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Abstract. We define interactive and non-interactive statistical zero-knowledge proofs
with (limited) help, as proofs that can be almost perfectly simulated, where the prover
and the verifier share a reference string that is computed by a probabilistic polynomial-
time trusted third party that receives as input the statement to be proven (i.e. the input to
the protocol). We compare these models with the standard interactive and non-interactive
SZK models, trying to understand when this form of help can replace the interaction
between the prover and the verifier and vice versa. We show that every promise problem
that has an SZK protocol with help also has one without help. As for the opposite,
we show non-interactive SZK proofs with help for natural languages for which only
interactive SZK proofs are known. In order to achieve that, we introduce a complete
problem for the class of promise problems that have non-interactive SZK proofs with
help.
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1. Introduction

When zero-knowledge proofs were first introduced by Goldwasser et al. [9], it seemed
that interaction plays a crucial role in those proof systems. Indeed zero-knowledge was
shown to exist only for languages in BPP in the most straightforward non-interactive
model [5]. Blum et al. showed, however, that if we change the model, then non-interactive
zero-knowledge can be achieved for languages not known to be trivial [3]. In their model
(called the random reference string model) they assume that both prover and verifier
are dealt a truly random (uniformly distributed) string, called the reference string. The

∗ This research was supported in part by the Leibniz Center, a US–Israel Binational research grant, and an
EU Information Technologies grant (IST-FP5).
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actual proof consists of one message sent from the prover to the verifier, and then the
verifier decides whether to accept or reject according to this message, the input and the
reference string.

Just like their interactive counterparts, non-interactive zero-knowledge proofs come
in three flavors: perfect, statistical and computational zero-knowledge. While exten-
sive study of computational non-interactive zero-knowledge (and some study of perfect
non-interactive zero-knowledge) dates back to the late 80s, the study of statistical non-
interactive zero-knowledge was initiated only recently by De Santis et al. [4], who showed
a complete problem for the class of promise problems that have non-interactive statistical
zero-knowledge proofs (hereafter denoted NISZK). They were followed by Goldreich et
al. [7], who gave more complete problems for this class, as well as conditions under which
the class NISZK equals the class of promise problems that have (interactive) statistical
zero-knowledge proofs (hereafter denoted SZK). We do not know if these conditions are
true, and the question of whether interaction is necessary for statistical zero-knowledge
(i.e. whether NISZK equals SZK) is still an open one.

In this paper we suggest an alternative resource to interaction in the form of limited
help (limited in terms of the computational complexity of the helper) that is given in
advance, both to the prover and the verifier. Specifically, we assume that the prover
and the verifier have access to a shared string, which is the output of a probabilistic
polynomial-time Turing Machine that is given as input the statement to be proven (i.e.
the input to the protocol). We stress that the assumption that the prover and the verifier
have access to a reference string that is dealt by a trusted third party also appears in the
model of [3], that is, in their model it is assumed that the reference string is uniformly
distributed. The main difference in our model is that the reference string may depend on
the input to the protocol.

First, we show that interaction can always replace (limited) help. That is, every promise
problem that has a statistical zero-knowledge proof with help, whether interactive or not,
also has a (interactive) statistical zero-knowledge proof without help. As for the converse,
we show that in some cases help can replace interaction.1 We do that by first introducing
a complete problem for the class of promise problems that have non-interactive statistical
zero-knowledge proofs with help (hereafter denoted NISZK|h). Then, armed with this
complete problem, we show non-interactive statistical zero-knowledge proofs with help
for two natural problems (Graph Isomorphism and Graph Non-Isomorphism) which are
not known to be in NISZK.

Our results should be seen in the context of the general question of what resources are
necessary for statistical zero-knowledge proofs to work, and, more specifically, whether
SZK = NISZK. We hope that our work will help to shed light on these fundamental
questions (refer to Section 5 for further discussion).

In [2] we also considered non-interactive computational zero-knowledge proofs with
help. We showed that under the assumption that one-way functions exist, every language
in NP has such a proof system with perfect completeness and perfect soundness. Fur-
thermore, in this proof system the dealer need not have any access to the input to the
protocol. Thus the only difference between this protocol and the standard NIZK model

1 In [2] the authors claimed that help can always replace interaction. Unfortunately, due to a gap that was
found in the proof, we retract here from this claim.
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is the fact that the dealer may induce a distribution which is not uniform. In this paper
we only consider the statistical zero-knowledge setting.

2. Definitions and Notations

2.1. Probability Distributions

Throughout this paper we consider distributions with “succinct” description, i.e. distri-
butions produced by circuits (with multiple output gates) when feeding them a uniformly
chosen input. We write C when we refer both to the circuit itself and to the distribution it
induces. We denote by Im(C) the image set (or the range) of the function that the circuit
C computes.

Given a distribution X , x ← X denotes that x is a sample taken from X .
For a set S, s ∈R S denotes that s is a sample taken from the uniform distribution

over S.
Recall the definition of Shannon’s entropy.

Definition 1. Let X be a random variable, we define the entropy of X , H(X), to be

H(X) =
∑

x

Pr(X = x) log(1/ Pr(X = x)) = Ex←X [log(1/ Pr(X = x))].

We define measures of distance (or similarity) between distributions. The first measure
is the statistical difference.

Definition 2. Let X and Y be two distributions (or random variables) on a discrete
space D. The statistical difference between X and Y , denoted as ‖X − Y‖, is

‖X − Y‖ = MAXS⊆D|Pr(X ∈ S) − Pr(Y ∈ S)|

= 1

2

∑
d∈D

|Pr(X = d) − Pr(Y = d)|.

The second measure is the Kullback–Liebler distance, or the relative entropy.

Definition 3. Let X and Y be two distributions on a finite space D. The relative entropy
(or the Kullback–Liebler distance) between X and Y is

KL(X | Y ) = Ex←X

[
log

Pr(X = x)

Pr(Y = x)

]
.

We denote by H2(p) the binary entropy function, which is the entropy of a 0-1 random
variable with expectation p. KL2(p, q) denotes the relative entropy between two 0-1
random variables with expectations p and q.
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We also define measures of “disjointness” between distributions.

Definition 4. We say that a (ordered) pair of distributions, (C0, C1), is α-disjoint if for
x ← C0, Pr(x ∈ Im(C1)) ≤ 1 − α. We say that the pair (C0, C1) is mutually α-disjoint
if (C0, C1) and (C1, C0) are α-disjoint.2

2.2. Promise Problems

A promise problem � is defined by two disjoint sets �Y, �N ⊆ {0, 1}∗. We say that the
elements of �Y are the YES instances of � and the elements of �N are the NO instances.

For two promise problems � and � we define their AND to be the following promise
problem:

AND(�, �)Y = {(x, y): x ∈ �Y and y ∈ �Y},
AND(�, �)N = {(x, y): x ∈ �N or y ∈ �N}.

2.3. Interaction between Turing Machines

In what follows we will be talking about interaction between probabilistic Turing ma-
chines (TM) and the outcome of their interaction. Typically the outcome will be “accept”
or “reject”. Given two such TM, M1 and M2, and an input x to the protocol between them,
(M1, M2)(x) denotes the random variable of the possible outcome values of the protocol,
and 〈M1, M2〉(x) denotes the distribution over all the possible conversation transcripts
(where the probability space is over the random coins of M1 and M2). We also denote
by 〈M1, M2〉(x)i the distribution over the prefix of the conversation transcripts up to the
i th message.

2.4. Complexity Classes

Recall that µ is a negligible function, if for every c > 0 and sufficiently large n, µ(n) <

1/nc.
We now state the definition of (an honest verifier) statistical zero-knowledge proof

system [9].

Definition 5. A statistical zero-knowledge proof system for a promise problem �, is
defined by a computationally unbounded interactive TM P (the prover), a probabilistic
polynomial-time interactive TM V (the verifier), a probabilistic polynomial-time TM S
(the simulator), and a negligible function µ. A proof system for the membership of an
input x in �, consists of messages that are exchanged between P and V , where the last
message is V ’s random coins. After the interaction ends, V decides whether to accept
or reject. The following should hold:

1. (completeness) if x ∈ �Y, then Pr((P, V )(x) = accept) > 2/3,
2. (soundness) if x ∈ �N, then for every prover’s strategy P∗, Pr((P∗, V )(x) =

accept) < 1/3,

2 Note that if (C0, C1) are 1-disjoint, then they are completely disjoint.
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3. (zero-knowledge) if x ∈ �Y, then the statistical difference (see Definition 2)
between the following two distributions is bounded by µ(|x |):
(a) 〈P, V 〉(x),
(b) S(x).

Remark. We only give here the definition of honest verifier statistical zero-knowledge
and we limit the discussion to this model due to a result by Goldreich et al. [6], who
showed that this model is equivalent to the dishonest verifier model.

We now define non-interactive statistical zero-knowledge with a random reference
string [3].

Definition 6. A non-interactive statistical zero-knowledge proof system with a random
reference string for a promise problem �, is defined by a computationally unbounded
TM P (the prover), a probabilistic polynomial-time TM V (the verifier), a probabilistic
polynomial-time TM S (the simulator), a polynomial q, and a negligible function µ.
On an input x both P and V have access to a shared random reference string σ , where
σ ∈R {0, 1}q(|x |). The actual proof consists of one message that is sent from P to V , and
then V based on x , σ and this message either accepts or rejects. The following should
hold:

1. (completeness) if x ∈ �Y, then Pr(V (x, σ, P(x, σ )) = accept) > 2/3,
2. (soundness) if x ∈ �N, then for every prover’s strategy P∗, Pr(V (x, σ, P∗(x, σ ))

= accept) < 1/3,
3. (zero-knowledge) if x ∈ �Y, then the following two distributions have a statistical

difference that is bounded by µ(|x |):
(a) (σ, P(x, σ )),
(b) S(x).

We define statistical zero-knowledge proofs with help as in Definition 5, with the only
difference that in addition to the input, the prover and the verifier have access to a shared
random string which is distributed according to a polynomial-time samplable distribution
that may depend on the input.

Definition 7. A statistical zero-knowledge proof system with help for a promise prob-
lem �, is defined by a computationally unbounded interactive TM P (the prover), a prob-
abilistic polynomial-time interactive TM V (the verifier), a probabilistic polynomial-time
TM S (the simulator), a probabilistic polynomial-time TM D (the dealer), and a negli-
gible function µ. On an input x , P and V have access to a shared reference string D(x).
The proof system consists of messages that are exchanged between P and V , where
the last message is V ’s random coins. After the interaction ends, V decides, according
to the input, the reference string and the conversation, whether to accept or reject. The
following should hold:

1. (completeness) if x ∈ �Y, then Pr((D, P, V )(x) = accept) > 2/3,
2. (soundness) if x ∈ �N, then for every prover’s strategy P∗, Pr((D, P∗, V )(x) =

accept) < 1/3,
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3. (zero-knowledge) if x ∈ �Y, then the statistical difference between the following
two distributions is bounded by µ(|x |):
(a) 〈D, P, V 〉(x),
(b) S(x).

Definition 8. Non-interactive statistical zero-knowledge with help is defined exactly
as non-interactive statistical zero-knowledge with a random reference string, with the
only difference that we replace the uniformly distributed reference string σ with the
reference string D(x), where x is the input to the protocol, and D is a probabilistic
polynomial-time TM.

Remark. Note that Definition 6 is a special case of Definition 8, where D(x) is defined
to be σ ∈R {0, 1}q(|x |).

We denote by SZK the class of promise problems that have statistical zero-knowledge
proofs, by SZK|h the class of promise problems that have statistical zero-knowledge
proofs with help, by NISZK the class of promise problems that have non-interactive
statistical zero-knowledge proofs in the random reference string model, and by NISZK|h
the class of promise problems that have non-interactive statistical zero-knowledge proofs
with help.

2.5. Complete Problems

The following two promise problems are complete for the class SZK [12], [8]:

Definition 9. Statistical Difference (SD) is the following promise problem:

SDY = {(C0, C1): ‖C0 − C1‖ > 2/3},
SDN = {(C0, C1): ‖C0 − C1‖ < 1/3},

where (C0, C1) is a pair of distributions with “succinct” description.

Definition 10. Entropy Difference (ED) is the following promise problem:

EDY = {(C0, C1): H(C0) > H(C1) + 1},
EDN = {(C0, C1): H(C0) < H(C1) − 1},

where (C0, C1) is a pair of distributions with “succinct” description.

3. Interaction Can Always Replace Help

In this section we generalize [2], by showing that if we have interaction in hand, then
polynomial-time help is not needed. That is, we show that every promise problem that
has a statistical zero-knowledge proof (whether interactive or not) with help, also has
such a (interactive) proof with no help (i.e. an SZK proof in the traditional model).
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Theorem 11. SZK|h = SZK.

Our proof is based on the reduction of Goldreich and Vadhan [8] from every promise
problem in SZK to the SZK-complete problem ED.

Intuition. We consider a statistical zero-knowledge proof for a promise problem � and
its corresponding simulator S. We look at the output of the simulator as describing the
moves of a virtual prover and a virtual verifier. Following Aiello and Hastad [1], we
consider a cheating strategy for a real prover PS , called the simulation-based prover,
which tries to imitate the behavior of the virtual prover. Informally, PS determines its
messages based on the same distribution as the virtual prover, conditioned only on past
messages. Let us compare the distributions over the output of the simulator, and the
output of the interaction between PS and the real verifier. On YES instances these two
distributions should be relatively close. This is because the behavior of PS is similar to the
behavior of the honest prover, and the output of the simulator is similar to the output of
the conversation between the honest prover and the verifier. On NO instances on the other
hand, if the simulator outputs “accept” with high probability (we can easily modify the
simulator to ensure that), then there must be a fundamental difference between the output
of the simulator and the output of the interaction between PS and the real verifier, because
the latter cannot be accepting with high probability. Aiello and Hastad considered the
relative entropy between the two distributions as a measure of similarity. They showed
how to write this relative entropy as a simple expression involving entropies of prefixes
of the simulator’s output. Goldreich and Vadhan gave upper and lower bounds for this
expression in cases of YES instances and NO instances, respectively. They then showed
how to derive from that a reduction from � to ED.

Ideally, we would like to show a similar result for SZK|h, by directly applying this
reduction on promise problems in this class. However, in order to do so, we need to change
the protocol with the dealer to one without a dealer. One option is to let the verifier play
the dealer’s role. This will indeed change the proof system into an interactive proof with
two players. However, the zero-knowledge condition is not guaranteed anymore as the
verifier can “see” now the dealer’s private coins. Another option is to let the prover play
the dealer’s role, this can clearly affect the soundness condition, as the help is not given
now by a trusted third party. However, deviations from the dealer’s protocol can be tested
in zero-knowledge, and it is that approach that we take. Specifically, we consider the
simulation-based prover PS as in [8], and we let it send the first message instead of the
dealer (according to the distribution of the virtual dealer). In order to assure that the
soundness condition still holds, we add a test to check whether the prover behaves “like”
the dealer. We know that if it behaves completely different, then the test will detect it.
Otherwise, the soundness condition still holds (maybe with a slight loss) and we can
apply the arguments of [8].

Notation. Let (D, P, V ) be a statistical zero-knowledge proof system with help for a
promise problem �, and let S be its corresponding simulator. We assume that on input of
length n, the verifier tosses l = l(n) coins. Including the dealer’s message, 2r messages
are exchanged (r = r(n)), where the verifier is the first to send a message after the dealer,
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and each message is of length l. We also assume that the last message is the contents of
the verifier’s random tape.

The simulation-based prover. We describe now the behavior of the simulation-based
prover PS . For an odd i (1 ≤ i ≤ 2r ), given a conversation prefix γ ∈ {0, 1}(i−1)l , the
next message of PS (i.e. the i th message of the protocol) will be:

1. If the probability that S(x) outputs a conversation with the prefix γ is 0, then PS

sends a dummy message, say 0l .
2. Otherwise, PS replies with the same conditional probability as the virtual prover.

That is, it sends β ∈ {0, 1}l with probability

Pr[S(x)i = γβ | S(x)i−1 = γ ].

In particular, PS sends the first message instead of the dealer, and this message is dis-
tributed exactly as the first string in the output of the simulator, which is the simulation
of the dealer.

Rewriting the relative entropy between S(x) and 〈PS, V 〉(x). The following lemma
shows how we can express the relative entropy between S(x) and 〈PS, V 〉(x) as differ-
ences between the entropies of prefixes of the simulator’s output. Refer to [8] for the
proof.

Lemma 12. ∀x ∈ �Y ∪ �N, KL(S(x) | 〈PS, V 〉(x)) = l − ∑r
i=1[H(S(x)2i ) −

H(S(x)2i−1)].

Bounding KL(S | 〈PS, V 〉). We now bound KL(S | 〈PS, V 〉) on YES instances and
NO instances. For YES instances, we use the following lemma that was proved in [8].

Lemma 13. Let x ∈ �Y, and let ε = ‖S(x) − 〈P, V 〉(x)‖, then

KL(S(x) | 〈PS, V 〉(x)) ≤ 3r2lε + 2r H2(ε).

Next we bound KL(S | 〈PS, V 〉) on NO instances. We will need the following intuitive
lemma. It states that statistical zero-knowledge proofs with help are robust under small
deviations from the dealer’s protocol. The proof of this lemma is easy and we defer it to
Appendix B.

Lemma 14. Let s = s(n) be the soundness error of the proof system (D, P, V ). For
ε = ε(n), let D′ be an arbitrary dealer for which ‖D(x) − D′(x)‖ ≤ ε(|x |). Denote
by s ′ = s ′(n) the soundness error of the protocol in which D is replaced by D′. The
following holds: s ′ ≤ s + 2ε.

We can now state the bound for NO instances. We confine ourselves to the case when
the distribution over the first string in the output of the simulator (and hence the first
message of PS) is statistically close to the dealer’s distribution.
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Lemma 15. For x ∈ �N, let p denote the probability that S(x) outputs an accepting
transcript. Suppose that ‖D(x) − S(x)1‖ ≤ q1. Denote by q2 = q2(|x |) the soundness
of the protocol. Let q = 2q1 + q2, and suppose that p ≥ q. Then

KL(S(x) | 〈PS, V 〉(x)) ≥ KL2(p, q).

Proof. Recall that PS(x)1 and S(x)1 are identically distributed. So by Lemma 14, the
soundness error of the protocol (PS, V )(x) is not more than 2q1 + q2 = q. Let q ′ be the
probability that (PS, V )(x) accepts, clearly, q ′ ≤ q. Define the function f : {0, 1}2rl →
{0, 1} as follows: f (γ ) = 1 if γ is an accepting transcript and 0 otherwise. Then by
Facts A4 and A3 (in Appendix A), we get

KL(S(x) | 〈PS, V 〉(x)) ≥ KL( f (S(x)) | f (〈PS, V 〉(x)))

= KL2(p, q ′) ≥ KL2(p, q).

The reduction. Let us assume without loss of generality that the soundness and com-
pleteness errors of the protocol for � are bounded by (2rl)−2/2, and the simulator
deviation is bounded by (2rl)−2/2.

We modify the proof system such that 02rl is an accepting transcript, and modify the
simulator always to output accepting transcripts (by possibly substituting the output with
02rl). The resulting proof system has soundness error at most 2−l + (2rl)−2/2 (recall that
the last message consists of the verifier’s random coins), and the simulator deviation is
at most (2rl)−2.

We are now ready to present the reduction. It will map � to the AND of two promise
problems regarding pairs of distributions with succinct description. Thus, an instance x
is mapped into two pairs of distributions, as follows:

1. (a) X1,x is the cross product of the distributions S(x)2, S(x)4, . . . , S(x)2r .
(b) Y1,x is the cross product of the distributions S(x)1, S(x)3, . . . , S(x)2r−1 and

the uniform distribution over {0, 1}l(|x |)−2.
2. (a) X2,x is the distribution D(x).

(b) Y2,x is the distribution S(x)1 (i.e. the simulation of the dealer’s message).

Motivation. The statistical difference between X2,x and Y2,x measures how much PS

deviates from the dealer’s protocol. If this deviation is small enough (and this can be
tested in zero-knowledge), then Lemma 15 can be applied. Assuming that this is the
case, we look now at (X1,x , Y1,x ). By Lemma 12, without the last l − 2 bits of Y1,x ,
the difference between their entropies would be exactly KL(S(x) | 〈PS, V 〉(x)) − l.
Thus, the addition of uniformly distributed l − 2 bits brings this difference to within 2
of KL(S(x) | 〈PS, V 〉(x)). Lemmas 13 and 15 give us upper and lower bounds for this
term in case of YES and NO instances, respectively. By setting the right parameters, we
can have this term below 1 or above 3 for YES and NO instances, respectively. Thus we
get that the difference in entropies, between X1,x and Y1,x , is below −1 or above 1 as
required by the definition of ED.
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We now prove this formally.

Lemma 16. For x ∈ �Y, H(X1,x ) > H(Y1,x ) + 1 and ‖X2,x − Y2,x‖ < (2rl)−2.

Proof. The fact that the simulator’s deviation is bounded by (2rl)−2 implies that
‖D(x) − S(x)1‖ < (2rl)−2, which in particular establishes the second part.

Next, assume without loss of generality that rl > 128 (by padding messages with extra
bits if necessary). Define ε to be the simulator’s deviation (ε < (2rl)−2). By Lemmas 12
and 13, we have

H(Y1,x ) − H(X1,x ) =
(

l − 2 +
r∑

i=1

H(S(x)2i−1)

)
−
(

r∑
i=1

H(S(x)2i )

)

= KL(S(x) | 〈PS, V 〉(x)) − 2

≤ 3r2lε + 2r H2(ε) − 2 < −1,

where the last inequality uses H2(ε) ≤ √
ε/4 (since ε < 2−14) and

√
ε/4 < 1/8r .

Lemma 17. For x ∈ �N, either H(Y1,x ) > H(X1,x ) + 1 or ‖X2,x − Y2,x‖ > (2rl)−1.

Proof. If ‖D(x) − S(x)1‖ > (2rl)−1, we are done. Otherwise, the simulation-based
prover that sends the first message instead of the dealer does not deviate from the dealer’s
protocol by more than (2rl)−1. Therefore, assuming (without loss of generality) that
2−l + (2rl)−2/2 + (rl)−1 < 0.1, we can apply Lemma 15 with q1 = (2rl)−1, q2 =
2−l + (2rl)−2/2 and p = 1, and together with Lemma 12 we get,

H(Y1,x ) − H(X1,x ) =
(

l − 2 +
r∑

i=1

H(S(x)2i−1)

)
−
(

r∑
i=1

H(S(x)2i )

)

= KL(S(x) | 〈PS, V 〉(x)) − 2

≥ KL2(1, 0.1) − 2

= log 10 − 2 > 1.

Claim 18. � ∈ SZK.

Proof. Let m be the description length of the pair of circuits (X2,x , Y2,x ). Clearly,
2r(|x |)l(|x |) is polynomial in m, let p(m) denote this polynomial. Define the promise
problem,

SD′
Y =

{
(C0, C1): ‖C0 − C1‖ <

1

p(m)2

}
,

SD′
N =

{
(C0, C1): ‖C0 − C1‖ >

1

p(m)

}
,
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where C0, C1 are distributions with succinct description and m is their description
length.

By the Polarization Lemma of [13] and the closure of SZK under complementation
[11], SD′ ∈ SZK. By Lemmas 16 and 17, the reduction above is polynomial-time many–
one from � to AND(ED, SD′). Since SZK is closed under AND (and polynomial-time
many–one reductions), we conclude that � ∈ SZK.

Since � is an arbitrary problem in SZK|h, Theorem 11 follows.

An alternative proof. Theorem 11 has an alternative proof that was suggested to us by
the anonymous referee. It is somewhat more technically involved but its underlying idea
is very appealing. We give here a rough sketch of this proof. We refer the reader to [8]
for the tools and terminology that we use below.

The idea is to replace the dealer by a protocol that P and V execute. The outcome of
this protocol can be either V accepts/rejects or V outputs a string y. If the latter happens,
then P and V continue the original protocol with y as a reference string. The protocol
has the properties that if P and V are honest, then either (with probability close to 1/2)
V accepts or it outputs y that is distributed statistically close to the dealer’s distribution.
On the other hand, no matter how P behaves, y cannot hit with high probability any
fixed set that the dealer does not hit with high probability (unless there is high probability
that V rejects). Furthermore, the protocol has a simulation that is statistically close to
the real conversation.3 It can be shown that with these properties the new protocol has
arbitrarily small (with a security parameter) completeness error, soundness error that is
bounded by a constant, and a simulation that has negligible statistical deviation from the
real conversation.

The protocol is based on the sample generation and test protocols of [8], and it has
a similar structure to the protocol for ED. First, we take the original protocol and run
it many times in parallel (and take a majority vote for acceptance). The effect of this
is that the new dealer’s (the one that outputs many reference strings) distribution, D′,
is statistically close to a “flat” distribution. This does not change the zero-knowledge
property of the protocol, because the verifier is honest. Then P and V execute the sample
generation protocol to obtain a sample, w, from D′ that is not too “heavy” (i.e. the number
of its pre-images is not too large). Next, they execute the hash-based “complementary
sampling” to obtain a pair (y, r) such that r is a pre-image of w, and y is not too “light”
(i.e. the number of its pre-images is not too small). Finally, V flips a coin and then either
(with probability 1/2) P and V continue the original protocol with y as the reference
string, or they execute the sample test protocol on y (and the distribution D′).4 The proof
techniques are similar to those of [8] (although the claims and the choice of parameters
are somewhat different).

3 We actually need something stronger, and that is the strong zero-knowledge property of the sample
generation protocol from [8].

4 The reason that we cannot run the sample test protocol and then continue the original proof with y as a
reference string is that a pre-image of y is revealed to V during the sample test protocol. This may affect the
zero-knowledge property, because in the original protocol, V does not see a pre-image of the reference string.
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4. The Class NISZK|h

4.1. A Complete Problem

In this section we show a complete problem for the class NISZK|h.

Definition 19. Image Intersection Density (IID) is the following promise problem:

IIDY =
{
(D0, D1): ‖D0 − D1‖ <

1

n2

}
,

IIDN =
{
(D0, D1): the pair (D0, D1) is

(
1 − 1

n2

)
-disjoint

}
,

where (D0, D1) is a pair of distributions with succinct description, and n is their descrip-
tion length.

Note that the NISZK-complete problem ID [4] is a special case of IID,5 where D0 is
taken to be the uniform distribution over {0, 1}n . On the other hand, IID is a restriction of
the SZK-complete problem SD (that is, for NO instances, the distributions are “disjoint”
and not only statistically far).

The main technical step towards proving that IID is complete for the class NISZK|h is
the following lemma. It can be viewed as an analogue to the Polarization Lemma of [13],
in which the disjointness property is maintained. We defer the proof to Appendix C.

Lemma 20. There is a polynomial-time procedure that takes a pair of distributions
(C0, C1) with description length n, and outputs a pair of distributions (D0, D1) such
that

‖C0 − C1‖ <
1

n2
⇒ ‖D0 − D1‖ < 2−n,

(C0, C1) is

(
1 − 1

n2

)
-disjoint ⇒ (D0, D1) is (1 − 2−n)-disjoint.

We can now show that IID is complete for NISZK|h. The proof is based on ideas
from [4].

Theorem 21. IID ∈ NISZK|h.

Proof. Given a pair of circuits (C0, C1) with description length n, we first apply the
procedure from Lemma 20 to get a pair (D0, D1) which either has statistical difference

5 This is not exactly accurate. In [4] the bound, in the definition of ID, on the statistical difference and the
disjointness, is given by some negligible function. However, setting a particular function is problematic. The
reason is that the reduction to ID uses a negligible function that is specific to the NISZK problem of the instance
on which we apply the reduction. This function is arbitrary and is possibly larger than the fixed negligible
function in the definition of ID. We overcome this by setting the bounds in the definition of IID to be an inverse
of a fixed polynomial. We can do that because we have Lemma 20.
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at most 2−n or is (1 − 2−n)-disjoint. Let l be the number of input gates to D0 and D1

(without loss of generality they have the same number of input gates).

The proof system.
Common input: (D0, D1).
Shared reference string: σ = D0(r), where r ∈R {0, 1}l .
The protocol:

1. P sends r ′ ∈R D−1
1 (σ ) (where D−1

1 (σ ) = {r : D1(r) = σ }).
2. V accepts if and only if D1(r ′) = σ .

Completeness. If (C0, C1) ∈ IIDY, then ‖D0 − D1‖ < 2−n . Hence, by the definition
of statistical difference, the probability that x ← D0 is in Im(D1) is at least 1 − 2−n .
Therefore, the probability (over r ) that the (computationally unbounded) prover will be
able to find r ′ such that D1(r ′) = σ is at least 1 − 2−n .

Soundness. If (C0, C1) ∈ IIDN, then the pair (D0, D1) is (1 − 2−n)-disjoint. That is,
the probability that σ is not in the image of D1 is at least 1 − 2−n . We know that when
this happens, there is no r ′ such that D1(r ′) = σ , and V will reject.

Simulation. S: Choose r ∈R {0, 1}l , output (D1(r), r).
If (C0, C1) ∈ IIDY, then the distributions D0 and D1 have statistical difference at

most 2−n . Therefore, the statistical difference between σ = D0(r) (where r ∈R {0, 1}l)
and the first part of the simulator’s output is 2−n at the most. Given the first part, the
second part, both in the protocol and the simulator, is selected at random from the set
{r ′: r ′ ∈ D−1

1 (σ )}, and thus has the same (conditional) distribution.

Theorem 22. IID is NISZK|h-hard.

Proof. Let (D, P, V ) be an NISZK protocol with help for a promise problem �, with
exponentially vanishing completeness and soundness errors (this can be easily achieved
by parallel repetitions). Let S be the simulator for the protocol. Define µ to be the
negligible function bounding the statistical difference between 〈D, P, V 〉 and the output
of S, when they are given an input in �Y.

The reduction. For an input x , define the following pair of distributions:

1. D0: D(x).
2. D1: run the simulator S on x to obtain (σ, p), if V (x, σ, p) = “accept” output σ ,

otherwise output a special symbol ⊥ (that D never outputs).

First, we show that if x ∈ �Y, then (D0, D1) ∈ IIDY. Let n = |x |, and let m be
the description length of D0 and D1. Clearly, m = poly(n). The statistical difference
between the first part of the simulator’s output and the real reference string is bounded
by µ(n). Also, Pr((D, P, V )(x) = “accept”) > 1 − 2−n . Therefore, with probability
1 − 2−n − µ(n), D1 will output the first part of the simulator’s output, and thus ‖D0 −
D1‖ < 2µ(n) + 2−n (which for large enough n is less than 1/m2).
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Next, we show that if x ∈ �N, then (D0, D1) ∈ IIDN.
Define: T = {σ : σ ∈ Im(D0), and ∃p s.t V (x, σ, p) = “accept”}.
That is, T is the set of all reference strings for which there exist a proof that convinces

V . Since the soundness error is bounded by 2−n , Pr(D(x) ∈ T ) < 2−n . As D1 only
outputs σ ∈ T or ⊥, and D0 = D(x) outputs a real reference string, the probability
that a sample from D0 will be in Im(D1) is at most 2−n . So for large enough n, the pair
(D0, D1) is (1 − 1/m2)-disjoint.

4.2. Cases Where Help Can Replace Interaction

In this section we show evidence that help may replace interaction in some cases. We
show that two languages, not known to be in NISZK, are in NISZK|h. The languages
that we consider are Graph Isomorphism (GI) and Graph Non-Isomorphism (GNI). We
stress that the claims here apply to a wider class of languages that have similar properties,
however, for simplicity and clarity we focus on these two languages.

Let Sn be the set of permutations over n elements. Given a (n-vertex) graph G and a
permutation π ∈ Sn , the graph π(G) is the graph G with the nodes permuted according
to π .

Definition 23. GI = {(G0, G1): ∃π ∈ Sn s.t. π(G0) = G1}.

The language GNI is defined to be the complement of GI.

Theorem 24. GI ∈ NISZK|h.

Proof. We show a reduction from GI to IID. Suppose that we have a way to sample
uniformly from the set of strings that encode permutations in Sn (and we ignore for
now the technical difficulty of how to achieve that). Given a pair of graphs (G0, G1), we
construct a pair of circuits (C0, C1) as follows: C0 (and C1) receive as inputs permutations
in Sn , where n is the number of nodes in G0 (and G1 without loss of generality). On an
input π ∈ Sn , the circuit C0 (resp. C1) outputs π(G0) (resp. π(G1)).

Clearly, if (G0, G1) ∈ GI, and the inputs are uniformly distributed over Sn , then
‖C0 − C1‖ = 0. On the other hand, if (G0, G1) /∈ GI, then ‖C0 − C1‖ = 1, because
otherwise, by composing permutations we get an isomorphism from G0 to G1.

Going back to the issue of choosing permutations uniformly, we define the number
of input gates to C0 and C1 to be m = n3�log(n)�. We can view the inputs to the
circuits as n blocks of n2 numbers between 1 and n. We say that a string s ∈ {0, 1}m

encodes the permutation π ∈ Sn , if for every 1 ≤ i ≤ n, π(i) is the first number
in the i th block that is not equal to π(1), . . . , π(i − 1). It is easy to verify that with
probability 2−n at the most, a string chosen uniformly from {0, 1}m does not encode a
permutation in Sn . Also, every permutation has the same probability to come up. We
now change C0 and C1 to output special (different) symbols ⊥0 and ⊥1, respectively,
when the input does not encode a permutation in Sn , and to continue as before otherwise.
Then if (G0, G1) /∈ GI, we still have that ‖C0 − C1‖ = 1 and (C0, C1) ∈ IIDN. On
the other hand, for (G0, G1) ∈ GI, on Im(C0) ∩ Im(C1) the circuits induce the same
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distribution, and only with probability at most 2−n is their output not in the intersection.
Hence, ‖C0 − C1‖ < 2−n and (C0, C1) ∈ IIDY.

Theorem 25. GNI ∈ NISZK|h.

Proof. By the reduction above, GNI reduces to IID. Unfortunately, we do not know
a reduction from IID to IID (this would clearly finish the proof). However, we observe
that the mapping in the proof of Theorem 24 is to a special case of IID. We will show
that this special case can be reduced to IID.

As before, we ignore for now the technical difficulty of uniformly sampling permu-
tations (we will deal with this issue at the end of the proof), and assume that we have
the perfect case described in the first part of the proof of Theorem 24. Note that the
reduction above maps pairs of graphs to pairs of circuits that induce distributions that
are either identical or completely disjoint. Furthermore, if (G0, G1) are isomorphic, the
distributions are uniform over the domain of all the graphs that are isomorphic to G0

(and G1). We will use these properties to reduce GNI to IID.

The reduction. Sahai and Vadhan [13], showed a reduction from the promise problem
SD to its complement. We show that this reduction also works in our case. Given a pair
of graphs, (G0, G1), apply the reduction from the proof of Theorem 24 (assuming that
we have the perfect sampling case from the first part of that proof) to get a pair of circuits
(C0, C1) such that

(G0, G1) ∈ GNI �⇒ ‖C0 − C1‖ = 1,

(G0, G1) /∈ GNI �⇒ ‖C0 − C1‖ = 0.

Let n be the number of nodes in G0 and G1 (without loss of generality they have the
same number of nodes), let q = log(n!), let l be the number of output gates of C0 and
C1, and let m = n3�q�2.

Define a new circuit C̄ : {0, 1}m × Sm
n −→ {0, 1}ml:

C̄(b̄, π̄) = (Cb1(π1), . . . , Cbm (πm)).

We sample C̄ by choosing, uniformly and independently, m bits, b1, . . . , bm , and m
permutations over n elements, π1, . . . , πm , and computing m graphs, where the i th
graph is πi (Gbi ).

Let H be a 2-universal family of hash functions from {0, 1}m × Sm
n × {0, 1}ml to

T = {0, 1}�(q+1)m−2�−n�, where � = m/n.
We can now describe the new circuits:

D0: Let (b̄, π̄) ∈R {0, 1}m × Sm
n , ȳ ← C̄ and h ∈R H. Output (C̄(b̄, π̄), b̄, h, h

(b̄, π̄ , ȳ)).
D1: Let (b̄, π̄) ∈R {0, 1}m × Sm

n , h ∈R H and t ∈R T . Output (C̄(b̄, π̄), b̄, h, t).

Note. In the definition of D0, C̄(b̄, π̄) and ȳ are two independent samples from the
same distribution.

We claim that if (G0, G1) ∈ GNI, then (D0, D1) are statistically close, and if (G0, G1)

/∈ GNI, then (D0, D1) are almost disjoint.
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Intuition. Assume that C̄ is uniformly distributed (over some set). This is certainly
true when G0 and G1 are isomorphic, and close enough for our arguments to work
when they are not.6 Then, each z̄ ∈ Im(C̄) has the same number, w, of pre-images.
Thus, given a sample z̄, taken from C̄ , there are w different possibilities for inputs that
produced it. Each such input contains two parts, b̄ and π̄ . What happens if together with
z̄ we also reveal the first part b̄? When the graphs are non-isomorphic, we know that
C0 and C1 are disjoint. So b̄ is determined by z̄ and revealing it does not add any new
information. That is, there are still w different possibilities for inputs that produced z̄.
If, on the other hand, the graphs are isomorphic, then every one of the 2m values of b̄
is possible. So by revealing the one that was actually used, we reduce the number of
possible inputs that produced z̄ to w/2m . We also know that the size of the image set
of C̄ is |{0, 1}m × Sm

n |/w = 2(q+1)m/w. So when (G0, G1) ∈ GNI, given the first three
components of D0 (which are identical to the first three components of D1), there are
exactly w ·2(q+1)m/w = 2(q+1)m possible inputs that h can take in the fourth component.
This is much larger than the range of our hashing, |T | = 2(q+1)m−2m/n−n . Therefore, by
the Leftover Hash Lemma [10], the fourth component of D0 will be almost uniformly
distributed over T , and thus will be statistically close to the fourth component of D1. On
the other hand, when (G0, G1) /∈ GNI, given the first three components, the number of
inputs that h can take is w/2m · 2(q+1)m/w = 2qm. This is much smaller than |T |, and
the fourth component of D0 can only cover a small fraction of T . The probability that
the fourth component of D1 will fall in this fraction is small, and thus the distributions
will be almost disjoint.

The case of (G0, G1) ∈ GNI. First we argue that C̄ is close to uniform. Let L = {0, 1}l .
For z̄ ∈ Lm , let wt (z̄) = log(|{(b̄, π̄): C̄(b̄, π̄) = z̄}|) be the weight of z̄. That is, the
weight of z̄ is the logarithm of the size of its pre-image set. Let w be the expected
weight of an image of C̄ , w = Ez̄←C̄(wt (z̄)). Since C̄ is composed of many independent
and identically distributed random variables, we can apply a Chernoff argument and
get that Prz̄←C̄(|wt (z̄) − w| > �) < 2−�(n). More formally, for z ∈ L , let wt0(z) =
log(|{(b, π): Cb(π) = z}|). Then for z̄ ∈ Lm , wt (z̄) = wt0(z1) + · · · + wt0(zm). Note
that z1, . . . , zm are independent and identically distributed. Furthermore, for any z ∈ L ,
0 ≤ wt0(z) ≤ �q�. So by the Chernoff bound we have

Prz̄←C̄(|wt (z̄) − w| > �) < 2e−2�2/m�q�2 = 2e−2n.

We would like to consider only z̄ ∈ Lm which have weight close to the mean. Therefore,
we define the set of “good” inputs, G = {(b̄, π̄): |wt (C̄(b̄, π̄)) − w| ≤ �}. We also
define the distribution C̄ ′, that samples uniformly (b̄, π̄) ∈ G and outputs C̄(b̄, π̄).7 We

6 Note that when G0 and G1 have automorphism groups of different sizes, then C̄ is not uniformly distributed.
However, as we will show, it is close to uniform.

7 C̄ ′ is defined for the sake of argument, it is not constructive because we do not know how to sample
uniformly from G. However, it is much easier to prove our claims using this distribution. Furthermore, as we
will show, it is enough to prove our claims on this distribution instead of C̄ , because the two distributions are
statistically close.
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can now define a new pair of distributions, (D′
0, D′

1), which are similar to (D0, D1), with
the only difference that they sample inputs uniformly from G instead of {0, 1}m × Sm

n :

D′
0: Let (b̄, π̄) ∈R G, ȳ ← C̄ ′ and h ∈R H. Output (C̄(b̄, π̄), b̄, h, h(b̄, π̄ , ȳ)).

D′
1: Let (b̄, π̄) ∈R G, h ∈R H and t ∈R T . Output (C̄(b̄, π̄), b̄, h, t).

We claim that in order to finish the proof, it is enough to prove that D′
0 and D′

1 are
statistically close. By the argument above, |G| ≥ (1− 2−�(n))|{0, 1}m × Sm

n |. Let U (D)

denote the uniform distribution over some set D. Then ‖U (G) − U ({0, 1}m × Sm
n )‖ <

2−�(n). Hence, by Fact A2 (in Appendix A), ‖C̄ − C̄ ′‖ < 2−�(n), and therefore ‖D0 −
D′

0‖ < 2−�(n) and ‖D1 − D′
1‖ < 2−�(n). So, by Fact A5, it suffices to prove that

‖D′
0 − D′

1‖ < 2−�(n).
We now show that D′

0 and D′
1 are indeed statistically close. The first two components

of D′
0 and D′

1 are identically distributed. We would like to show that conditioned on the
value of those two components, the third and fourth components have small statistical
difference. Note that if (G0, G1) ∈ GNI, then C0 and C1 are completely disjoint. Hence,
given the first component, the second is determined. So it is sufficient to prove that
conditioned on the first component, the third and fourth have small statistical difference.
Given a sample z̄ ← C̄ ′, the size of its pre-image set is 2wt (z̄) ≥ 2w−�. Also, any
sample from C̄ ′ is chosen with probability at most 2w+�/|G|. So conditioned on the first
component of D′

0, the probability of any triple (b̄, r̄ , ȳ) that h can take as input in the
fourth component is at most

(
1

2w−�

)(
2w+�

|G|
)
≤ 22�

(1 − 2−�(n))(2n!)m
= 2−�(n)

|T | .

Recall that in D′
1, conditioned on the first component, the fourth component is uniformly

distributed over T . So by the Leftover Hash Lemma [10], conditioned on the first com-
ponent, the third and fourth components of D′

0 and D′
1 have statistical difference at most

2−�(n), and, hence, ‖D′
0 − D′

1‖ < 2−�(n).

The case of (G0, G1) /∈ GNI. If (G0, G1) /∈ GNI, then C0 and C1 are identically
distributed. Also, they are uniformly distributed over the domain of all the graphs that
are isomorphic to G0 (and G1). Since the distribution C̄ is composed of many copies
of C0 and C1, it is also uniformly distributed. Thus, by using the terminology above,
the weight of each sample z̄ ← C̄ is w, and the size of its pre-image set is 2w. Let a
denote the size of the automorphism group of G0 (and G1). Then we know that for a
fixed b̄ ∈ {0, 1}m , |{π̄ : C̄(b̄, π̄) = z̄}| = am . Thus, 2w = 2mam .

The size of the image set of C̄ is |{0, 1}m × Sm
n |/2w = 2(q+1)m/2w. So given the first

two components of D0, the number of triplets, (b̄, π̄ , ȳ), that h can take as input in the
fourth component is am(2(q+1)m/2w) = 2qm. Fix any z̄ which is selected according to C̄ ,
also fix b̄ ∈ {0, 1}m , and h ∈ H . Then, in D0, conditioned on z̄ = C̄(b̄, π̄), b̄ and h, there
are at most 2qm = 2−�(n)|T | possible values for (b̄, π̄ , ȳ). So the fourth component of
D0, h(b̄, π̄ , ȳ), can cover at most a 2−�(n) fraction of T . On the other hand, conditioned
on any values for the first three components of D1, the fourth component is uniformly
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distributed over T . So the probability that it will fall in the range of the fourth component
of D0 is at most 2−�(n).

Addressing the problem of uniformly sampling permutations. Let C0 and C1 be the
circuits from the second part of the proof of Theorem 24 (i.e. those that can output ⊥0

and ⊥1), and let D0 and D1 sample from them. Both D0 and D1 take many samples
from C0 and C1. We modify them as follows: if one of these samples is ⊥0 or ⊥1,
D0 and D1 output special (different) symbols ⊥′

0 and ⊥′
1, respectively. Otherwise they

continue as before. The probability that D0 (resp. D1) outputs ⊥′
0 (resp. ⊥′

1) is bounded
by 2m2−n = 2−�(n). It is now easy to verify that when (G0, G1) ∈ GNI this change can
only increase the statistical difference by 2−�(n), and when (G0, G1) /∈ GNI, D0 and D1

are even more disjoint.

5. Conclusion

In this paper we compare two resources that can be used in the construction of statistical
zero-knowledge proofs. The first resource is the interaction between the prover and the
verifier. The second is (limited) help, given to the prover and the verifier in the form
of a shared reference string that is dealt by a trusted (computationally bounded) third
party. We checked whether one of these resources can be traded for the other. Indeed,
we showed that help can always be replaced by interaction. As for replacing interaction
with help, we showed non-interactive statistical zero-knowledge proofs with help, for
languages for which only interactive protocols are currently known. In order to do that,
we showed a complete problem for the class NISZK|h.

We hope that our results will help to shed light on the SZK versus NISZK question. By
introducing a class that is in between SZK and NISZK, we break this question into two
supposedly easier questions. We emphasize that each one of these questions is interesting
in its own right. Specifically, we showed that

SZK ⊇ NISZK|h ⊇ NISZK. (1)

If we could show that SZK = NISZK|h we would get an interesting result that interaction
and (limited) help are equivalent and interchangable resources in the construction of
statistical zero-knowledge protocols. If we could show that NISZK|h = NISZK, then we
would get that languages such as Graph Isomorphism and Graph-Non-Isomorphism are
in NISZK. On the other hand, if we could show that one of the containments in (1) is
strict we would get that SZK  = NISZK.

Acknowledgments

We thank Salil Vadhan and Oded Goldreich for valuable discussions about statistical
zero-knowledge, and the anonymous referee for many helpful suggestions. The second
author also wishes to express his gratitude to Avi Wigderson who directed him to this
topic of research.



Trading Help for Interaction in Statistical Zero-Knowledge Proofs 113

Appendix A. Facts about Probability Distributions

We state some useful facts regarding probability distributions (or random variables).

Fact A1. Let X and Y be two random variables ranging over a domain D, and let
δ = ‖X − Y‖, then

|H(X) − H(Y )| ≤ (log|D| − 1)δ + H2(δ).

Fact A2. For any two random variables X and Y , and any randomized procedure P ,

‖X − Y‖ ≥ ‖P(X) − P(Y )‖.

Fact A3. For any 0 ≤ q ′ ≤ q ≤ p ≤ 1, it holds that KL2(p, q ′) ≥ KL2(p, q).

Fact A4. For any two random variables X and Y , and any function f ,

KL(X | Y ) ≥ KL( f (X) | f (Y )).

Fact A5. For any probability distributions X , Y and Z , ‖X−Y‖ ≤ ‖X−Z‖+‖Z−Y‖.

Appendix B. Proof of Lemma 14

Let P∗ be an arbitrary prover’s strategy. For every x ∈ �N, let sx = Pr[(D, P∗, V )(x) =
“accept”] and s ′x = Pr[(D′, P∗, V )(x) = “accept”]. Also let q be the polynomial that
defines the length of the help string. Denote by (P∗, V )y(x), the outcome of the protocol
between P∗ and V , given that x is the input and y is the reference string. Then

|sx − s ′x | =
∣∣∣∣∣∣

∑
y∈{0,1}q(|x |)

Pr[D(x) = y] Pr[(P∗, V )y(x) = “accept”]

−
∑

y∈{0,1}q(|x |)
Pr[D′(x) = y] Pr[(P∗, V )y(x) = “accept”]

∣∣∣∣∣∣
=
∣∣∣∣∣∣

∑
y∈{0,1}q(|x |)

Pr[(P∗, V )y(x) = “accept”](Pr[D(x) = y] − Pr[D′(x) = y)])

∣∣∣∣∣∣
≤

∑
y∈{0,1}q(|x |)

|Pr[(P∗, V )y(x) = “accept”](Pr[D(x) = y] − Pr[D′(x) = y])|

≤
∑

y∈{0,1}q(|x |)
|Pr[D(x) = y] − Pr[D′(x) = y]| = 2ε.

Where the last equality is by the definition of the statistical difference.
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Appendix C. Proof of Lemma 20

Following [13], the procedure in Lemma 20 contains three building blocks, below we
define them and prove their properties.

Lemma C6. Given a pair of circuits (C0, C1) with n input gates, consider the following
pair:

D0: choose r ∈R {0, 1}n and b ∈R {0, 1}, output (Cb(r), b).
D1: choose r ∈R {0, 1}n and b ∈R {0, 1}, output (Cb(r), b̄).

The following holds:

(1) ‖D0 − D1‖ = ‖C0 − C1‖.
(2) If the pair (C0, C1) is α-disjoint, then (D0, D1) is mutually (α/2)-disjoint.8

Proof. (1) Let S be the domain over which C0 and C1 are distributed. Then

‖D0 − D1‖ = 1

2

∑
x∈S

∑
b∈{0,1}

| 1
2 (Pr(x ← Cb) − Pr(x ← Cb̄))|

= 1

4

∑
x∈S

(|Pr(x ← C0) − Pr(x ← C1)| + |Pr(x ← C1) − Pr(x ← C0)|)

= 1

2

∑
x∈S

|Pr(x ← C0) − Pr(x ← C1)| = ‖C0 − C1‖.

Remark. In [13] a more general statement was proven, which can be used to give an
upper bound on the statistical difference between D0 and D1. In our specific case, this
term is equal to the statistical difference between C0 and C1.

(2) Let S0 = Im(C0)\Im(C1). By definition, for x ← C0 and x ′ ← C1, Pr(x ∈ S0) >

α, and Pr(x ′ ∈ S0) = 0. Then for (x, b) ← D0 and (x ′, b′) ← D1, Pr(x ∈ S0 ∧ b =
0) > α/2 and Pr(x ′ ∈ S0 ∧ b′ = 0) = 0. Similarly, Pr(x ∈ S0 ∧ b = 1) = 0 and
Pr(x ′ ∈ S0 ∧ b′ = 1) > α/2.

The following two lemmas are the main building blocks in the proof of the Polarization
Lemma of [13]. We will use their results regarding the statistical difference, and prove
useful properties when applied to mutually disjoint distributions.

Lemma C7. Given a pair of circuits (C0, C1) with n input gates, and a parameter k,
consider the following pair:

D0: choose (r1, . . . , rk) ∈R {0, 1}kn, output (C0(r1), . . . , C0(rk)).
D1: choose (r1, . . . , rk) ∈R {0, 1}kn, output (C1(r1), . . . , C1(rk)).

8 See Definition 4 for (mutually) α-disjoint.
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The following holds:

(1) ‖D0 − D1‖ ≤ k · ‖C0 − C1‖.
(2) If the pair (C0, C1) is mutually α-disjoint, then (D0, D1) is mutually (1−(1−α)k)-

disjoint.

Proof. (1) This was proved in [13].
(2) Let S = Im(C0) ∩ Im(C1), and (x1, . . . , xk) ← D0. If for some 1 ≤ i ≤ k,

xi /∈ S, then Pr((x1, . . . , xk) ← D1) = 0. That is, (x1, . . . , xk) is in Im(D1) only if for
every 1 ≤ i ≤ k, xi ∈ S. Thus, the probability that a sample from D0 is in Im(D1) is at
most (1 − α)k . Similarly, it can be shown that the probability that a sample from D1 is
in Im(D0) is at most (1−α)k . By definition, the pair (D0, D1) is mutually (1−(1−α)k)-
disjoint.

Lemma C8. Given a pair of circuits (C0, C1) with n input gates, and a parameter k,
consider the following pair:

D0: choose (b1, . . . , bk) ∈R {(c1, . . . , ck) ∈ {0, 1}k : c1 ⊕ · · · ⊕ ck = 0}, and
(r1, . . . , rk) ∈R {0, 1}kn, output (Cb1(r1), . . . , Cbk (rk)).

D1: choose (b1, . . . , bk) ∈R {(c1, . . . , ck) ∈ {0, 1}k : c1 ⊕ · · · ⊕ ck = 1}, and
(r1, . . . , rk) ∈R {0, 1}kn, output (Cb1(r1), . . . , Cbk (rk)).

The following holds:

(1) ‖D0 − D1‖ = ‖C0 − C1‖k .
(2) If the pair (C0, C1) is mutually α-disjoint, then (D0, D1) is mutually αk-disjoint.

Lemma C8 can be easily proven by induction once we have the following:

Claim C9. Given two pairs of circuits (C0, C1), (C ′
0, C ′

1) with n and n′ input gates,
respectively, consider the following circuits:

D0: choose b ∈R {0, 1}, r ∈R {0, 1}n and r ′ ∈R {0, 1}n′
, output (Cb(r), C ′

b(r
′)).

D1: choose b ∈R {0, 1}, r ∈R {0, 1}n and r ′ ∈R {0, 1}n′
, output (Cb(r), C ′

b̄
(r ′)).

The following holds:

(1) ‖D0 − D1‖ = ‖C0 − C1‖ · ‖C ′
0 − C ′

1‖.
(2) If (C0, C1) and (C ′

0, C ′
1) are mutually α-disjoint and mutually α′-disjoint, repec-

tively, then the pair (D0, D1) is mutually (αα′)-disjoint.

Proof. (1) This was proved in [13].
(2) Define the following sets, S0 = Im(C0)\Im(C1), S1 = Im(C1)\Im(C0), S′

0 =
Im(C ′

0)\Im(C ′
1) and S′

1 = Im(C ′
1)\Im(C ′

0). Then for (x, x ′) ← D0,

Pr((x, x ′) ∈ (S0, S′
0) ∨ (x, x ′) ∈ (S1, S′

1))

= Pr((x, x ′) ∈ (S0, S′
0)) + Pr((x, x ′) ∈ (S1, S′

1))

≥ αα′

2
+ αα′

2
= αα′.
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On the other hand, for (y, y′) ← D1, Pr((y, y′) ∈ (S0, S′
0) ∨ (x, x ′) ∈ (S1, S′

1)) = 0.
Similarly, we show that Pr((x, x ′) ∈ (S0, S′

1) ∨ (x, x ′) ∈ (S1, S′
0)) = 0 and Pr((y, y′) ∈

(S0, S′
1) ∨ (y, y′) ∈ (S1, S′

0)) ≥ αα′. Hence the pair (D0, D1) is mutually (αα′)-
disjoint.

Proof of Lemma 20. We are given a pair of circuits (C0, C1) with description length n.
We may assume that n is large enough for the arguments below to work. We know that the
pair (C0, C1) either has statistical difference at most 1/n2 or is (1−1/n2)-disjoint. First,
we apply Lemma C6 to obtain a pair which either has statistical difference at most 1/n2

or is mutually 1
3 -disjoint (using 1

2 (1−1/n2) > 1
3 ). We can now achieve the amplification

by alternating between the tools we developed above, as was done in [13] (actually, one
alternation will suffice). We first apply Lemma C7 with k = 3n, to obtain a pair which
either has statistical difference at most 3/n < 1

2 , or is mutually (1 − 3−n)-disjoint. We
then apply Lemma C8 with k = n, to obtain a pair which either has statistical difference
at most 2−n , or is mutually (1 − 2−n)-disjoint (using (1 − 3−n)n > 1 − 2−n).

References

[1] William Aiello and Johan Hastad. Statistical zero-knowledge languages can be recognized in two rounds.
Journal of Computer and System Sciences, 42(3):327–345, 1991.

[2] Michael Ben-Or and Danny Gutfreund. Increasing the power of the dealer in non-interactive zero-
knowledge proof systems. In Proceedings of ASIACRYPT 2000, LNCS 1976, pages 429–443, Springer-
Verlag, Berlin, 2000.

[3] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications
(extended abstract). In Proceedings of the 20th ACM Symposium on the Theory of Computing, pages 103–
112, Chicago, Illinois, 2–4 May 1988.

[4] Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung. Image density is complete
for non-interactive SZK. In Automata, Languages and Programming, 25th International Coloquium,
LNCS 1443, pages 784–795, Springer-Verlag, Berlin, 1998.

[5] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems. Journal of
Cryptology, 7(1):1–32, Winter 1994.

[6] Oded Goldreich, Amit Sahai, and Salil Vadhan. Honest-verifier statistical zero-knowledge equals gen-
eral statistical zero-knowledge. In Proceedings of the 30th Annual ACM Symposium on the Theory of
Computing, pages 399–408, 1998.

[7] Oded Goldreich, Amit Sahai, and Salil Vadhan. Can statistical zero-knowledge be made non-interactive?
or on the relationship of SZK and NISZK. In Michael Wiener, editor, Advances in Cryptology, CRYPTO
’99, LNCS 1666, pages 467–484, Springer-Verlag, Berlin, 1999.

[8] Oded Goldreich and Salil Vadhan. Comparing entropies in statistical zero-knowledge with application to
the structure of SZK. In Proceedings of the 14th Annual IEEE Conference on Computational Complexity,
pages 54–73, 1998.

[9] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof
systems. SIAM Journal of Computing, 18(1):186–208, 1989.

[10] Russell Impaliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from one-way
functions (extended abstract). In Proceedings of the 21st Annual ACM Symposium on the Theory of
Computing, pages 12–24, 1989.

[11] Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. In Proceedings of the
28th Annual Symposium on the Theory of Computing, pages 649–658, 1996.

[12] Amit Sahai and Salil Vadhan. A complete promise problem for statistical zero-knowledge. In Proceedings
of the 38th Annual Symposium on Foundations of Computer Science, pages 448–457, 1997.

[13] Amit Sahai and Salil Vadhan. Manipulating statistical difference. In Panos Pardalos, Sanguthevar
Rajaseekaran, and Jose Rolim, editors, Proceedings of the DIMACS Workshop on Randomization
Methods in Algorithm Design, pages 251–270, 1998.


