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Abstract. At EuroCrypt ’99 Paillier proposed a new encryption scheme based on
higher residuosity classes. The new scheme was proven to be one-way under the as-
sumption that computing N -residuosity classes in Z∗

N 2 is hard. Similarly the scheme
can be proven to be semantically secure under a much stronger decisional assumption:
given w ∈ Z∗

N 2 it is impossible to decide if w is an N -residue or not.
In this paper we examine the bit security of Paillier’s scheme. We prove that if

computing residuosity classes is hard, then given a random w it is impossible to predict
the least significant bit of its class significantly better than at random. This immediately
yields a way to obtain semantic security without relying on the decisional assumption
(at the cost of several invocations of Paillier’s original function).

In order to improve efficiency we then turn to the problem of simultaneous security of
many bits. We prove that Paillier’s scheme hides n− b (up to O(n)) bits if one assumes
that computing the class c of a random w remains hard even when we are told that
c < 2b . We thoroughly examine the security of this stronger version of the intractability
of the class problem.

An important theoretical implication of our result is the construction of the first trap-
door function that hides super-logarithmically (up to O(n)) many bits. We generalize our
techniques to provide sufficient conditions for a trapdoor function to have this property.
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1. Introduction

At EuroCrypt ’99 Paillier [13] proposed a new encryption scheme based on higher
residuosity classes. It generalized previous work by Okamoto and Uchiyama [12].
Both works are based on the problem of computing high-degree residuosity classes
modulo a composite of a special form (in [13] the modulus is N 2 where N is a typ-
ical RSA modulus, while in [12] the modulus is N = p2q where p, q are large
primes).

The mathematical details are described below, but for now we sketch the basics of
Paillier’s scheme. It can be shown that Z∗N 2 can be partitioned into N equivalence classes
generated by the following equivalence relationship: a, b ∈ Z∗N 2 are equivalent iff ab−1

is an N -residue in Z∗N 2 . The N -residuosity class of w ∈ Z∗N 2 is the integer c = Class(w)

such that w belongs to the cth residuosity class (in a well specified ordering of them).
The conjectured hard problem is: given a random w, compute c. It can be shown that
computing c = Class(w) is possible if the factorization of N is known.

Thus Paillier suggests the following encryption scheme: To encrypt a message m ∈
Z N , the sender sends a random element w ∈ Z∗N 2 such that Class(w) = m (this can be
done efficiently as is shown later). The receiver who knows the factorization of N , given
w can compute m.

If we assume that computing residuosity classes is hard, then this scheme is simply
one-way. Indeed, even if computing the whole of m is hard, it is possible that partial
information about m can be leaked.

What we would like to have is instead a semantically secure scheme. Semantic security
(introduced by Goldwasser and Micali in [10]) basically says that to a polynomial time
observer the encryption of a message m should look indistinguishable from the encryption
of a different message m ′. Paillier’s scheme is semantically secure if we assume a stronger
decisional assumption: given a random element w ∈ Z∗N 2 it is impossible to decide
efficiently if w is an N -residue or not.

Hard-Core Bits. The concept of hard-core bits for one-way functions was introduced
by Blum and Micali in [4].

Given a one-way function f : {0, 1}n → {0, 1}n we say that π : {0, 1}n → {0, 1} is
a hard-core predicate for f if given y = f (x) it is hard to guess π(x) with probability
significantly higher than 1/2. Another way of saying this is that if x is chosen at random,
then π(x) looks random (to a polynomial time observer) even when given y = f (x).

Blum and Micali [4] showed the existence of a hard-core predicate for the discrete
logarithm function. Later a hard-core bit for the RSA/Rabin functions was presented by
Alexi et al. [1]. Goldreich and Levin [8] show that any one-way function has a hard-core
predicate.

The concept can be generalized to many hard bits. We say that k predicates π1, . . . , πk

are simultaneously hard-core for f if given f (x) the collection of bits π1(x), . . . , πk(x)

looks random to a polynomial time observer.

Our Result. In this paper we investigate the hard core bits of Paillier’s new trapdoor
scheme. We first prove that the least significant bit of c = Class(w) is a hard-core bit if
we assume computing residuosity classes is hard. In other words we show that given a
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random w ∈ Z∗N 2 , if one can guess lsb(Class(w)) better than at random, then one can
compute the whole Class(w) efficiently.

Let n = |N |. The result above can be generalized to the simultaneous hardness
of the least O(log n) bits using standard techniques. We then show that by slightly
strengthening the assumption on computing residuosity classes we are able to extract
many more simultaneously hard-core bits. More precisely, for any ω(log n) ≤ b < n
we show that Paillier’s scheme hides the n − b least significant bits, if we assume that
computing residuosity classes remains hard even if we are told that the class is smaller
than 2b.

The residuosity class problem seems to remain hard even in this case. Actually we see
no way to exploit knowledge of the bound (i.e. the fastest known algorithm to compute
c even in this case is to factor N ). We discuss this further in Section 3.4.

An interesting feature of our construction is that the number of bits hidden by the
functions is related to the underlying complexity assumption that one is willing to make.
The smaller the bound is (i.e. the stronger the assumption), the more bits one can hide.

A Theoretical Implication. If f is a trapdoor permutation that simultaneously hides
k bits, then we can securely encrypt k bits with a single invocation of f (as originally
described by Goldwasser and Micali [10]).

However, for all previously known trapdoor functions (like RSA) f : {0, 1}n → {0, 1}n
we only know how to prove that k = O(log n) bits are simultaneously hard-core. Thus
to securely encrypt m bits one needs to invoke the function 
(m/log n) times.

Another way to look at our result is that we show a candidate trapdoor function that
hides up to O(n) bits. To our knowledge this is the first example of a trapdoor problem
with a super-logarithmic number of hard-core predicates.

We also generalize our constructions to a large class of trapdoor functions by giving
sufficient conditions for a trapdoor function to hide super-logarithmically many bits.1

Decisional Assumptions. As we mentioned earlier, the scheme of Paillier [13] can also
be proven to be semantically secure under a decisional problem involving residuos-
ity classes. In other words if assuming that deciding N -residuosity is hard, then these
schemes hide all n input bits.

Notice however the difference with our result. We prove that the scheme hides many
bits, under a computational assumption related to computing residuosity class.

Decisional assumptions are very strong. Basically a decisional problem is a true/false
question which we assume the adversary is not able to solve. Conversely computational
assumptions require the adversary to compute the full solution of a computational prob-
lem (similar to a free-response question). As any college student will tell you, a test
composed of true/false questions is much more likely to be easier than a test composed
of free-response questions. Thus, whenever possible, computational assumptions should
be preferred to decisional ones.

1 The above discussion implicitly rules out iterated functions. Indeed Blum and Micali [4] show that if f (x)

is a one-way function and π(x) is a hard-core predicate for it, then the iterated function f k(x) is clearly also
one-way and it simultaneously hides the following k bits: π(x), π( f (x)), . . . , π( f k−1(x)). We are interested
in functions that hide several bits in a single invocation.
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This is however an intuitive statement. Regarding our particular problem, it should be
pointed out that we do not know of any reductions beyond the obvious one that computing
the N -residuosity class implies deciding N -residuosity. We do not know any implication
between the restricted assumption we make (i.e. computing the class when we are told
it is a b-bit number) and deciding N -residuosity.

The goal of this paper is nevertheless to show example of trapdoor functions that hides
several bits without resorting to true/false questions.

Applications. The main application of our result is the construction of a new seman-
tically secure encryption scheme based on Paillier’s scheme. Assuming that Paillier’s
function securely hides k bits, we can then securely encrypt an m-bit message using
only O(m/k) invocations; k is of course a function of n, the security parameter of the
trapdoor function. We can do this without resorting to the decisional assumption about
N -residuosity, but simply basing our security on the hardness of computing residuosity
classes.

Today we can assume that n = 1024. Also in practice public-key cryptography is used
to exchange keys for symmetric encryption. Thus we can then assume that m = 128.
With a reasonable computational assumption we can encrypt the whole 128-bit key with
a single invocation of Paillier’s scheme. The assumption is that computing the class is
hard even when we are promised that c < N 0.875.

We discuss this new scheme and make comparisons with existing ones in Section 5.

1.1. Related Work

Computing high-degree residuosity classes is related to the original work of Goldwasser
and Micali [10] who suggested quadratic residuosity in Z∗N as a hard trapdoor prob-
lem (where N is an RSA modulus). Later Benaloh [2] generalized this to deciding
s-residuosity where s is a small prime dividing ϕ(N ). In Benaloh’s scheme, s is required
to be small (i.e. |s| = O(log n)) since the decryption procedure is exponential in s. By
changing the structure of the underlying field, Okamoto and Uchiyama [12] and Paillier
[13] were able to lift this restriction and consider higher-degree residuosity classes. More
recently Catalano et al. [6] show how to modify Paillier’s scheme in order to improve its
efficiency.

The idea of restricting the size of the input space of a one-way function in order
to extract more hard bits goes back to Hastad et al. [11]. They basically show that
the ability to invert f (x) = gx mod N when x is a random integer x < O(

√
N )

is sufficient to factor N . Then they show that discrete log modulo a composite must
have n/2 simultaneously hard bits, otherwise the above restricted-input function can be
inverted (i.e. we could factor N ). Thus [11] shows the first example of a one-way function
with a super-logarithmic number of hard-core bits. No such examples were known for
trapdoor functions.

Building on ideas from Hastad et al. [11], Patel and Sundaram [14] show that if one
assumes that f (x) = gx mod p (with p prime) remains hard to invert even when x < B,
then the discrete logarithm simultaneously hides k − b bits (k = |p|, b = |B|). In their
case, as in ours, one must make an explicit computational assumption about the hardness
of inverting the function with small inputs. There is an important difference between
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the Patel–Sundaram assumption [14] and ours. For the case of the discrete logarithm
function, we know that there exist algorithms to find x < B given y = gx , which run in
O(
√

B) steps. In our case, as discussed in Section 3.4, an attack with a similar complexity
is not known.

1.2. Paper Organization

In Section 2 we provide some basic definitions. In Section 3 we describe in detail the
scheme based on Paillier’s function. In Section 4 we generalize our result to a larger
class of trapdoor functions, giving sufficient conditions for a trapdoor function to hide
super-logarithmically many bits. We then discuss applications to public-key encryption
and comparisons with other schemes in Section 5. Our work raises some interesting open
problems which we list at the end in Section 6.

2. Definitions

In the following we denote with N the set of natural numbers and with R+ the set of
positive real numbers. We say that a function negl: N→ R+ is negligible iff for every
polynomial P(n) there exists an n0 ∈ N s.t. for all n > n0, negl(n) ≤ 1/P(n). We
denote with PRIMES(k) the set of primes of length k. For a, b ∈ N we write a ∝ b
if a is a non-zero multiple of b.

If A is a set, then a← A indicates the process of selecting a at random and uniformly
over A (which in particular assumes that A can be sampled efficiently).

Trapdoor Permutations (from [9]). Let I be a set of indices. A family of one-way
trapdoor permutations is a set F = { fn: {0, 1}n → {0, 1}n}n∈I satisfying the following
conditions:

• There exists a polynomial p and a probabilistic polynomial time Turing Machine
S1 which on input 1k (where k is a security parameter) outputs pairs (n, tn) where
n ∈ I ∩ {0, 1}k and |tn| < p(k). The information tn is referred to as the trapdoor.
• There exists a probabilistic polynomial time Turing Machine S2 which on input

n ∈ I outputs x ∈ {0, 1}n .
• There exists a probabilistic polynomial time Turing Machine A1 such that for n ∈ I ,

x ∈ {0, 1}n , A1(n, x) = fn(x).
• There exists a probabilistic polynomial time Turing Machine A2 such that A2(n, tn,

fn(x)) = x , for all x ∈ {0, 1}n and for all n ∈ I .
• For every probabilistic polynomial time Turing Machine A we have that, for large

enough k,

Pr[ fn(x) = y: n← I ; x ← {0, 1}n;A(n, y) = x] = negl(k).

The above notion can be generalized to probabilistic functions where each fn: {0, 1}n×
{0, 1}r → {0, 1}n+r is a permutation, but we look at the second argument as a random
string and we assume that given y ∈ {0, 1}n+r we cannot compute the first argument, i.e.
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for any probabilistic polynomial time Turing Machine A we have that

Pr[x ← {0, 1}n; s ← {0, 1}r ;A( fn, fn(x, s)) = x] = negl(n).

Hard-Core Bits. A Boolean predicate π is said to be hard for a function fn if no efficient
algorithm A, given y = fn(x), guesses π(x) with probability substantially better than
1/2. More formally for any probabilistic polynomial time Turing Machine A we have
that

|Pr[x ← {0, 1}n;A( fn, fn(x)) = π(x)]− 1
2 | = negl(n).

For one-way functions fn , a possible way to prove that a predicate π is hard is to show that
an efficient algorithm A that on input y = fn(x) guesses π(x) with probability bounded
away from 1/2 can be used to build another algorithm A′, running in probabilistic
polynomial time, that on input y computes x with non-negligible probability.

Simultaneously Hard Bits. A collection of k predicates π1, . . . , πk is called simultane-
ously hard-core for fn if, given y = fn(x), the whole collection of bits π1(x), . . . , πk(x)

looks “random.” A way to formalize this (following the work of Yao [17]) is to say that
it is not possible to guess the value of the j th predicate even after seeing fn(x) and the
value of the previous j−1 predicates over x . Formally, for every j = 1, . . . , k, for every
probabilistic polynomial time Turing Machine A we have that

|Pr[x ← {0, 1}n;A( fn, fn(x), π1(x), . . . , πj−1(x)) = πj (x)]− 1
2 | = negl(n).

Here, too, a proof method for simultaneously hard-core bits is to show that an efficient
algorithm A contradicting the above equation can be used to build another efficient
algorithm A which inverts fn with non-negligible probability.

3. Bit Security of Paillier’s Scheme

In this section we present our candidate trapdoor function which is based on work by
Paillier [13]. Readers are referred to Paillier’s paper [13] for details and proofs which
are not given here.

Preliminaries. Let N = pq be an RSA modulus, i.e. the product of two large primes
of roughly the same size. Consider the multiplicative group Z∗N 2 .

Let g ∈ Z∗N 2 be an element whose order is a non-zero multiple of N . We denote with
B the set of such elements. It can be shown that g induces a bijection

Eg: Z N × Z∗N → Z∗N 2 ,

Eg(x, y) = gx yN mod N 2.

Thus, given g, for an element w ∈ Z∗N 2 there exists a unique pair (c, z) ∈ Z N × Z∗N
such that w = gczN mod N 2. We say that c is the class of w relative to g. We may also
denote this with Classg(w).

We define the Computational Composite Residuosity Class Problem as the problem
of computing c given w and assume that it is hard to solve.
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Definition 1. We say that computing the function Classg(·) is hard if, for every prob-
abilistic polynomial time algorithm A, there exists a negligible function negl() such
that

Pr




p, q ← PRIMES(n/2); N = pq;
g← Z∗N 2 s.t. ord(g) ∝ N ;
c← Z N ; z← Z∗N ; w = gczN mod N 2;
A(N , g, w) = c


 = negl(n).

It can be shown that if the factorization of N is known, then one could solve this
problem: indeed, let λ = λ(N ) = lcm(p − 1, q − 1), where λ(·) is the Carmichael
function,2 then

Classg(w) = L(wλ mod N 2)

L(gλ mod N 2)
mod N , (1)

where L is defined as the integer3 L(u) = (u − 1)/N . On the other hand, if the fac-
torization is not known, no polynomial strategy to solve the problem has, so far, been
discovered. This leads to the following conjecture:

Assumption 1. If N is a modulus of unknown factorization, there exists no probabilistic
polynomial time algorithm for the Computational Composite Residuosity Class Problem.

An interesting property of the class function is that it is homomorphic: for x, y ∈ Z∗N 2 ,

Classg(xy mod N 2) = Classg(x)+ Classg(y) mod N .

It is also easy to see that Classg(·) induces an equivalence relationship (where elements
are equivalent if they have the same class) and thus for each c we have ϕ(N ) elements
in Z∗N 2 with class equal to c.

3.1. The Least Significant Bit of Class is Hard

As we said in the Introduction, Goldreich and Levin [8] proved that any one-way function
has a hard-core bit. Clearly their result applies to Paillier’s scheme as well. Here, however,
we present a direct and more efficient construction of a hard-core bit.

Consider the function Classg(·) defined as in the previous section. Then, given w =
gc yN mod N 2, for some c ∈ Z N and y ∈ Z∗N , computing the predicate lsb(c) is equiva-
lent to computing Classg(w), i.e. lsb(c) is hard for Classg . We start with the following
lemma.

2 Note that the Carmichael function, on input an integer t , is defined as follows:

If t = 2l for some l,

λ(t) =
{

2l−1 if l < 3,

2l−2 if l ≥ 3.

If t = 2e0 pe1
1 · · · p

ek
k ,

λ(t) = lcm(λ(2e0 , ϕ(pe1
1 ), . . . , ϕ(pek

k ))).

This implies that when N is an RSA modulus, λ(N ) = lcm(p − 1, q − 1).
3 It is easy to see that both wλ and gλ are ≡ 1 mod N .
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Lemma 1. Let N be a random n-bit RSA modulus, let y ∈ Z∗N , let c be an even element
of Z N and let g be an element in B. Then, denoting z = 2−1 mod N ,

(gc yN )z = gc/2 y′N mod N 2

for some y′ ∈ Z∗N

Proof. Since z = 2−1 mod N , there exists an integer k such that 2z = 1+ k N . Now

(gc yN )z = g2z(c/2)yzN mod N 2 = gc/2(gck/2 yz)N mod N 2.

Since the group Z N 2 is isomorphic to Z∗N × Z N (for g ∈ B) [13], this would already
be enough to conclude the proof. However, for completeness, we provide here a more
precise argument.

It remains to show that (gck/2 yz)N = y′N mod N 2 for some y′ ∈ Z∗N . Observe that
(gck/2 yz), being an element of Z∗N 2 , can be written as a + bN with a ∈ Z∗N and b ∈
{0, . . . , N }. This implies that by putting y′ = a the above equation is satisfied. This
completes the proof.

Informally, Lemma 1 gives us an easy way to perform “bit shifts” to the right, meaning
with this the following operation. Assume we have an element w = gc yN (where c = c′0
is an even integer), by applying the lemma we get the value w′ = gc′ y′N mod N 2. Note
that Classg(w

′) is obtained from Classg(w) by simply eliminating its least significant
bit and by “moving” all the remaining bits one position to the right.

Theorem 1. Let N be a random n-bit RSA modulus, and let the functions Eg(·, ·) and
Classg(·) be defined as above. If the function Classg(·) is hard (see Definition 1), then
the predicate lsb(·) is hard for it.

Proof. The proof goes by reductio ad absurdum: we suppose the given predicate not
to be hard, and then we prove that if some oracle O for lsb(·) exists, then this oracle
can be used to construct an algorithm that computes the assumed intractable function, in
probabilistic polynomial time. In other words, given w ∈ Z∗N 2 such that w = Eg(c, y),
and an oracle O(g, w) = lsb(c), we show how to compute, in probabilistic polynomial
time, the whole value c = Classg(w).

For the sake of clarity we divide the proof in two cases, depending on what kind of
oracle is given to us. In the first case we suppose we have access to a perfect oracle,
that is an oracle for which Prw[O(g, w) = lsb(c)] = 1. Then we will show how to
generalize the proof for the more general case in which the oracle is not perfect, but has
some non-negligible advantage in predicting the required bit. In this last case we suppose
Prw[O(g, w) = lsb(c)] ≥ 1

2 + ε(n) where ε(n) > 1/p(n), for some polynomial p(·).
For convenience we denote ε(n) simply by ε in the following analysis.

The Perfect Case. The algorithm computes c, bit by bit starting from lsb(c). Denote by
c = cn · · · c2c1 the bit expansion of c. It starts by queryingO(g, w) which, by assumption,
will return c1 = lsb(c). Once we know c1 we can “zero it out” by using the homomorphic
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Compute Class Algorithm (I)

ComputeClass(O, w, g, N )

1. z = 2−1 mod N
2. c = ()

3. for i = 0 to n = |N |
4. x = O(g, w)

5. prepend(x, c)
6. if (x==1) then
7. w = w · g−1 mod N 2 (bit zeroing)
8. w = wz mod N 2 (bit shifting)
9. return c

Fig. 1. Pseudocode description of the algorithm for the perfect oracle case.

properties of the function Class. This is done by computing w′ = w · g−c1 . Finally we
use Lemma 1 to perform a “bit shift” and position c2 in the lsb position. We then iterate
the above procedure to compute all of c. A detailed description of the algorithm is given
in Fig. 1 (where () denotes the empty string and prepend(x, c) prepends the string/bit
x to the string c).

The Imperfect Oracle. In this case the above algorithm does not work, because we
are not guaranteed that x is the correct bit during any of the iterations. We need to use
randomization to make use of the statistical advantage of the oracle in guessing the bit.
This is done by considering ŵ = w ·gr ·s N and queryingO(g, ŵ) on several randomized
ŵ’s. The number l of queries is a function of the advantage ε(n) of the oracle (recall that
we are assuming that ε−1(n) is bounded by a polynomial in n).

Notice that if c + r < N the oracle returns as output c1 + r1 mod 2, and since we
know r1 we can compute c1. A majority vote on the result of all the queries will be the
correct c1 with very high probability.

In order to ensure that c+ r < N , we somewhat “reduce” the size of c. We guess the
top γ = 1− log ε bits of c, and zero them accordingly, i.e.

w′d = g2n−γ dw

for all 2γ choices of d (note that is is a polynomial, in n, number of choices).
Of course if we guessed incorrectly the actual top bits of w′d will not be zeroed,

however for one of our guesses they will be, and this guess will yield the correct answer.
Observe that since we zeroed the leading γ bits of c, the sum r + c can wrap around

N only if the γ most significant bits of r are all 1. Thus the probability of r + c > N
is smaller that 2−γ = ε/2. We can add this probability to the error probability of the
oracle. Consequently the oracle is now correct with probability 1/2+ ε/2. This simply
implies that we need to increase the number of randomized queries accordingly.

Once c1 is known, we zero it and we perform a shift to the right as before. We then
repeat the process for the remaining bits. Since the correct d is still unknown, we only
obtain a (polynomially sized) set of candidate values for c. However, this still implies
an algorithm to output c correctly with non-negligible probability, which contradicts
Definition 1.

A complete description of the algorithm is presented in Fig. 2.
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Compute Class Algorithm (II)

ComputeClass′(O, w, g, N , ε)

1. δ = 1/2n; l = 1/(4ε2δ); z = 2−1 mod N
2. C = ∅
3. γ = 1− log ε

4. for every possible assignment dj of the γ leading bits of c do
5. cdj = ()

6. w′ = wg−2n−γ ·dj mod N 2 (“zero” the γ leading bits of c)
7. for i = 1 to n = |N |
8. x =Randomize-query(O, g, w′, l)
9. prepend(x, cdj )

10. if x == 1 then
11. w′ = w′g−1 mod N 2

12. w′ = w′z mod N 2

13. end for
14. prepend(dj , cdj ); C = C ∪ {cdj }
15. end for
16. c′ ← C
17. return c′.

Randomize− Query(O, g, w, l)

1. countzero = 0
2. countone = 0
3. for i = 1 to l
4. r ← Z N

5. s ← Z N

6. ŵ = w · gr · s N mod N 2

7. x = O(g, ŵ)

8. if x == 0 then countzero++
9. else countone++

10. end for
11. if countzero > countone then
12. return 0
13. else
14. return 1

Fig. 2. Pseudocode description of the algorithm for the imperfect oracle case.

We go into more details. Let δ(n) = 1/2n. We set l = 1/(4ε2(n)δ(n)). Notice that l
is polynomial in n.

The Procedure Randomize-Query. Notice that this procedure outputs the bit by ma-
jority. Since x agrees with the correct bit with probability 1/2 + ε/2 independently on
each “experiment,” we have that by the weak law of large numbers the majority counter
identifies the correct bit with probability larger than 1− δ. More formally, let SY be the
number of correct answers returned by the oracle in the for loop. Similarly let SN be the
number of incorrect answers provided. By applying the weak law of large numbers we
have

Pr

[∣∣∣∣ SY

l
−

(
1

2
+ ε

2

)∣∣∣∣ >
ε

2

]
< δ
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or equivalently

Pr[SY > SN] > 1− δ.

The Procedure Compute-Class. We focus on the case in which we guessed the cor-
rect value dj . Then the correct class is identified as long as each call to the procedure
Randomize-Query returns the correct bit. This happens with probability larger than

(1− δ)n =
(

1− 1

2n

)n

>
1

2
.

However, we do not know if we chose the correct dj , thus the procedure outputs a random
element from the set C which has cardinality 2γ . In conclusion the correct class is output
with probability 2−γ−1 which is still polynomial in n.

Remark 1. Notice that the above algorithm could easily be transformed into one that
runs in almost the same time but outputs c with probability nearly 1 by doing the
following. Let d be an assignment of values to the top n − γ bits of c. Once the value
c1 has been recovered using the imperfect oracle, zero it, shift c one position to the right
and then re-introduce the least significant bit of d at the (n−γ )th position (note that this
operation does not affect the success probability of the procedure Randomize-Query).
Then compute c2, perform the shift to the right and insert the second bit of d and so forth.
At the very end when we have the n − γ least significant bits of c, we just continue the
loop instead of stopping it. If the guess of d was correct the additional bits will give d
again. If the guess was incorrect another value for d has to be considered.

3.2. Simultaneous Security of Many Bits

It is not hard to show that Classg(·) hides O(log n) bits simultaneously (this can be
shown using standard techniques). In this section we show that by slightly strengthening
the computational assumption about computing the residuosity class, we can increase
the number of simultaneously secure bits, up to O(n). Note that the idea of restricting
the domain of a function in the context of hardness results is a well-known technique
(see [11] and [14]).

What we require is that Classg(·) is hard to compute even when c is chosen at random
from [0..B] where B is a bound smaller than N . More formally:

Definition 2. We say that computing the function Classg(·) is B-hard if, for every
probabilistic polynomial time algorithm A, there exists a negligible function negl() such
that

Pr




p, q ← PRIMES(n/2); N = pq;
g← Z∗N 2 s.t. ord(g) ∝ N ;
c← [0..B]; z← Z∗N ; w = gczN mod N 2;
A(N , g, w) = c


 = negl(n).

Clearly, in order for Classg to be B-hard, it is necessary that the bound B be sufficiently
large. If we had only a polynomial (in n) number of guesses, then the definition would
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make no sense, since by guessing one could compute the class with probability 1/B,
which is non-negligible. Thus when we assume that Classg is B-hard we implicitly
assume that b = log B = ω(log n).

Assumption 2. If N is a modulus of unknown factorization, there exists no probabilistic
polynomial time algorithm for the Computational Composite Residuosity Class Problem,
even in the case in which we know that the output of the function is in the interval
[0, . . . , B].

Theorem 2. Let N be a random n-bit RSA modulus; B = 2b. If the function Classg(·)
is B-hard (see Definition 2), then it has n − b simultaneously hard-core bits.

3.3. Proof of Theorem 2

In order to prove Theorem 2 we first need to show that the bits in positions 1, 2, . . . , n−b
are individually secure. Then we prove simultaneous security.

Individual Security. Let i be an integer, 1 ≤ i ≤ n−b, and assume that we are given an
oracle Oi which on input N , g and u ← Z∗N 2 computes correctly the i th-bit of Classg(u)

with probability (over u) 1/2+ ε(n) where, again, ε(n) is non-negligible.
In order to show that Classg(·) is not B-hard, we show how to build an algorithm A

which uses Oi and given w ∈ Z∗N 2 with Classg(w) < B, computes c = Classg(w). Let
γ = 1− log ε = O(log n).

We split the proof into two parts: the first case has 1 ≤ i < n − b − γ . The second
one is n − b − γ ≤ i ≤ n − b.

1. If 1 ≤ i < n − b − γ the inversion algorithm works as follows. We are given
w ∈ Z∗N 2 where w = gc yN mod N 2 and we know that c = Classg(w) < B. We
compute c bit by bit; let ci denote the i th bit of c. To compute c1 we square w, i times
computing wi = w2i

mod N 2. This will place c1 in the i th position (with all zeros to
its right). Since the oracle may be correct only slightly more than half of the times, we
need to randomize the query. Thus we choose r ← Z N and s ← Z∗N and finally query
the oracle on ŵ = wi gr s N mod N 2. Notice the following:

• Given the assumptions on B and i we know that wi = w2i = g2i cz2i N and 2i c is
not taken mod N since it will not “wrap around.”
• Classg(ŵ) = 2i c + r mod N . However, since 2i c has at least γ leading zeros the

probability (over r ) that 2i c + r wraps around is ≤ ε/2.
• Since c1 has all zeros to its right, there are no carrys in the i th position of the sum.

Thus by subtracting ri to the oracle’s answer we get c1 unless 2i c+ r wraps around
or the oracle provides a wrong answer.

In conclusion we get the correct c1 with probability 1/2+ ε/2, thus by repeating several
(polynomially many) times the process and taking majority we get the correct c1 with
very high probability.

Once we get c1, we “zero” it in the squared wi by setting wi ← wi g−c12i
mod N 2.

Then we perform a “shift to the right” using Lemma 1, setting wi ← wz
i mod N 2 where
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z = 2−1 mod N . At this point we have c2 in the oracle position and we can repeat the
randomized process to discover it. We iterate the above process to discover all the bits
of c.4

Since each bit is determined with very high probability, the value c = cb · · · c1 will
be correct with non-negligible probability.

2. If n − b − γ < i < n − b the above procedure may fail since now 2i c does not
have γ leading zeros anymore. We fix this problem by guessing the γ leading bits of c
(i.e. cb−γ , . . . , cb). This is only a polynomial number of guesses.

For each guess, we “zero” those bits (let α be the γ -bit integer corresponding to
each guess and set w ← wg−2b−γ α mod N 2). Now we are back in the situation we
described above and we can run the inversion algorithm. This will give us a polynomial
number of guesses for c and we output one of them randomly chosen, which will be
the correct one with non-negligible probability. Notice that we are not able to verify
if the solution is the correct one, but in any case the algorithm violates our security
assumption (see Definition 2). A complete description of the algorithm is presented in
Fig. 3.

The technical details of the proof are very similar to the previous one but we repeat
them here for completeness. Again let δ(n) = 1/2n and l = 1/(4ε2(n)δ(n)). We already
showed that the procedure Randomize-Query identifies the correct bit with probability
larger than 1− δ. Now we concentrate on the procedure Compute-Class′′.

We distinguish two cases:

1. Case 1 ≤ i < n − b − γ

In this case the correct class is computed as long as each call of the procedure
Randomize-Query returns a correct answer. As we have shown before this happens
with probability larger than (1−δ)n > 1/2. This means that with probability larger
than 1/2 the correct class is computed.

2. Case n − b − γ ≤ i ≤ n − b
In this case the correct class is computed correctly (with probability larger than
1/2) only if the correct dj is guessed. Since there are 2−γ possible choices for dj

the correct class is output with probability 2−γ−1.

Remark 2. Note that the same trick presented in Remark 1 can be applied here in the
case when n − b − γ < i < n − b to lower the reduction cost.

Simultaneous Security. Notice that in the above inversion algorithm, every time we
query Oi with the value ŵ we know all the bits in positions 1, . . . , i − 1 of Classg(ŵ).
Indeed, these are the first i−1 bits of the randomizer r . Thus we can substitute the above
oracle with the weaker one Ôi which expects ŵ and the bits of Classg(ŵ) in positions
1, . . . , i − 1.

4 It is important to notice that Lemma 1 is necessary to perform “shifts to the right” only for the bits in
positions i = 1, . . . , b. For the other ones we can shift to the right by simply “undoing” the previous squaring
operations. More precisely once we get c1, instead of “zeroing” it in wi , we can zero it in wi−1 (where

wi−1 = w2i−1
mod N 2), by setting wi−1 ← wi−1g−c12i−1

mod N 2. In this way we take advantage of the fact
that we know the intermediate squarings to perform shifts to the right.
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Compute Class Algorithm (III)

ComputeClass′′(Oi , w, g, N , ε, i)

1. if i > n − b abort
2. δ = 1/2n; l = 1/(4ε2δ); z = 2−1 mod N
3. C = ∅;
4. γ = 1− log ε

5. if 1 ≤ i < n − b − γ

6. c = ();

7. w′ = w2i
mod N 2 (place c1 in the i th position)

8. for j = 1 to n = |N |
9. x = Randomize-query(Oi , g, w′, l)

10. prepend(x, c)
11. if x == 1 then
12. w′ = w′g−2i

mod N 2

13. w = wz mod N 2

14. end for
15. return c.
16. for every possible assignment dj of the γ leading bits of c do
17. cdj = ()

18. w′ = wg−2b−γ ·dj mod N 2 (“zero” the γ leading bits of c)

19. w′ = w′2i
mod N 2;

20. for i = 1 to n = |N |
21. x = Randomize-query(Oi , g, w′, l)
22. prepend(x, cdj )

23. if x == 1 then
24. w′ = w′g−2i

mod N 2

25. w′ = w′z mod N 2

26. end for
27. prepend(dj , cdj ); C = C ∪ {cdj }
28. end for
29. c′ ← C
30. return c′.

Fig. 3. Pseudocode description of the algorithm for the i th position case.

3.4. Security Analysis

We note here that the class problem can be considered a weaker version of a composite
discrete log problem. Let d = gcd(p−1, q−1) and let Cm ≡ (Zm,+) denote the cyclic
group of m elements, then for any t dividing λ we have

Z∗N 2 � Cd × Cλ/t × CNt .

Let g2, g1, g ∈ Z∗N 2 be the pre-images, under such an isomorphism, of generators of
Cd , Cλ/t and CNt , respectively. Thus we can represent any element of Z∗N 2 uniquely as
ge2

2 ge1
1 ge, where e2 ∈ Zd , e1 ∈ Zλ/t and e ∈ Z Nt . For a given g, g1, g2 ∈ Z∗N 2 the

composite discrete logarithm problem we consider is to find these e, e1, e2 for any given
w ∈ Z∗N 2 . For a given g, the class problem is to find just e mod N for any given w ∈ Z∗N 2 .

Obviously if one can solve the composite discrete logarithm problem, one can solve
the class problem; in particular,

w ≡ ge2
2 ge1

1 ge ≡ ge2
2 ge1

1 gl N+x ≡ gx (gk2e2
2 gk1e1

1 gl)N ≡ gx yN mod N 2,
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where k2 = N−1 mod d , and k1 = N−1 mod λ/t (note we can make sure x ∈ {0 · · · N }
by a suitable choice of l and we can force y ∈ Z∗N since (y + k N )N ≡ yN mod N 2).

However, there is a very important distinction between these two problems. In the
composite discrete logarithm problem, if we are given g, g1, g2, e, e1, e2 and w we
can verify (in polynomial time) that we do indeed have the discrete logarithm of x . A
fascinating and open question in the class problem is to determine the complexity of an
algorithm that verifies the class is correct given only g, e mod N and w. Equation (1)
shows that this is no harder than factoring, but nothing more is presently known.

Assuming that the function Classg is hard to compute even in the case that c < B may
seem a very strong requirement. It is in some way non-standard.

In order to justify it partially, we notice that not even a trivial exhaustive search
algorithm (running in time O(B)) seems to work, since even if one is given a candidate
c there is no way to verify that it is correct. Verification is equivalent to determining if
one has an N th residue modulo N 2, and this seems a hard problem.

Of course if one did have a verification algorithm that ran in time M , then the trivial
exhaustive search method would take time O(MB) and there may well be a baby-step,
giant-step extension of the method that takes time O(M

√
B). Without an efficient veri-

fication algorithm it seems hard to exploit the fact that c < B.
Since this is a new assumption we are not able to make any stronger claim on its

security. Further research in this direction will either validate the security assumption
or lead us to learn and discover new things about the residuosity class problem. Though
we note that our main theorem still holds even if there were an efficient verification
algorithm (because we can choose B to be large enough to prevent O(

√
B) attacks).

4. A General Result

In this section we briefly show how to generalize the results from the previous section
to any family of trapdoor functions with some well-defined properties. We show two
theorems: the first is a direct generalization of Theorem 2; the second theorem holds for
the weaker case in which we do not know the order of the group on which the trapdoor
function operates. In this case we can extract fewer hard-core bits.

Let M be an m-bit odd integer, and let G be a group with respect to the operation
of multiplication. Let f : Z M → G be a one-way, trapdoor homomorphic function (i.e.
such that f (a + b mod M) = f (a) · f (b) ∈ G). Then we can prove that

Theorem 3. If M is a known odd integer, under the assumption that f remains hard to
invert when its input belongs to the closed interval [0 · · · B], with B = 2b, f has m − b
simultaneously hard bits.

It is not hard to see that the techniques of the proof of Theorem 2 can be extended to the
above case.

The above theorem assumes that M is exactly known. We consider now the case
in which M is not known, but we have a very close upper bound on it, i.e. we know
M̂ > M and such that (M̂ − M)/M is negligible in m. Moreover, we need to assume
that f is computable on any integer input (but taken modM), i.e. we assume that there
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is an efficient algorithm INT f that takes as input any integer x and returns as output
INT f (x) = f (x mod M).

Theorem 4. Under the assumption that f remains hard to invert when its input belongs
to the closed interval [0 · · · B], with B = 2b <

√
M , f has m− 2b simultaneously hard

bits.

Proof. The proof follows the same outline of the proof of Theorem 2 except that in this
case we are not able to perform “shifts to the right” as outlined in Lemma 1 since we do
not know M exactly. Thus the proof succeeds only for the bits in location b+1, . . . , m−b.
Notice that this implies b < m/2, i.e. B <

√
M .

Again, we first show that each bit is individually secure. We then extend this to prove
simultaneous hardness.

Individual Security. Let i be an integer, b ≤ i ≤ n − b, and assume that we are
given an oracle Oi which on input M and u ← G computes correctly ( f −1(u))i with
probability 1/2 + ε(m) where ε(m) is non-negligible. As in the proof of Theorem 2
prove the statement by providing an algorithm A which uses Oi and given w ∈ G with
f −1(w) < B, computes c = f −1(w).

The inversion algorithm works almost as the one proposed in the proof of Theorem 2.
The main difference is that this time we cannot use Lemma 1 to perform shifts to the
right. However, in order to let the proof go through, we adopt the following trick: once
ci is known we “zero” it in the original w by setting w ← w · INT f (−2i−1ci ) (where
INT f (−2i−1ci ) = f (−2i−1ci mod M), as already mentioned). We then repeat the pro-
cess with the other bits. The only differences with the above process when computing
cj are that:

• We need to square w only i − j + 1 times (actually by saving the result of the
intermediate squarings before, this is not necessary).
• To zero cj once we found it we need to set w← w · INT f (−2 j−1cj ).

Since each bit is determined with very high probability, the value c = cb · · · c1 will be
correct with non-negligible probability.

The simultaneous security of the bits in positions b, b+1, . . . , n−b easily follows, as
described in the proof of Theorem 2. Notice, indeed, that the same reasoning presented
in the proof of Theorem 2 works here too. Consequently, the oracle Oi described above
can be substituted with the weaker one Ôi , that, in addition to w, requires the bits of
f −1(w) in positions 1 · · · i − 1 as well.

This completes the proof.

5. Applications to Secure Encryption

In this section we show how to construct a secure encryption scheme based on our results.
For concreteness we focus on fixed parameters, based on today’s computing pow-

ers. We can assume that n = 1024 is the size of the RSA modulus N and m = 128
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(the size of a block cipher key) is the size of the message M that has to be securely
exchanged.

Our Solution. Using Paillier’s Classg(·) function with our proof methods, it is possible
to hide the message M securely with a single invocation of the function. In order to
encrypt 128 bits we need to set n − b > 128, which can be obtained for the maximum
possible choice of b = 896 (i.e. the weakest possible assumption). In other words we
need to assume that Classg is hard to invert when c < N 0.875.

To encrypt M one sets c = r1 | M where r1 is a random string, chooses y ← Z∗N and
sends w = gc yN . This results in two modular exponentiation for the encryption and one
exponentiation to decrypt (computations are done mod N 2). The ciphertext size is 2n.

RSA. In the case of plain RSA we can assume also that the RSA function hides
only one bit per encryption (see [7]). In this scenario to encrypt (and also decrypt)
the message securely we need 128 exponentiations mod N . The size of the ciphertext
is mn = 128 Kbit. Encryption speed can be much improved by considering RSA with
small public exponent. In any case our scheme is better for decryption speed and message
blow-up.

Blum–Goldwasser. Blum and Goldwasser [3] show how to encrypt with the RSA/Rabin
function and pay the O(m/log n) penalty only in encryption. The idea is to take a random
seed r and apply the RSA/Rabin function m times to it and each time output the hard
bit. Then one sends the final result rem

and the masked ciphertext M ⊕ B where B is
the string of hard bits. It is sufficient to compute r from rem

to decrypt and this takes a
single exponentiation. The size of the ciphertext is n + m.

A particularly efficient implementation of the Blum–Goldwasser cryptosystem is ob-
tained, using the Rabin function [15] as the underlying trapdoor function. In order to
encrypt the message M securely, 128 invocations of the function are necessary. The
size of the obtained ciphertext is n + m. The decryption process is much faster than
RSA because it requires just 768 multiplications mod p and 768 multiplications mod q
plus the cost of combining the two results using the Chinese Remainder Theorem. Note
that even if the total number of multiplications is comparable with the number of mul-
tiplications required to decrypt in our solution, the Blum–Goldwasser scheme is still
more efficient due to the fact that all the multiplications are performed modulo integers
whose size is approximately one-quarter of the size of the modulus used for the Paillier
function.

We clearly lose compared with this scheme.

Remark 3. It is worthwhile noticing that even if the proposed solution is less efficient
in practice than the Blum–Goldwasser one, it remains asymptotically better. As a matter
of fact, we need only O(m/k) (where k = ω(log n) is the number of simultaneously
hard bits produced) invocations of the trapdoor function, while all previously proposed
schemes require many more invocations (in general, the number of invocations, has
order O(m/log n)). Basically for longer messages we may “catch up” with the other
schemes.
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The observed slow down, depends solely on the fact that the function used is less
efficient than RSA or Rabin. It would be nice to come up with more efficient trapdoor
functions that also hide many bits.

6. Conclusions

In this paper we presented the bit security analysis of the encryption scheme proposed by
Paillier at Eurocrypt ’99 [13]. We prove that the scheme hides the least significant bit of the
N -residuosity class. Also by slightly strengthening the computational assumption about
residuosity classes we can show that Paillier’s encryption scheme hides up to O(n) bits.

An interesting theoretical implication of our results is that we presented the first
candidate trapdoor functions that hide many (up to O(n)) bits. No such object was
known previously in the literature.

There are several problems left open by this research. Are there trapdoor functions
that hide ω(log n) bits and are comparable in efficiency to RSA/Rabin? In the case of
RSA/Rabin can we come up with a “restricted input assumption” that will allow us to
prove that they also hide ω(log n) bits? Regarding our new assumptions: is it possible
to devise an algorithm to compute Classg(·) < B that depends on B?
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