifically, if there are two generators, G and H, that respectively
cannot be ε- and δ-distinguished, then the generator G✸H cannot be εδ-distinguished.
As we will apply the Isolation Lemma iteratively, it is easier to work with if the lemma
is stated in the contrapositive. Also, because of the iterative application of the lemma we
need to be concerned about the sizes of the distinguishing circuits for G and H. This is
the reason for the gross asymmetry in the size of the circuits that appears in the statement
of the lemma. The need for the differences in circuit size will be made clear in the proof
of Theorem 1. The majority of the work in this paper goes towards proving the lemma
correct.

Lemma 2 (Diamond Isolation Lemma). There exists a fixed polynomial p (that is re-
trievable from the proof) such that the following hold. Let ε, δ: N→ [0, 1] be functions.
Let there exist a constant d > 0 such that for all sufficiently large n, ε(n) ≤ 1−1/nd . Let
H and G be function generators, where cG(n) and cH(n) are polynomials which bound
from above the size of the circuits which compute the function generators, respectively.

Hypothesis: Let sC be a polynomial. There exists a family of decision-circuits {Cn},
where for each n the circuit Cn is of size bounded above by sC(n), and there exists c > 2d
such that for infinitely many n,

∣∣∣∣ Pr
g∈Gn✸Hn

(Cg
n)− Pr

f ∈Fn
(C f

n)

∣∣∣∣ ≥ ε(n)δ(n)+ 1

nc
.

Efficient Amplification of the Security of Weak Pseudo-Random Function Generators 9

Conclusion: For infinitely many n there exists either a decision-circuit ϒn of size
p(nc · cG(n))sC(n) for which∣∣∣∣ Pr

h∈Hn
(ϒh

n)− Pr
f ∈Fn

(ϒ f
n)

∣∣∣∣ ≥ ε(n)+ 1

n3c
,

or a decision-circuit �n of size ≤ (2QCn cH(n) + sC(n)), where Q�n = QCn , and for
which ∣∣∣∣ Pr

g∈Gn
(�g

n)− Pr
f ∈Fn

(� f
n)

∣∣∣∣ ≥ δ(n)+ 1

nc
.

(We remind the reader that QC represents the number of queries performed by circuit C .)

Akcoglu, Luby and Rackoff prove a similar lemma in [12] and [2]. It shows that the
composition of two partially secure PRPGs results in a generator that is more secure than
either of its constituents. Excluding the fact that their lemma is restricted to permutation
generators instead of function generators and that they are concerned with composition
as opposed to the ✸ operator, our lemma is stronger in two senses. First, the security
requirement in the hypothesis is strictly weaker (i.e. the improvement in security from
combining the two generators is stronger in our result). Second, the size of the distin-
guishing circuit for G is only additively larger than the distinguishing circuit for G✸H.
In the Luby and Rackoff construction the distinguishing circuits for G and H are both
multiplicatively larger than the circuit that distinguishes G ◦ H. It is this second fact
that permits our construction to achieve PRFGs, but prevents Luby and Rackoff from
achieving more than a constant number of security amplifying compositions. Further-
more, our proof is simpler than that of Luby and Rackoff. This is due to the fact that
their proof contains a corollary that corresponds to Lemma 7 in our proof, but, unlike
Lemma 7, their corollary is only proven true with respect to the computational security
of G � H. This restriction is necessary for their construction, but increases the difficulty
of the proof. We now prove that our construction produces a PRFG from a 1− ε secure
PRFG.

Theorem 1 (Diamond Composition Theorem). Let ε: N→ (0, 1)be a function, where
ε is bounded away from 1 by an inverse polynomial. Let G be a polynomial. Let G be a
1− ε(n) secure PRFG. The generator F = G✸ · · ·✸G︸ ︷︷ ︸

p(n)

is a 1− ε(n)p(n) secure PRFG.

Proof. The intuition for this argument is as follows. Assume that F does not have the
claimed security, and thus there is a family of distinguishing circuits for F that breaks the
claimed security. We apply the Isolation Lemma to the generator F. The result is either
that the generator G is not 1− ε secure as claimed, or we have a family of distinguishing
circuits (only slightly larger than the original circuit family) for a generator that is
constructed from fewer applications of the ✸ operator (and thus fewer constituent G
generators). We apply the Isolation Lemma inductively to this smaller generator until we
are left with an ε(n)+1/nc family of distinguishing circuits for the remaining generator
G, which contradicts its assumed 1− ε(n) security.

10 S. Myers

For sufficiently large n and some d > 0 let ε(n) < 1−1/nd . Assume for contradiction
that there exists a distinguishing family of circuits {Dn} and a c > 2d such that for
infinitely many n, |Pr f ∈Fn (D f

n)− Pr f ∈Fn (D f
n)| ≥ ε(n)p(n) + 1/nc.

For each i define the generator Fi = G✸ · · ·✸G︸ ︷︷ ︸
i

. For 1 ≤ i ≤ p(n), define the

predicate P(i) as: there exists a family of circuits {Di,n} such that for infinitely many n,∣∣∣∣ Pr
f ∈Fn

i

(D f
i,n)− Pr

f ∈Fn
(D f

i,n)

∣∣∣∣ ≥ ε(n)i + 1

nc
,

where each circuit in the family is of size (2Q Dn ·cG(n))(p(n)− i)+sD(n) and performs
Q Dn oracle queries.

We prove P(i) true for 1 ≤ i ≤ p(n) by (reverse) induction.

Base Case (P(p(n))). By definition F = Fn and by defining {Dp(n),n} = {Dn}, we
have |Pr f ∈Fn

p(n)
(D f

p(n),n) − Pr f ∈Fn (D f
p(n),n)| ≥ ε(n)p(n) + 1/nc. Further, the restrictions

on the size and number of queries performed by the circuits in {Dp(n),n} are easily seen
to hold, proving P(p(n)).
Inductive Step. We assume the inductive hypothesis, P(i), holds for a particular
1 < i ≤ p(n), and prove it true for i − 1. By the inductive hypothesis there exists
a family of ε(n)i -distinguishing circuits that have size (2Q Dn ·cG(n))(p(n)− i)+ sD(n)
and perform Q Dn oracle queries.

We observe that Fi = Fi−1✸G, and therefore we can apply the Isolation Lemma to Fi

with the family of distinguishing circuits {Di,n}. Thus, either there exists a polynomial
in n sized family of circuits {ϒn} that break the assumed 1− ε(n) security of G, causing
a contradiction; or there exists a family of circuits {Di−1,n} such that∣∣∣∣∣ Pr

f ∈Fn
i−1

(D f
i−1,n)− Pr

f ∈Fn
(D f

i−1,n)

∣∣∣∣∣ ≥ ε(n)i−1 + 1

nc
.

Further, each circuit Di−1,n performs Q Dn oracle queries and has size

2Q Dn ·cG(n)+(2Q Dn ·cG(n))(p(n)−i)+sD(n) = (2Q Dn ·cG(n))(p(n)−(i−1))+sD(n),

proving P(i − 1).
By the principle of induction, P(1) holds, but this implies that the family of circuits
{D1,n} break the 1− ε(n) security of F1 = G, proving the theorem.

Observe the proof of Theorem 1 would not go through if the Isolation Lemma con-
structed distinguishers were both significantly larger than the original distinguisher. In
particular, if the circuits defined by the predicate P(1) were super-polynomial in size,
then the circuit would not break the security of F1 = G, as the security claims of G
are made relative to a polynomial-sized circuit. This observation makes the need for the
asymmetry of the Isolation Lemma clear.

Efficient Amplification of the Security of Weak Pseudo-Random Function Generators 11

3.4. Proof of the Isolation Lemma

Intuitively, the Isolation Lemma claims that by combining two partially secure PRFGs
with the ✸ operator, a new generator is formed that has insecurity proportional to the
product of the insecurities of the two constituent generators. The lemma is stated in the
contrapositive, with concern for the size of the distinguishing circuits, so that the lemma
can be applied iteratively, as in Theorem 1. At this point the reader may wish to recall
the statement of the Isolation Lemma.

At the highest level, the proof of the Isolation Lemma is easy to explain: assuming we
have a family of εδ-distinguishing circuits, {Cn}, for the constructed generator, G✸H,
then we show how to construct either a family of δ-distinguishing circuits for the first
constituent generator H, or a family of ε-distinguishing circuits for the second constituent
generator G. Again, as we wish to apply this lemma iteratively, we need to ensure
that one of the circuit families we create is not much larger than the original circuit
family {Cn}.

The proof proceeds as follows, we first demonstrate (Lemma 4) that either there
exists a very simple algorithm that δ-distinguishes G from F , or it is the case that for
every h ∈ H the ability of the distinguishing circuits {Cn} to distinguish between h✸G
and F is restricted: they can do no better than δ-distinguish. The existence of the simple
algorithm would prove the Isolation Lemma, so we assume it is false and use the resulting
restriction on the circuits {Cn} (that δ-distinguish between F and h✸G) to construct a
more complicated algorithm that ε-distinguishes H from F .

The second algorithm is developed by observing that, by assumption, the circuits
in {Cn} accept a fraction of G✸H that is “significantly larger” than εδ + Pr f ∈F (C f).
However, the restriction implies that for each h ∈ H not much more than a δ+Pr f ∈F (C f)

fraction of the functions in G✸h are accepted by C . As Prϕ∈G✸H(Cϕ) is the expected
value of Prϕ∈G✸h(Cϕ) over the distribution H, it must be the case that Prϕ∈G✸h(Cϕ) is
“significantly larger” than Pr f ∈F (C f) for at least an ε fraction of the h ∈ H.

Given a function ω, our distinguishing circuit will approximate Prψ∈G✸ω(Cψ) and
accept if it is “significantly larger” than Pr f ∈Fn (C f). By the above argument this circuit
will accept an ε fraction of the functions in H. In order for the circuit to ε-distinguish
functions in H from random functions, the same circuit needs to accept almost no random
functions. Lemma 5 shows that almost no random functions will be accepted by this
circuit, proving the Isolation Lemma. The proof of Lemma 5 is involved and therefore
is not presented until after the proof of the Isolation Lemma.

The Simple Algorithm

In this section we present Lemma 4. Its proof contains the simpler algorithm used to
δ-distinguish G in the Isolation Lemma. The intuition is as follows: if there exists an
infinite number of h ∈ H such that C can δ-distinguish between h✸G and h✸F , then
we simply hard-wire the appropriate h’s into the circuit. When the circuit is given a
function ϕ, that is either in G or F , it simulates the execution of C with the oracle h✸ϕ.
Alternatively, if there is not an infinite number of such h ∈ H, then C can do no better
than δ-distinguish h✸H and h✸F . By observing that for every h ∈ F the distributions
h✸F and F are the same, we note that C cannot δ-distinguish h✸H from F .

12 S. Myers

We first demonstrate that if you form a distribution on functions by combining any
particular function with the uniform distribution over F using the ✸ operator, then the
resulting distribution is identical to the uniform distribution over F .

Lemma 3. Fix n. For each h ∈ Fn , the distribution h✸Fn and the uniform distribution
over Fn are identical.

Proof. Fix r1, r2 ∈ {0, 1}n and fix h ∈ Fn , then for every g ∈ Fn , Pr f ∈Fn [hr1⊕ ⊕ f r2⊕
= g] = Pr f ∈Fn [f = g].

Lemma 4. Either there exists a family of decision-circuits {�n}, where for each n the
circuit �n is of size ≤ QCn 2cH(n)+ sC(n); Q�n = QCn ; and for infinitely many n,∣∣∣∣ Pr

g∈Gn
(�g

n)− Pr
f ∈Fn

(� f
n)

∣∣∣∣ ≥ δ(n)+ 1

nc
;

or for all sufficiently large n and all h ∈ Hn ,∣∣∣∣ Pr
g∈Gn✸h

(Cg
n)− Pr

f ∈Fn
(C f

n)

∣∣∣∣ < δ(n)+ 1

nc
.

(We remind the reader that QC represents the number of oracle queries performed by
circuit C .)

Proof. Suppose it is the case that for infinitely many n there exists an h ∈ Hn such
that |Prg∈G✸h(C

g
n)− Pr f ∈Fn (C f

n)| ≥ δ(n)+ 1/nc. For each such n we create a decision
circuit �n , where �wn = C (w✸h)

n . We observe that∣∣∣∣ Pr
ψ∈Gn

(�ψn)− Pr
f ∈Fn

(� f
n)

∣∣∣∣ =
∣∣∣∣ Pr
ψ∈Gn✸h

(Cψ
n)− Pr

f ∈Fn✸h
(C f

n)

∣∣∣∣
=

∣∣∣∣ Pr
ψ∈Gn✸h

(Cψ
n)− Pr

f ∈Fn
(C f

n)

∣∣∣∣ (Lemma 3)

≥ δ(n)+ 1

nc
.

It is easy to see that Cn can be modified, in a straightforward manner, by adding
QCn (CH(n) + 10n) gates and wires to compute �n , while still using QCn oracle gates.
For simplicity of presentation in this paper we have assumed that 10n ≤ CH(n), giving
us a circuit of size ≤ sC(n)+ QCn (2CH(n)).

The Complicated Algorithm and the Main Argument

We now present the argument for the Isolation Lemma. It contains the more complicated
distinguishing algorithm that was previously described.

Efficient Amplification of the Security of Weak Pseudo-Random Function Generators 13

We begin by assuming the hypothesis of the Isolation Lemma. Further, we drop the
absolute value from the hypothesis and simply assume that for infinitely many n,

Pr
g∈Gn✸Hn

(Cg
n)− Pr

f ∈Fn
(C f

n) ≥ ε(n)δ(n)+
1

nc
, (1)

for if this is not the case we can flip the output bit of Cn . By Lemma 4 (stated above),
we assume that for all sufficiently large n and all h ∈ Hn ,∣∣∣∣ Pr

ψ∈Gn✸h
(Cψ

n)− Pr
f ∈Fn

(C f
n)

∣∣∣∣ < δ(n)+ 1

nc
. (2)

We outline the argument and remind the reader that in such outlines we drop the index n
as well as additive inverse polynomial terms. As stated earlier, we will construct a circuit
that on input w approximates the value of Pr f ∈G✸w(C f) and accepts if it is sufficiently
larger than Pr f ∈F (C f). By Lemma 5 almost no random functions will be accepted by
such a circuit. It needs to be demonstrated that at least an ε-fraction of the h ∈ H will
be accepted. This is done by an averaging argument. Suppose less than an ε-fraction of
the h ∈ H are accepted by our circuit. For those h’s that are accepted it is the case that
Pr f ∈G✸h(C f) < δ + Pr f ∈F (C f), by (2). For the remainder of the h’s, Pr f ∈G✸h(C f) <

Pr f ∈F (C f), by the fact that they are not accepted by the circuit. However, this implies
that Pr f ∈G✸H(C f) < ε(δ + Pr f ∈F (C f))+ (1− ε)Pr f ∈F (C f) = εδ + Pr f ∈F (C f), and
this contradicts (1), the assumed security of G✸H.

Lemma 5. For all families of polynomial-sized decision circuit families {Cn}, for i > 0
and for each n let

Kn(i) = Pr
f ∈Fn

(C f
n)+

1

ni
and let Sn(i) =

{
w ∈ Fn

∣∣∣∣ Pr
g∈Gn✸w

(Cg
n) ≥ Kn(i)

}
.

Then for all i,j, Prw∈Fn (w ∈ Sn(i)) ≤ 1/n j , for sufficiently large n.

The proof of Lemma 5 is presented in Section 3.5. In the remainder of this proof we
assume n is fixed and sufficiently large for all inequalities to hold. Therefore, n will
be dropped from notation wherever possible. We refer the reader back to the end of
Section 3.2 for a reminder of how notation is modified.

We commence construction of the ε-distinguishing circuit by noting that, although for
a givenw ∈ F we cannot compute Prϕ∈G✸ω(Cϕ) in polynomial time, we can approximate
it with the probabilistic circuit A:

Aw = 1

nb

nb∑
i=1

C
(gi✸

n
k1

i
•k2

i

w)
,

where g1, . . . , gnb ∈ Gn and k1
1, k2

1, . . . , k1
nb , k2

nb ∈ {0, 1}n are randomly chosen. Let κ(n)
be the length of the key of Hn , and set (with foresight) α > 1 so that nα > κ(n). Using

14 S. Myers

the Chernoff Bound, b is chosen large enough so that

Pr
w∈Fn

[∣∣∣∣Aw − Pr
ϕ∈G✸w

(Cϕ)

∣∣∣∣ ≥ 1

n4c

]
≤ 1

2nα

and

Pr
h∈H

[∣∣∣∣Ah − Pr
ϕ∈G✸h

(Cϕ)

∣∣∣∣ ≥ 1

n4c

]
≤ 1

2nα
.

Note that for all of the h ∈ H, ∣∣∣∣Ah − Pr
ϕ∈G✸h

(Cϕ)

∣∣∣∣ < 1

n4c
, (3)

since for each k ∈ {0, 1}κ(n) the probability of picking hk from H is at least 1/2κ(n) >
1/2nα .

From A we create the decision circuit ϒ which accepts the function oracle w iff
Aw ≥ Pr f ∈F (C f)+ 1/n3c. The following claim shows that ϒ will accept an ε-fraction
of the functions from H.

Claim. For all sufficiently large n,

Pr
h∈Hn

[
Ah

n ≥ Pr
f ∈Fn

(C f
n)+

1

n3c

]
≥ ε(n)+ 1

n3c
.

Proof. Again we fix n so that it is sufficiently large such that all of the inequalities below
hold. Assume for contradiction that Prh∈H[Ah ≥ Pr f ∈F (C f)+ 1/n3c] < ε(n)+ 1/n3c.
Let T ⊆ H be the set of functions h ∈ H, for which Ah ≥ Pr f ∈F (C f) + 1/n3c, and let
T be its complement.

Pr
ϕ∈G✸H

(Cϕ)− Pr
f ∈F

(C f) =
∑
h∈T

((
Pr

ϕ∈G✸h
(Cϕ)− Pr

f ∈F
(C f)

)
Pr
ψ∈H

[ψ = h]

)

+
∑
h∈T

((
Pr

ϕ∈G✸h
(Cϕ)− Pr

f ∈F
(C f)

)
Pr
ψ∈H

[ψ = h]

)

≤
∑
h∈T

((
Pr

ϕ∈G✸h
(Cϕ)− Pr

f ∈F
(C f)

)
Pr
ψ∈H

[ψ = h]

)

+
∑
h∈T

(((
Ah − Pr

f ∈F
(C f)

)
+ 1

n3c

)
Pr
ψ∈H

[ψ = h]

)

≤
∑
h∈T

((
Pr

ϕ∈G✸h
(Cϕ)− Pr

f ∈F
(C f)

)
Pr
ψ∈H

[ψ = h]

)

+ 1

n3c
(4)

Efficient Amplification of the Security of Weak Pseudo-Random Function Generators 15

≤
(
ε(n)+ 1

n3c

) (
δ(n)+ 1

nc

)
+ 1

n3c
(5)

≤ ε(n)δ(n)+ 1− 1/nc/2

nc
+ 3

n3c
(6)

< ε(n)δ(n)+ 1

nc
(contradiction). (7)

Equation (4) follows from two facts. First, by assumption, the probability that a random
h ∈ H is inT is at most 1. Second, for each h ∈ T , Ah−Pr f ∈F (C f) < 1/n3c. Equation (5)
also follows from two facts. First, by assumption, Prh∈H[h ∈ T] < ε(n)+1/n3c. Second,
by (2), for each h ∈ H, Prϕ∈G✸h(Cϕ)−Pr f ∈F (C f) < δ(n)+ 1/nc. Equation (6) follows
from the facts that ε(n) ≤ 1 − 1/nc/2 and δ ≤ 1. Equation (7) contradicts the fact that
Prϕ∈G✸H(Cϕ)− Pr f ∈F (C f) ≥ ε(n)δ(n)+ 1/nc.

Putting together the previous claim with Lemma 5, it is clear that ϒ accepts an ε-
fraction of the functions in H and a negligible fraction of random functions. The technical
details are presented below:

Pr
h∈H
(ϒh)− Pr

f ∈F
(ϒ f) ≥ ε(n)+ 1

n3c
− Pr

f ∈F
(ϒ f)

≥ ε(n)+ 1

n3c
− 1

2nα

− Pr
w∈F

[
Pr

g∈G�w
(Cg) ≥ Pr

f ∈F
(C f)+ 1

n3c
− 1

n4c

]
(8)

≥ ε(n)+ 1

n3c
− 1

n4c
− 1

2nα
(9)

≥ ε(n)+ 1

n4c
(for sufficiently large n).

Equation (8) follows as Aω approximates Prg∈G✸ω(Cg) to within a factor of 1/n3c for
all but 1/2nα of the ω ∈ F . Equation (9) follows by a direct application of Lemma 5.

By constructing, for all applicable n, the circuit ϒn in a straightforward manner and
using standard circuit derandomization techniques, we can see that there exists a fixed
polynomial p, for which the size of ϒn is bound by p(nc · cG(n))sC(n).

3.5. Proof of Lemma 5

We begin with an outline of the proof of Lemma 5. We note that the essence of the proof
lies in showing that for almost every function f , polynomial-sized circuits cannot dis-
tinguish between a function chosen randomly from Fn and a function chosen randomly
from I(f) = { f r

⊕ | r ∈ {0, 1}n}. It follows that for a randomly chosen f from Fn the
same circuits are not able to distinguish between random functions and those in G✸ f ,
proving the lemma.

The majority of work in this section goes into showing that for almost all functions f ,
polynomial-sized circuits cannot distinguish between functions chosen randomly from

16 S. Myers

Fn or I(f). A similar observation has previously been made by Even and Mansour [4]
in the context of the construction of PRPGs from a random permutation oracle.

This result is proven by demonstrating that there is a random variable that, with very
high probability, is a good approximation to both the probability that a circuit C accepts
a random function and the probability that the circuit accepts a function from I(f).
The random variable is an approximation of the value Prg∈I(f)(Cg). This approximation
is calculated by taking the average acceptance rate of C on a polynomial number of
functions chosen randomly from I(f). It is the case that, with high probability, we can
simulate many executions of C , given functions chosen uniformly at random from I(f) by
simply executing C and responding to its oracle queries with random strings. Of course,
one has to be careful that given two oracles g1, g2 ∈ I(f), the responses to the oracle
queries of Cg1 and Cg2 are not inconsistent with an underlying random f . However,
because of the random offsets r1 and r2, where gi (x) = f ri⊕ , it is unlikely that such
responses will be inconsistent, and therefore with high probability we can approximate
Prg∈I(f)(Cg). It is clear that the same process can be used to approximate Pr f ∈F (C f), and
therefore the same value is a good approximation to both values of interest and therefore
the difference between the two values must be quite small.

Lemma 6. Let {Cn} be a family of polynomial in n sized decision-circuits. Then for
any d > 0, there exists an r > 0 such that for all sufficiently large n and every s ∈ Fn ,

Pr
(f,k1,...,knr)∈Fn×{0,1}(n2r)

[∣∣∣∣∣ 1

nr

nr∑
i=1

C
f

ki
⊕

n − Pr
f ∈Fn

(C f
n)

∣∣∣∣∣ > 1

nd

]
<

1

2n/3
.

We remind the reader that we have modified all our circuits so that they will never
repeat oracle queries, and each circuit Cn performs exactly m(n) queries.

Proof. We assume the n is sufficiently large for all inequalities in this proof to hold
and that n is fixed. Accordingly, we drop the index n from our notation as described at
the end of Section 3.2. We assume that r is fixed, and later we show how to determine
r ’s value.

First we define two experiments. In the first experiment pick random (f1, f2, . . . , f r
n)

∈ (F)n2r
, and evaluate C(fi) for each i ∈ {1, . . . , nr }. Define the event E1 to be∣∣∣∣∣ 1

nr

nr∑
i=1

C fi − Pr
f ∈F

(C f)

∣∣∣∣∣ > 1

nd
.

In the second experiment pick random (f, k1, . . . , knr) ∈ F × {0, 1}(n2r), and evaluate

C f
ki
⊕ for each i , where 1 ≤ i ≤ nr . Define the event E2 to be∣∣∣∣∣ 1

nr

nr∑
i=1

C f
ki
⊕ − Pr

f ∈F
(C f)

∣∣∣∣∣ > 1

nd
.

Using the Chernoff Bound (Lemma 1) we choose an r where the probability of event E1

occurring in the first experiment is less than 1/2n/2. We will show that the probability

Efficient Amplification of the Security of Weak Pseudo-Random Function Generators 17

of event E2 in the second experiment, is negligibly close to the probability of E1 in the
first experiment.

We perform a third experiment in which we model both of the first two experiments.
This is done by considering two different methods of evaluating the circuit C , nr times.

We choose γ 1
1 , . . . , γ

1
m(n), . . . , γ

nr

1 , . . . , γ
nr

m(n) ∈ {0, 1}n·m(n)·nr
and k1, . . . , knr ,∈

{0, 1}nr
. Let gi

j represent the j th oracle-gate of C when evaluating fi in experiment

one, or f ki⊕ in experiment two. Let I i
j be the input to gi

j in the experiment and let
Oi

j be its output. We consider the gates in the following order: g1
1, g1

2, . . . , g1
m(n), . . . ,

gnr

1 , . . . , gnr

m(n).
We model the first experiment of performing nr evaluations of C with random func-

tions by equivalently considering nr evaluations of C , where in the evaluation of f j we
independently assign the element γ j

i to Oi
j . Notice that by fixing, for each i and each j ,

the value of Oi
j we have completely determined the behavior of the circuit C in each of

the evaluations. Further, notice that because of the way we have determined the outputs
of the gates, we have modeled experiment one. Let E1 be the event in experiment three
that corresponds to event E1 in experiment one.

We introduce some notation to help us explain the second experiment. When we
perform a query x on the oracle gate f ki⊕ , then we say that query evaluates f on the
input x ⊕ ki . Observe that we could model the second experiment in the same manner
as the first, if we could guarantee that all of the queries to the oracle-gates result in f
being evaluated only on distinct inputs. Unfortunately, in our experiment there is the
possibility for i �= j that C will perform a query α on oracle f ki⊕ and a query β on oracle

f
kj

⊕ , where α⊕k2
i = β⊕k2

j , and the result will be that two different oracle gates evaluate
f on the same input. In this case we cannot mimic the outputs of the two oracle gates
with random strings of bits, as their responses will be inconsistent with respect to f , and
therefore we will have failed to model experiment two. Fortunately, this is very unlikely
to occur and therefore we can model experiment two in a method similar to which we
modeled experiment one. First note that when given two pairs (a, b) and (c, d), where
a, b, c, d ∈ N, we say that (a, b) < (c, d) iff a < c or a = c and b < d. We now
describe the simulation of the second experiment in the third experiment.

In order to simulate, in experiment three, the evaluation of the circuits C f
k1
⊕ , . . . ,C f

knr
⊕

in experiment two, we evaluate the circuit C , nr times, as will be described. For the i th

evaluation of C in the third experiment, which is simulating the evaluation of C f
ki
⊕ , we

begin by setting the output of oracle gates Oi
� to be γ i

� , where 1 ≤ � ≤ m(n). Observe that
once the outputs of the oracle gates have been fixed then all of the inputs to the oracle gates
are fixed as is the output of the circuit. We have now fixed the input/output pairs to each
of the oracle gates. Unfortunately, we cannot be sure that this set of input/output pairs
properly simulates input/output pairs that are consistent with the previous simulations

of C f
k1
⊕ , . . . ,C f

ki−1
⊕ . The reason is that we can view k1, . . . , ki and the fixed input/output

pairs that have been established in the experiment as partially defining the random
function f , and so two oracle queries can be evaluating this partially defined f on the
same input, but with inconsistent output. The only way that two oracle queries can cause
such an f to be evaluated on the same input is if there are bad choices for our ki ’s. For
each i we determine if there exists a pair (a, b) and a j , where (a, b) < (i, j), such that

18 S. Myers

I i
j ⊕ ki = I a

b ⊕ ka ; if such an (a, b) and j exist, then we say a collision has occurred.
A collision corresponds to a bad choice of ki , and therefore f is inadvertently being
evaluated twice on the same input, and therefore we have to make sure that the two
query responses are consistent.

In order to ensure consistency, if a collision has occurred during the simulation of

the evaluation of the C f
ki
⊕ , then we must re-evaluate it before continuing to simulate the

evaluation of C f
ki+1
⊕ . We re-evaluate the gates gi

1, . . . , gi
m(n) in the specified order. For

each gate gi
j we consider its input I i

j and the value that f is correspondingly evaluated
on, I i

j ⊕ ki . If there exists a pair (a, b) < (i, j) such that I a
b ⊕ ka = I i

j ⊕ ki , then f is
being evaluated on an input that it has previously been evaluated on. Therefore, we set the
output Oi

j to be Oa
b and this forces the oracle gates to respond consistently with respect

to f . If no such pair (a, b) existed, then the random response was a consistent response,
and therefore we permit the original Oi

j ← γ i
j . Observe that this method of evaluating

C models experiment two. Let E2 be the event in experiment three that corresponds to
E2 in experiment two.

Note that the model of the second experiment is identical to the model of the first
except in those cases in which a collision occurs. We define E3 to be the event that
a collision occurred during the third experiment. Clearly E2 ⊆ E1 ∪ E3, which im-
plies that Pr(E2) ≤ Pr(E1) + Pr(E3). Since the probability of E1 is less than 1/2n/2 the
probability of E1 is less than 1/2n/2. Therefore, it suffices to show that the probabil-
ity of event E3 is less than 1/2n/2 in order to prove that the probability of E2 is less
than 1/2n/3. This implies that the probability of E2 is less than 1/2n/3, and this proves
the lemma.

We bound from above the probability of event E3. We note that during the simulation

of the evaluation of C f
ki
⊕ there are at most m(n)2(i − 1) possible values of ki that would

cause a collision during the evaluation of the circuit. This can be observed by noting

that, for each query to a gate during the simulation of the evaluation of C f
ki
⊕ , there are

m(n)(̇i − 1) choices of ki that will cause a collision with the gate evaluations in the
(i − 1) previously evaluated circuits, and there are m(n) gates per circuit. Therefore,

the probability of having a collision during the simulation of the evaluation of C f
ki
⊕ is

at most ((m(n))2 · (i − 1))/2n . We note that the probability of a collision occurring in
experiment three is less than the sum of the probabilities of a collision occurring during

the simulation of the evaluations of C f
ki
⊕ for each i . Therefore,

Pr[E3] ≤ (m(n))2

2n
(1+ 2+ · · · + (nr − 1))

=
(
(m(n))2

2n

) (
(nr − 1)(nr)

2

)

= (m(n))2n2r − nr (m(n))2

2n+1

≤ 1

2n/3
(for sufficiently large n).

Efficient Amplification of the Security of Weak Pseudo-Random Function Generators 19

Lemma 7. Let {Cn} be a polynomial-sized family of decision-circuits. Then for every
s ∈ Fn , for every constant c, for sufficiently large n and for all but 1/2n/4 of thew ∈ Fn ,∣∣∣∣ Pr

f ∈s✸w
(C f

n)− Pr
g∈Fn

(Cg
n)

∣∣∣∣ < 1

nc
.

Proof. The intuition behind this proof is as follows. We use Lemma 6 to establish with

high probability for random w and ki that (1/nu)
∑nu

i=1 C
w

ki
⊕

n is a good approximation
of Prg∈F (Cg). Then, by the Chernoff Bound, the same value is a good approximation
to Prr∈{0,1}n (Cwr

⊕). This implies that for almost all appropriate functions w the values
Prg∈F (Cg) and Prr∈{0,1}n (Cwr

⊕) are close. Next, we derive that for any fixed s, for almost
all w, the values Prg∈F (Cg) and Prg∈s✸w(Cg) are close, proving the theorem.

Let ϕ(u) be shorthand for (1/nu)
∑nu

i=1 C
w

ki
⊕

n . By Lemma 6 we know that there exists
an r0 such that ∀r > r0 and for all sufficiently large n,

Pr
(w,k1,...,knr)∈Fn×{0,1}n2r

[∣∣∣∣ϕ(r)− Pr
g∈Fn

(Cg
n)

∣∣∣∣ > 1

n2c

]
<

1

2n/3
. (10)

By the Chernoff Bound we know that there exists a t0 such that ∀t > t0 and for all
sufficiently large n,

Pr
(w,k1,...,knt)∈Fn×{0,1}n2t

[∣∣∣∣ϕ(t)− Pr
r∈{0,1}n

(C
wr
⊕

n)

∣∣∣∣ > 1

n2c

]
<

1

2n
.

Let v = max{t0, r0}, and consider the probability that either of the events occurs:

Pr
(w,k1,...,knv)∈Fn×{0,1}n2v

[∣∣∣∣ϕ(v)− Pr
r∈{0,1}n

(C
wr
⊕

n)

∣∣∣∣ > 1

n2c

∨ ∣∣∣∣ϕ(v)− Pr
g∈Fn

(Cg
n)

∣∣∣∣ > 1

n2c

]

<
1

2n/3
+ 1

2n
.

It follows for all sufficiently large n that

Pr
w∈Fn

[∣∣∣∣ Pr
r∈{0,1}n

(C
wr
⊕

n)− Pr
g∈Fn

(Cg
n)

∣∣∣∣ > 1

nc

]
<

1

2n/4
.

Fix s ∈ Fn . It follow that

Pr
w∈Fn

[∣∣∣∣ Pr
r∈{0,1}n

(C
s⊕wr

⊕
n)− Pr

g∈Fn
(Cg

n)

∣∣∣∣ > 1

nc

]
<

1

2n/4
.

This can be rewritten as

Pr
w∈Fn

[∣∣∣∣ Pr
r1,r2∈{0,1}n

(C
s

r1
⊕ ⊕w

r2
⊕

n)− Pr
g∈Fn

(Cg
n)

∣∣∣∣ > 1

nc

]
<

1

2n/4
.

20 S. Myers

Which can be rewritten as

Pr
w∈Fn

[∣∣∣∣ Pr
g∈s✸w

(Cg
n)− Pr

g∈Fn
(Cg

n)

∣∣∣∣ > 1

nc

]
<

1

2n/4
,

proving the claim.

The final lemma now follows from Lemma 6 and a simple averaging argument.

Lemma 8 (Restatement of Lemma 5). For i > 0 and for each n let

Kn(i) = Pr
f ∈Fn

(C f
n)+

1

ni
and let Sn(i) =

{
w ∈ Fn

∣∣∣∣ Pr
g∈Gn✸w

(Cg
n) ≥ Kn(i)

}
.

Then for all i,j, Prw∈Fn (w ∈ Sn(i)) ≤ 1/n j , for sufficiently large n.

Proof. Suppose for contradiction that there exists an i and j such that for infinitely many
n, Prw∈Fn (w ∈ Sn(i)) ≥ 1/n j . We show this contradicts Lemma 7. We fix n and drop the
index from the notation. Note that since Prϕ∈G✸S(i)(Cϕ) ≥ Pr f ∈F (C f)+1/ni , then by an
averaging argument we can fix a g ∈ G such that Prh∈g✸S(i)(Ch) ≥ Pr f ∈F (C f)+ 1/ni .
Using the first moment method we note that given g there must be a 1/n2i fraction of
w ∈ S(i) that have the “good” property that Prψ∈g✸w(Cψ) ≥ Pr f ∈F (C f)+1/n2i . Since
Prw∈F (w ∈ S(i)) ≥ 1/n j , the probability that a random w has the “good” property is
1/n2i+ j , and this contradicts Lemma 7.

4. Discussion and Further Research

We have presented a relatively simple and efficient construction for transforming a
partially secure PRFG into a strongly secure PRFG. We believe this construction could
possibly be used to guide the development of block-ciphers in the future. However, the
construction may be useful only in outer layers of the cipher, after a certain minimal
amount of security has been achieved by other means.

4.1. Some Observations on the Uniform Adversarial Model

The proofs in this paper have been presented with respect to a non-uniform adversary.
As referred to earlier, the same proof can be re-worked to hold with respect to a uniform
adversary. We present some of the more important points. First, we re-state the Isolation
Lemma with respect to polynomial-time constructible probabilistic circuits, as opposed
to non-uniform circuit families. We present the uniform version below:

Lemma 9 (Uniform Version of Diamond Isolation Lemma). Let p, ε, δ and d be as
they were in Lemma 2. Let H and G be function generators whose circuits can be con-
structed in polynomial-time, where cG(n) and cH(n) are polynomials that bound from
above the size of the circuits that compute the function generators respectively.

Efficient Amplification of the Security of Weak Pseudo-Random Function Generators 21

Hypothesis: Let sC be a polynomial. There exists a family of polynomial-time con-
structible, decision-circuits {Cn}, where for each n the circuit Cn is of size bounded
above by sC(n), and there exists c > 2d such that for infinitely many n,∣∣∣∣ Pr

g∈Gn✸Hn
(Cg

n)− Pr
f ∈Fn

(C f
n)

∣∣∣∣ ≥ ε(n)δ(n)+ 1

nc
.

Conclusion: There exists a family of polynomial-time computable, probabilistic,
decision-circuits such that for infinitely many n either the circuit family is composed
of circuits ϒn of size p(nc · cG(n))sC(n) for which∣∣∣∣ Pr

h∈Hn
(ϒh

n)− Pr
f ∈Fn

(ϒ f
n)

∣∣∣∣ ≥ ε(n)+ 1

n3c
,

or circuits �n of size ≤ (2QCn cH(n)+ sC(n)), where Q�n = QCn , and for which∣∣∣∣ Pr
g∈Gn

(�g
n)− Pr

f ∈Fn
(� f

n)

∣∣∣∣ ≥ δ(n)+ 1

nc+1
.

The important differences between the uniform and non-uniform versions of the Isola-
tion Lemma are: firstly, in the uniform version G and H must be uniformly constructible;
and, secondly, the distinguishing probability in the latter half of the conclusion is weaker
(δ(n)+ 1/nc versus δ(n)+ 1/nc+1). The need for the first difference is clear: the proof
of the lemma requires that we be able to compute G and H, and this requires that they
be uniformly constructible. The only other part of the proof of the Isolation Lemma that
blatantly uses non-uniformity is Lemma 4. It is the uniform version of this lemma which
leads to the weaker distinguishing probability in the uniform version of the Isolation
Lemma. We state and sketch the proof for the uniform version of Lemma 4.

Lemma 10. Either there exists a family of decision-circuits {�n}whose circuits can be
constructed with high probability in probabilistic polynomial-time, where for each n the
circuit �n is of size no greater than QCn 2cH(n)+ sC(n); Q�n = QCn ; and for infinitely
many n, ∣∣∣∣ Pr

g∈Gn
(�g

n)− Pr
f ∈Fn

(� f
n)

∣∣∣∣ ≥ δ(n)+ 1

nc+1
;

or for all sufficiently large n and a 1− 1/n3c fraction of h ∈ Hn ,∣∣∣∣ Pr
g∈Gn✸h

(Cg
n)− Pr

f ∈Fn
(C f

n)

∣∣∣∣ < δ(n)+ 1

nc
.

(We remind the reader that QC represents the number of oracle queries performed by
circuit C .)

Proof. (Sketch) Suppose it is the case that for infinitely many n there exists at least a
1/n3c fraction of h ∈ Hn for which |Prg∈G✸h(C

g
n) − Pr f ∈Fn (C f

n)| ≥ δ(n) + 1/nc. For

22 S. Myers

such n call the h ∈ H for which this holds useful. If for each such n we could efficiently
find a useful h, then we could construct a decision circuit �n , defined as �wn = C (w✸h)

n ,
and (as in the non-uniform version)

∣∣∣∣ Pr
ψ∈Gn

(�ψn)− Pr
f ∈Fn

(� f
n)

∣∣∣∣ =
∣∣∣∣ Pr
ψ∈Gn✸h

(Cψ
n)− Pr

f ∈Fn✸h
(C f

n)

∣∣∣∣
=

∣∣∣∣ Pr
ψ∈Gn✸h

(Cψ
n)− Pr

f ∈Fn
(C f

n)

∣∣∣∣ (Lemma 3)

≥ δ(n)+ 1

nc
,

proving the lemma. Unfortunately, in the uniform model we cannot just choose such an
h: it must be found efficiently. In actuality one is found with all but negligible probability,
but this will suffice.

Such an h ∈ Hn is found by sampling. More specifically: for a random h ∈ Hn we will
approximate the value of |Prg∈Gn✸h(C

g
n)− Pr f ∈Fn (C f

n)| to within an accuracy of 1/n2c,
with all but negligible probability. If the value is greater than δ(n)+ 2/nc+1, we say that
h is good and use it in the construction, otherwise we reject it. Observe that if a random
h is useful, then with all but negligible probability it will be found to be good. Therefore,
if, for the given n, a 1/n3c fraction of the h ∈ H are useful, then, by the Chernoff Bound,
with all but negligible probability after O(n3c) selections of random h’s we will find a
good h. If after the O(n3c) selections no good h has been found, then a random h is
used in the construction. For all n for which a 1/n3c fraction of the h ∈ Hn are useful, it
follows that∣∣∣∣ Pr

ψ∈Gn
(�ψn)− Pr

f ∈Fn
(� f

n)

∣∣∣∣ =
∣∣∣∣ Pr
ψ∈Gn✸h

(Cψ
n)− Pr

f ∈Fn✸h
(C f

n)

∣∣∣∣
=

∣∣∣∣ Pr
ψ∈Gn✸h

(Cψ
n)− Pr

f ∈Fn
(C f

n)

∣∣∣∣ (Lemma 3)

≥ δ(n)+ 1

nc+1
(with probability ≈ 1 and large n).

It remains to explain how to approximate |Prg∈G✸h(C
g
n) − Pr f ∈Fn (C f

n)| to within an
accuracy of 1/n2c with all but negligible probability. We observe that this value can be
approximated, as is required in the proof above, by appropriate sampling, as is done in
the proof of Lemma 6.

Finally we stress that, while it takes a great deal (but still polynomial time) of simu-
lation to determine the appropriate h to use in the construction of �n , it is still the case
that the size of �n is no greater than sC(n) + QCn (2CH(n)) and the number of oracle
gates remains Q�n = QCn .

The remainder of the proof of the Isolation Lemma goes through almost unchanged.
The only minor change being that now in the proof of the claim in Section 3.4, rather

Efficient Amplification of the Security of Weak Pseudo-Random Function Generators 23

than Prϕ∈G✸h(Cϕ) − Pr f ∈F (C f) < δ(n) + 1/nc holding for each h ∈ H, it only holds
for a 1 − 1/n3c fraction of the h ∈ H. This modifies the probability calculations by an
additive term of 1/n3c, but there is enough slack in the inequalities involved in the claim
that it does not affect the result of the claim.

Finally, a new version of Theorem 1 can be proven by taking into account the slightly
weaker distinguishing probabilities achieved by the uniform version of the Isolation
Lemma.

4.2. Future Research and Open Problems

As has been previously mentioned, there are significant similarities between this proof
and Levin’s proof of the XOR Lemma. Further, as was previously mentioned, there are
several different proofs of Yao’s XOR Lemma. Given the parallels between Levin’s result
and our own, it is interesting to question if any of the other proof techniques used to
prove the XOR Lemma can be used to prove security amplification in the context of a
weak PRFG.

For example, it is interesting to ask if there is some natural notion for a weak PRFG
that corresponds to hard-core sets of weakly unpredictable predicates, as proposed by
Impagliazzo [9]. One natural notion for a hard-core set of weak PRFGs is to consider sub-
sets of keys for the generator that correspond to “random” looking functions. However,
this notion does not seem to work well as there are examples of weak PRFGs that have
no hard-core sets using this notion. Consider the sketched construction used in Section
3.1. Every subset of keys of this generator will correspond to a set of functions that can
be distinguished with probability at least 1

2 , and thus are not very “random”. Of course,
there might be another notion of a hard-core set that is more applicable to weak PRFGs.

We believe it is an interesting open question to determine if any of the other proofs of
the XOR Lemma have natural analogies for security amplification of weak PRFGs.

Acknowledgments

The author thanks Charles Rackoff for suggesting the problem and for many valuable
discussions and suggestions. The author also thanks the referees. Their suggestions have
greatly improved the presentation of this paper.

References

[1] W. Aiello, M. Bellare, G. Di Crescenzo, and R. Vekatesan. Security amplification by composition: the
case of doubly-iterated, ideal ciphers. In H. Krawczyk, editor, Advances in Cryptology - Crypto 98,
volume 1462 of LNCS, pages 390–407. Springer-Verlag, Berlin, 1998.

[2] K. Akcoglu and C. Rackoff. Pseudo-random permutation generators and cryptographic composition.
Draft manuscript.

[3] J. Daemen, R. Govaerts, and J. Vandewalle. Weak keys for IDEA. In Advances in Cryptology — CRYPTO
93 Proceedings, volume 773 of LNCS, pages 224–232. Springer-Verlag, Berlin, 1993.

[4] S. Even and Y. Mansour. A construction of a cipher from a single pseudorandom permuation. In H. Imai,
R. L. Rivest, and T. Matsumoto, editors, Advances in Cryptology, ASIACRYPT ’91: International Con-
ference on the Theory and Application of Cryptology, Fujiyoshida, Japan, November 11–14, 1991,
Proceedings, volume 739 of LNCS, pages 210–224. Springer-Verlag, Berlin, 1993.

24 S. Myers

[5] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the ACM,
33(4):792–807, 1986.

[6] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s xor-lemma. http://theory.lcs.mit.edu/∼oded/, 1995.
[7] J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. Construction of pseudorandom generator from any

one-way function. SIAM Journal of Computing, 28(4):1364–1396, 1998.
[8] R. Impagliazzo. Hard-core distributions for somewhat hard problems. http://www-cse.ucsd.edu/∼russell/,

1994.
[9] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In Proceedings of the 36th An-

nual Symposium on Foundations of Computer Science, October 23–25, 1995, Milwaukee, Wisconsin,
pages 538–545. IEEE Computer Society Press, Los Alamitos, CA, 1995.

[10] J. Kilian and P. Rogaway. How to protect DES against exhaustive key search. In N. Koblitz, editor,
Advances in Cryptology — Crypto 96, volume 1109 of LNCS, pages 252–267. Springer-Verlag, Berlin,
1996.

[11] L. A. Levin. One-way functions and pseudorandom generators. Combinatorica, 7(4):357–363, 1987.
[12] M. Luby and C. Rackoff. Pseudo-random permutation generators and cryptographic composition. In

Proceedings of the 18th Annual Symposium on Theory of Computing, pages 353–363. ACM, New York,
1986.

[13] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom functions.
SIAM Journal on Computing, 17:373–386, 1988.

[14] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, Cambridge, 1995.
[15] S. Myers. On the Development of Pseudo-Random Function Generators and Block-Ciphers Using the

XOR and Composition Operators. M.Sc. Thesis, University of Toronto, 1999.
[16] M. Naor and O. Reingold. On the construction of pseudo-random permutations: Luby–Rackoff revisited.

Journal of Cryptology, 12(1):29–66, 1999.
[17] A. Yao. Theory and applications of trapdoor functions (extended abstract). In Proceedings of the 23rd

Symposium on Foundations of Computer Science, pages 80–91. IEEE, New York, 1982.

