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Abstract. In theoretical cryptography, one formalizes the notion of an adversary’s
success probability being “too small to matter” by asking that it be a negligible function
of the security parameter. We argue that the issue that really arises is what it might
mean for a collection of functions to be “negligible.” We consider (and define) two
such notions, and prove them equivalent. Roughly, this enables us to say that any
cryptographic primitive has a specific associated “security level.” In particular we say
this for any one-way function. We also reconcile different definitions of negligible error
arguments and computational proofs of knowledge that have appeared in the literature.
Although the motivation is cryptographic, the main result is purely about negligible
functions.

Key words. Negligible functions, Zero-knowledge arguments, Error-probability,
One-way functions.

1. Introduction

A function g: N → R is called negligible if it approaches zero faster than the reciprocal
of any polynomial. That is, for every c ∈ N there is an integer nc such that g(n) ≤ n−c

for all n ≥ nc. In theoretical cryptography, one formalizes the notion of an adversary’s
success probability being “too small to matter” by asking that it be a negligible function
of the security parameter.

In this note we point out that there are two possible ways to formalize the notion of a
cryptographic primitive being secure based on the negligibility of success probabilities
of polynomial-time adversaries. Roughly, the difference is in whether the primitive has

∗ This research was supported in part by NSF Grant CCR-0098123, a Packard Foundation Fellowship in
Science and Engineering, and an IBM Faculty Partnership Development Award.

271



272 M. Bellare

a single “security level,” or a different one for each adversary. Both formalizations have
been used in the literature. We ask how these formalizations relate to each other.

We show that the underlying technical question has nothing to do with cryptography.
It can be captured by defining two notions of negligibility for a collection of functions
and asking how they relate to each other. We define the notions and show that they are
equivalent.

Roughly, this implies that to any cryptographic primitive we can associate a single
function that is its “security level,” rather than having a different security level for
each adversary. In the case of negligible error arguments and computational proofs of
knowledge with negligible knowledge error, this reconciles two different definitions that
have appeared in the literature. To illustrate the issues, however, we begin by looking at
a more basic primitive, namely a one-way function.

1.1. The Issue for One-Way Functions

Two notions. Let f : �∗ → �∗ be a polynomial-time computable, length-preserving
function. An inverter for f is a probabilistic, polynomial-time algorithm I . (We discuss
later the non-uniform case, where an inverter is a family of circuits of polynomial size.)
To any inverter I we associate a function InvI called its success probability, defined for
any value n ∈ N of the security parameter by InvI (n) = Pr[ f (I ( f (x))) = f (x)], the
probability being over a random choice of x from �n , and over the coin tosses of I . The
following is standard:

We say f is one-way if for every inverter I the function InvI is negligible.

There is another way we might consider formalizing f being “one-way.” To describe
this, we first introduce the following terminology and notation. We say that g1: N → R

is eventually less than g2: N → R, written g1 ≤ ev g2, if there is an integer k such that
g1(n) ≤ g2(n) for all n ≥ k. Now:

We say f is uniformly one-way if there is a negligible function δ such that
InvI ≤ ev δ for every inverter I .

In other words, there is a negligible function δ that is a “witness” to the fact that the
success probability of any inverter eventually becomes “small.” More precisely, for each
inverter I there is an integer kI such that InvI (n) ≤ δ(n) for all n ≥ kI . We call
s(·) = 1/δ(·) the “security level.”1

Discussion. Another way of viewing the above definitions is that the order of quantifi-
cation is different:

f is one-way: ∀ inverters I ∃ negligible δI such that InvI ≤ ev δI ,
f is uniformly one-way: ∃ negligible δ such that ∀ inverters I we have InvI ≤ ev δ.

1 In asking for a single “security level,” this definition is in the style of the definition of Levin [7]. (See also
[8].) The latter, however, measures the quality of inverters via their time to success probability ratios. It seems
the notion of uniform one-wayness is a simplified, special case of their notions in which one looks only at
polynomial-time adversaries and security of the form 1/δ for a negligible function δ.
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Yet another way to see the difference is by taking the contra-positives of the definitions,
as we must do in proving theorems based on the assumption that f is one-way or uni-
formly one-way. Function f is not one-way if there is an inverter I and a constant c such
that InvI (n) > n−c for infinitely many n. That is, there is some inverter whose success
probability is not negligible. On the other hand, f is not uniformly one-way if for every
negligible δ there is an inverter Iδ such that InvIδ (n) > δ(n) for infinitely many n. This
does not directly say that there is one inverter achieving non-negligible success.

Is there a single security level? It is not hard to see that if f is uniformly one-way,
then it is one-way, but it is not clear whether or not the converse is true. Perhaps different
inverters have different success probabilities, all negligible, but so that for any particular
negligible δ, there is some inverter who does better than δ infinitely often.

Equivalence. The results in this paper imply that the above two definitions are equiva-
lent, meaning f is one-way if and only if it is uniformly one-way. This means that given
a one-way function f there exists a single negligible function δ such that the success
probability of any inverter is eventually less than δ. So every one-way function does have
a “specific” associated security level. In other words, the order of the quantifiers does
not matter.

1.2. Negligibility of Function Collections

It turns out that the technical question underlying the above has nothing to do with one-
way functions, or even with cryptography. It is just about negligible functions. We first
formulate the question, then relate it to the above.

Let F = {Fi : i ∈ N} be a collection of functions, all mapping N to R. We consider two
definitions of “negligibility” for the collection F. The first is simple: just ask that each
function, taken individually, is negligible. Formally, we say F is pointwise negligible if
Fi is negligible for each i ∈ N. The second is to ask that the collection is “uniformly”
negligible in that the different functions conform to some common limit point. Formally,
F is uniformly negligible if there is a negligible function δ (called a limit point) such
that Fi ≤ ev δ for all i ∈ N. That is, each Fi drops below δ for large enough n. (The
terminology here is by some sort of rough analogy with the notions of pointwise and
uniform convergence of collections of functions in real analysis.)

It is quite easy to see that if collection F is uniformly negligible, then it is also pointwise
negligible. However, is the converse true? Theorem 3.2 shows that the answer is yes: the
two notions of negligible collections are equivalent.

We stress that the collections considered here are countable. The result is not true for
an uncountable collection.

1.3. Application to Cryptographic Notions

Application to one-way functions. Now, how does this relate to the issue for one-way
functions? Let I = {Ii : i ∈ N} be an enumeration of all inverters. (Since an inverter
is a probabilistic, polynomial-time algorithm, the number of inverters is countable. For
the non-uniform case, where there are uncountably many inverters, see Section 1.4 and
Section 4.) For each i ∈ N define the function Fi by Fi (n) = InvIi (n), the latter being
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the success probability of Ii as defined in Section 1.1. Let F = {Fi : i ∈ N}. Then
observe that f is one-way if and only if the collection F is pointwise negligible, and f is
uniformly one-way if and only if the collection F is uniformly negligible. Theorem 3.2
thus implies that f is one-way if and only if it is uniformly one-way.

More generally. Now that we see this, it is clear that the same is true for pretty much
any cryptographic primitive. The (asymptotic) definition of security for any primitive
has the following form. To any “adversary” A and any value of the security parameter
n there will be associated a success probability SuccA(n), under some experiment. (For
now, an adversary is a uniform algorithm.) The primitive is said to be “secure” if for
each adversary A the function SuccA is negligible. To put this in the framework we have
been looking at, let A = {Ai : i ∈ N} be an enumeration of all adversaries in question.
(Since an adversary is a uniform algorithm, the number of adversaries is countable.)
Let Fi (n) = SuccAi (n). Then we see that the definition indicated above is asking that
the collection of functions F = {Fi : i ∈ N} is pointwise negligible. It seems equally
reasonable, however, to ask that the collection of functions be uniformly negligible.
This says there exists a particular negligible function δ such that the success probability
SuccA(·) of any adversary A is eventually less than δ. Here, a specific security level is
associated to the primitive, to which all adversaries must eventually conform. This might
seem different, but Theorem 3.2 says the two notions are equivalent. In particular it says
that it is always possible to find such a specific security level for any primitive even if
the definition does not explicitly ask for it.

Error probabilities in protocols. For a one-way function, it seems of some interest
that there is a single “security level” associated to the function, but we do not see any
particular advantage to formulating the definition in the new way. However, a setting
where the second type of formulation seems more natural is in computationally sound
proofs and proofs of knowledge.

We often talk of “the error probability” of a protocol such as a computationally sound
interactive proof. This terminology indicates that we imagine there being associated to
a given interactive proof system, defined by a given verifier, a single entity (function)
called its error-probability. A definition of “negligible error arguments” based on this
view is given in [2]. Earlier, however, other definitions had appeared which did not have
this view of error-probability in the case of negligible error [5], [9]: each prover had a
different associated “error-probability,” so that the term “the error-probability” of the
protocol did not have a realization. Applying the above, however, we can show that the
two formulations are equivalent. See Section 4.2. Similarly, we relate two notions of
computational proofs of knowledge with negligible knowledge error as suggested in [1].
See Section 4.3.

1.4. Non-Uniform Adversaries and Uncountability

As we indicated above, we wish to associate a function to each adversary, this function
being the adversary’s success probability, and consider the “negligibility” of the ensuing
collection of functions. When the class of adversaries includes only uniform algorithms,
the number of adversaries, and hence of functions, is countable, and the result mentioned
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in Section 1.2 applies. However, the set of adversaries might be the set of all non-uniform
polynomial-time algorithms. This set is uncountable, and hence so is the collection of
associated functions. In this case we cannot directly apply our main result. However, we
will see that it is still possible to apply the equivalence, and get the desired results, by
considering the “best possible” non-uniform adversaries for each specific polynomial
size-bound. This will “reduce” the uncountable case to the countable one.

The treatment in Section 2 is general, applying to either countable or uncountable
collections. We prove in Section 3 the equivalence in the countable case, and also a
characterization, for the uncountable case, that enables us to reduce the latter to the
former.

2. Definitions and Elementary Facts

Let N = {1, 2, 3 . . .} be the set of positive integers, and let R be the set of real numbers.
Unless otherwise indicated, a function maps N to R. We sometimes regard a function
as a “point” in the space of all functions and refer to it this way. An “integer” means a
positive integer, i.e., an element of N. We begin with a useful shorthand:

Definition 2.1. If f, g are functions we say that f is eventually less than g, written
f ≤ ev g, if there is an integer k such that f (n) ≤ g(n) for all n ≥ k.

It is useful to note that this relation is transitive:

Proposition 2.2. The relation ≤ ev is transitive: if f1 ≤ ev f2 and f2 ≤ ev f3, then
f1 ≤ ev f3.

Recall that a function f is negligible if for every integer c there is an integer nc such that
f (n) ≤ n−c for all n ≥ nc. With the above shorthand, another way to say it is:

Definition 2.3. A function f is negligible if f ≤ ev (·)−c for every integer c.

Here (·)−c stands for the function n → n−c. It is useful to note the following:

Proposition 2.4. A function f is negligible if and only if there is a negligible function
g such that f ≤ ev g.

Proof. If f is negligible, then the other condition is satisfied by setting g = f . Con-
versely, assume there is a negligible g such that f ≤ ev g. We want to show f is negligible.
So let c ∈ N. Then f ≤ ev g (by assumption) and g ≤ ev (·)c (because g is negligible),
so by Proposition 2.2 we have f ≤ ev (·)c. So f is negligible by Definition 2.3.

A collection of functions is a set of functions whose cardinality could be countable or
uncountable.
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Definition 2.5. A collection of functions F is pointwise negligible if for every F ∈ F
it is the case that F is a negligible function.

This means that for each F ∈ F and each integer c there is some number k(F, c),
depending on both F and c, such that F(n) ≤ n−c whenever n ≥ k(F, c). In other
words, the different functions could go down at different rates, and although each is
eventually below any inverse polynomial, the time at which this happens depends both
on the function and the value of c defining the inverse polynomial. The notion we define
next is stronger, in that it asks that there be a single negligible function δ that is a “witness”
to the fact that the functions in the collection eventually become small. All functions
must eventually drop below δ.

Definition 2.6. A collection of functions F is uniformly negligible if there is a negligible
function δ such that F ≤ ev δ for every F ∈ F.

In other words, the collection F is uniformly negligible if there is a negligible function δ

such that for each F ∈ F there is an integer k(F) such that F(n) ≤ δ(n) for all n ≥ k(F).
Notice that the point at which F drops below δ is allowed to depend on F and may vary
from function to function in the collection.

Definition 2.7. Let F be a collection of functions and let δ be a function. We say that
δ is a limit point of F if F ≤ ev δ for each F ∈ F.

The following is obvious:

Proposition 2.8. A collection of functions F is uniformly negligible if and only if it has
a negligible limit point.

Note that limit points are not unique.

3. Relations between the Two Notions of Negligible Collections

It is easy to see that uniform negligibility implies pointwise negligibility. This is true
regardless of whether the collection is countable or uncountable.

Proposition 3.1. If F is uniformly negligible, then it is pointwise negligible.

Proof. By Proposition 2.8 there exists a negligible function δ that is a limit function
for F. Let F ∈ F. We know that F ≤ ev δ since δ is a limit point of F, and we know that
δ is negligible, so F is negligible by Proposition 2.4. So F is pointwise negligible as per
Definition 2.5.

The question we want to look at is whether the notions are equivalent. We first consider
the case where the collection of functions is countable, and then the case where it is
uncountable.
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3.1. The Case of a Countable Collection of Functions

The important case is when the collection is countable. In that case we show that the two
notions of negligibility are equivalent.

Theorem 3.2. Let F = {Fi : i ∈ N} be a countable collection of functions. Then F is
pointwise negligible if and only if it is uniformly negligible.

We know from Proposition 3.1 that if F is uniformly negligible, then it is pointwise
negligible. The other direction is more interesting. The assumption is that each Fi is a
negligible function. We claim that F is uniformly negligible. To show this we will define
a negligible limit point δ for F. Before doing so, it may help to see why a tempting easier
construction does not work.

Remark 3.3. Perhaps the first thought would be to set

δ(n) = max {F1(n), F2(n), . . . , Fn(n)}. (1)

Certainly Fi ≤ ev δ for each i ∈ N. However, it is not hard to see that δ need not be
negligible. For example let ν be a negligible function and set Fi ( j) = 1 if j ≤ i and
Fi ( j) = ν( j) if j > i . The collection of functions {Fi : i ∈ N} is pointwise negligible,
but the function δ of (1) is the constant function 1 which is definitely not negligible.

Proof of Theorem 3.2. Assume F is pointwise negligible. We will construct a negli-
gible limit point δ for F. The construction uses diagonalization. We first sketch the idea
and then provide the details.

Imagine a table with rows indexed by the values i = 1, 2, . . .; columns indexed by
the values of n = 1, 2, . . .; and entry (i, n) of the table containing Fi (n). We know
that for any c, the entries in each row eventually drop below n−c. However, where it
happens differs from row to row. We define δ by a sort of diagonalization, in a sequence
of “stages.” In stage c we will consider only the first c functions in the list, namely,
F1, . . . , Fc. We will find a value h(c), such that all these functions are less than (·)−c

for n ≥ h(c), by “moving out” as much as is necessary for all c functions to fall below
our target. We view this as defining a sequence of rectangles, each finite, but so that the
sequence eventually covers the entire table. (For a vague illustration, see Fig. 1.) We will
use h to define δ. Namely, for each n we define δ(n) to maximize the functions in the
rectangle with column number “closest” to n. We now give the construction and proof
in more detail.

For every i, c ∈ N we know that Fi ≤ ev (·)−c. Let N (i, c) ∈ N be such that Fi (n) ≤
n−c for all n ≥ N (i, c). We now define a function h: {0}∪N → N recursively as follows.
Let h(0) = 0, and for c ∈ N let

h(c) = max{N (1, c), N (2, c), . . . , N (c, c), 1 + h(c − 1)}. (2)

That is, h(c) is a point beyond which the first c functions drop below (·)−c. The following
two claims are clear from the definition:

Claim 1. F1(n), . . . , Fc(n) ≤ n−c for all n ≥ h(c) and all c ∈ N.
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1

h(1)

2

h(2)

...

· · ·

i

h(i)

Fig. 1. Entry (i, n) of this table is Fi (n). To each row number i we associate a column number h(i, i) such
that all entries to the right of the corresponding rectangle (meaning stay above the bottom edge!) are bounded
by n−i .

Claim 2. h is an increasing function, meaning h(c) < h(c + 1) for all c ∈ N ∪ {0}.

For any n ∈ N we let

g(n) = max{ j ∈ N: h( j) ≤ n}. (3)

That is, the first g(n) functions drop below (·)−g(n) for inputs that are at least n. Note
the fact that h is increasing means that the set in the above maximization is finite, so the
maximum is well defined. The following is clear from (3):

Claim 3. g is a non-decreasing function, meaning g(n) ≤ g(n + 1) for all n ∈ N.

Intuitively, we think of g as an inverse of function h. The precise relationship is provided
by Claims 4 and 5 below. Claim 4 is clear from (3):

Claim 4. h(g(n)) ≤ n for all n ∈ N.

Letting n = h(c) in (3) and using Claim 2, we also get:

Claim 5. g(h(c)) = c for all c ∈ N.

Now for any n ∈ N we let

δ(n) = max{Fi (n): 1 ≤ i ≤ g(n)}. (4)

We have two final claims, to be proven below:

Claim 6. The function δ is a limit point of the collection F = {Fi : i ∈ N}.

Claim 7. The function δ is negligible.
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Claims 6 and 7 together say that δ is a negligible limit point for the collection F =
{Fi : i ∈ N}, and hence F is uniformly negligible by Proposition 2.8, completing the
proof. It remains to prove Claims 6 and 7.

To prove Claim 6, let i ∈ N. As per Definition 2.7 we need to show there is an integer
ni such that Fi (n) ≤ δ(n) for all n ≥ ni . We set ni = h(i) and claim this works. Indeed,
suppose n ≥ h(i). Applying first Claim 3 and then Claim 5 we get

g(n) ≥ g(h(i)) = i.

From (4) it follows that Fi (n) ≤ δ(n), as desired.
To prove Claim 7 we need to show that δ meets Definition 2.3. So let c ∈ N. We need

to show that there is an integer nc such that δ(n) ≤ n−c for all n ≥ nc. We set nc = h(c)
and claim this works. To see this, assume n ≥ h(c). The following is justified below:

δ(n) = max{Fi (n): 1 ≤ i ≤ g(n)}
≤ n−g(n)

≤ n−c.

The first line is from (4). Claim 4 tells us that n ≥ h(g(n)), and Claim 1 then gives us the
second line above. Since we assumed n ≥ h(c), applying first Claim 3 and then Claim 5
we get

g(n) ≥ g(h(c)) = c.

This implies n−g(n) ≤ n−c which was the last line above.

Remark 3.4. The limit point δ constructed in Theorem 3.2 has properties beyond being
a negligible limit point. In particular, it is a non-increasing function, meaning δ(n) ≤
δ(n + 1) for all n ∈ N.

3.2. The Case of an Uncountable Collection of Functions

The collection of functions considered in Theorem 3.2 is countable. Proposition 3.1
says that even an uncountable collection of uniformly negligible functions is pointwise
negligible. However, the converse fails for some uncountable collections.

Proposition 3.5. There is an uncountable collection of functions F that is pointwise
negligible but not uniformly negligible.

Proof. Let F be the set of all negligible functions mapping N to R. Obviously F is
pointwise negligible, but it is not uniformly negligible. To see this, let g be any negligible
function. It cannot be a limit point of F, because the function f = 2g is negligible, hence
in F, but f is not eventually less than g. Thus no negligible function can be a limit point
for F, so that F has no negligible limit point.

This does not mean that all uncountable collections of pointwise negligible functions
fail to be uniformly negligible. The following is a simple characterization of collections
where the equivalence holds.
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Definition 3.6. Let F, M be collections of functions. We say that F is majored by M,
or M majors F, if for every F ∈ F there is an M ∈ M such that F ≤ ev M .

The following characterization holds for any collection F, but the interesting case
is when F is uncountable. The key point below is that the collection that majors F is
required to be countable.

Theorem 3.7. Let F be a collection of functions. Then F is uniformly negligible if and
only if it is majored by some pointwise negligible, countable collection of functions.

Proof. First assume F is uniformly negligible. By Proposition 2.8 it has a negligible
limit point δ. We set M = {mδ: m ∈ N}. This is a countable, pointwise negligible
collection of functions, and it majors F because it contains δ. So F is indeed majored by
some pointwise negligible countable collection of functions.

Conversely suppose M is a pointwise negligible, countable collection of functions
that majors F. Since M is countable, it is uniformly negligible by Theorem 3.2. By
Proposition 2.8, M has a negligible limit point δ. Now if F ∈ F, then by Definition 3.6
there is some M ∈ M such that F ≤ ev M . However, M ≤ ev δ because M ∈ M and δ is
a limit point for M. Thus, F ≤ ev δ by Proposition 2.2 and δ is also a limit point for F.
So F is uniformly negligible.

Recall that we want to make the functions in the collection correspond to success
probabilities of adversaries. We have discussed in Section 1.4 how the countability or
uncountability of the collection is a question of whether uniform or non-uniform adver-
saries are being considered. Although it is not possible to apply Theorem 3.2 directly in
the latter case, we will see that it is possible to apply Theorem 3.7, and get the desired
results.

4. Application to Cryptographic Definitions

We discussed in Section 1.3 how the above relates to cryptographic definitions. Let us
look at this in more detail. We first summarize the implications for one-way functions
and then move on to arguments and proofs of knowledge.

Below, a uniform adversary is a probabilistic, polynomial-time (PPT) algorithm. A
non-uniform adversary A = 〈Ai : i ∈ N〉 is a sequence of circuits of polynomial size
(meaning, there is a polynomial p such that for all i the size of Ai is at most p(i)), and
in this case the notation A(x) denotes the output of circuit A|x | on input x . An adversary
means either a uniform or a non-uniform adversary.

4.1. Application to One-Way Functions

Let f : �∗ → �∗ be a polynomial-time computable, length-preserving function. An
adversary in this context is called an inverter. Associated to any inverter I (uniform or
non-uniform) is its success probability function InvI : N → R, defined for all n ∈ N

by InvI (n) = Pr[ f (I ( f (x))) = f (x)], the probability being over the choice of x , and,
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in the uniform case, over the coins of I . We let I denote the set of all inverters. (In the
uniform case this is the countable set of all PPT algorithms, and in the non-uniform case
the uncountable set of all sequences of circuits that have polynomial size.) We consider
two definitions of one-wayness.

Definition 4.1. Let f, I be as above. We say that f is one-way if for every inverter
I ∈ I the function InvI is negligible. We say that f is uniformly one-way if there is a
negligible function δ such that InvI ≤ ev δ for every inverter I ∈ I.

We claim the notions are equivalent. The following applies to both the uniform and the
non-uniform cases:

Theorem 4.2. Let f be as above. Then f is one-way if and only if it is uniformly
one-way.

Proof. We let F = {InvI : I ∈ I} denote the collection of success probability functions
associated to the set of inverters under consideration. This collection is countable in the
uniform case and uncountable in the non-uniform case. The key observation is that f is
one-way if and only if F is pointwise negligible, and f is uniformly one-way if and only
if F is uniformly negligible. To complete the proof it suffices to show that F is pointwise
negligible if and only if it is uniformly negligible.

In the uniform case F is countable, so the conclusion follows directly from Theo-
rem 3.2. We now consider the non-uniform case.

Proposition 3.1 says that if F is uniformly negligible, then it is pointwise negligible.
To prove the converse, assume F is pointwise negligible. We will exhibit a countable,
pointwise negligible collection M that majors F. It follows from Theorem 3.7 that F is
uniformly negligible, and our proof is complete. It remains to exhibit M.

For any integers n, s there are finitely many n-input circuits of size at most s, and
hence we can fix an n-input circuit Bn,s of size at most s such that for all n-input circuits
C of size at most s we have

Pr[ f (Bn,s( f (x))) = f (x)] ≥ Pr[ f (C( f (x))) = f (x)],

the probability above being over a random choice of x from �n . Let p1, p2, . . . be an
enumeration of all polynomials, and for any i ∈ N define the non-uniform inverter
Ii = 〈Bn,pi (n): n ∈ N〉. For any n ∈ N let Mi (n) = InvIi (n) and let M be the collection
of functions {Mi : i ∈ N}. It is clear that M is countable, and M is pointwise negligible
because it is a subset of the pointwise negligible collection F. To complete the proof, we
show that M majors F. Consider any inverter I ∈ I and let p be a polynomial bounding
its size. Let i be such that p = pi . Then for each n ∈ N we have InvI (n) ≤ InvIi (n).
Thus InvI ≤ ev InvIi = Mi .

4.2. Application to Negligible Error Arguments

An argument, also called a computationally sound proof [3], [4], is a two-party protocol
in which soundness is only required to hold with respect to polynomial-time cheating
provers. (As usual one can consider either uniform or non-uniform cheating provers.) A
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couple of definitions of negligible error arguments have appeared in the literature. We
show how they correspond to the two different views of negligibility of collections of
functions and then show they are equivalent.

We begin with the definitions. We consider a two-party protocol in which a prover
attempts to convince a PPT verifier V that their common input belongs to some underlying
language L . An adversary in this context is called a cheating prover. Associated to any
cheating prover P (uniform or non-uniform) is its error-probability function ErrP : N →
R, defined for all n ∈ N by

ErrP(n) = max{AccP(x): x ∈ �n and x �∈ L}.

Here AccP(x) denotes the probability, taken over the coins of V and P , that V accepts
in a conversation with P on common input x . We adopt the convention ErrP(n) = 0
when the set in the maximization above is empty. We let P denote the set of all cheating
provers. (In the uniform case this is the countable set of all PPT algorithms, and in the
non-uniform case the uncountable set of all sequences of circuits that have polynomial
size.)

In an interactive proof setting [6], where cheating provers are not computationally
bounded, we would say the error-probability is δ: N → R if ErrP(n) ≤ δ(n) for
all P and all n ∈ N. One might try to define the error-probability similarly in the
case of arguments by simply replacing “for all P” by “for all P ∈ P .” This however
does not yield a suitable notion of error-probability for an argument.2 Taking this into
account, two different definitions of computational soundness have been proposed in the
literature. Computational soundness as defined below is from [5] and [9] while uniform
computational soundness is from [2]:

Definition 4.3. Let V, L ,P be as above. We say that V is computationally sound over
L if for every cheating prover P ∈ P the function ErrP is negligible. We say that V
is uniformly computationally sound over L if there is a negligible function δ (called the
error-probability of V ) such that ErrP ≤ ev δ for every P ∈ P .

In the notion of computational soundness, there is no “error-probability” associated to
V . Instead, different cheating provers might have different error-probabilities, as long as
they are all negligible. Uniform computational soundness, in contrast, asks that there be
an identifiable function δ, depending only on V , that is called the error-probability, and
in that sense is closer in spirit to the definition in the case of interactive proofs. However,
it turns out the two notions are equivalent.

Theorem 4.4. Let V, L be as above. Then V is computationally sound over L if and
only if V is uniformly computationally sound over L .

2 To see why, consider the following protocol for membership in the language L = ∅. On common input
x the verifier picks a pair of random primes of length n = |x | and multiplies them to get a modulus N
which it sends to the prover. It accepts if the prover returns the factorization of N . Intuitively (and formally
as per Definition 4.3), this protocol is computationally sound if factoring is hard. However, for any negligible
δ: N → R, there exists a polynomial-time P and an n ∈ N such that ErrP (n) > δ(n).
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For the proof, we let F = {ErrP : P ∈ P} denote the collection of error-probability
functions associated to the set of cheating provers under consideration. This collection
is countable in the uniform case and uncountable in the non-uniform case. As before, the
key observation is that V is computationally sound over L if and only if F is pointwise
negligible, and V is uniformly computationally sound over L if and only if F is uniformly
negligible. To complete the proof it suffices to show that F is pointwise negligible if and
only if it is uniformly negligible. This can be done as in the proof of Theorem 4.2, directly
by Theorem 3.2 for the uniform case, and via Theorem 3.7 for the non-uniform case. We
omit the details to avoid repetition.

4.3. Application to Proofs of Knowledge

An NP-relation is a function ρ: �∗ × �∗ → � computable in time polynomial in the
length of its first argument. For any x ∈ �∗ we let ρ(x) = {w ∈ �∗: ρ(x, w) = 1}
denote the witness set of x . We let Lang(ρ) = {x ∈ �∗: ρ(x) �= ∅} denote the language
defined by ρ. Note that a language L is in NP iff there exists an NP-relation ρ such that
L = Lang(ρ).

Let ρ be an NP-relation and let L = Lang(ρ). Let V be a PPT verifier defining a two-
party protocol. An adversary in this context is called a cheating prover and P denotes the
set of all cheating provers. (As above,P is countable in the uniform case and uncountable
in the non-uniform case.) As above, let AccP(x) denote the probability, taken over the
coins of V and P , that V accepts in a conversation with prover P on common input
x . Below Px denotes prover P with common input fixed to x . The two notions in the
definition below are both from [1].

Definition 4.5. Let ρ, V, L ,P be as above. We say that V defines a computationally
sound proof of knowledge for ρ if there is an expected polynomial-time oracle algorithm
E (called the extractor) such that for each cheating prover P ∈ P there is a negligible
function κP such that

Pr[E Px (x) ∈ ρ(x)] ≥ AccP(x) − κP(|x |)

for all x ∈ Lang(ρ). We say that V defines a uniformly computationally sound proof
of knowledge over ρ if there is an expected polynomial-time oracle algorithm E (the
extractor) and a negligible function κ (called the knowledge-error) such that for every
cheating prover P ∈ P there is a constant n P such that

Pr[E Px (x) ∈ ρ(x)] ≥ AccP(x) − κ(|x |)

for all x ∈ Lang(ρ) that have length at least n P .

The difference is that in a uniformly computationally sound proof of knowledge, there is
an identifiable function called the knowledge-error, analogous to an error-probability in
proofs of membership, while in a computationally sound proof of knowledge, there is no
single such function, but instead the function depends on the cheating prover. However,
the two notions are equivalent.
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Theorem 4.6. Let ρ, V, L be as above. Then V defines a computationally sound proof
of knowledge over ρ if and only if V defines a uniformly computationally sound proof
of knowledge over ρ.

In this case it may be a little less evident than before how the issue corresponds to
negligibility of some collection of functions. For the proof, we first claim something
stronger than the theorem statement, namely that not only are the notions equivalent, but
the extractor is the same in both cases. So view the extractor E as now fixed. For each
prover P ∈ P define the function

FP(n) = max {AccP(x) − Pr[E Px (x) ∈ ρ(x)]: x ∈ �n and x ∈ L}.
We adopt the convention FP(n) = 0 when the set in the maximization above is empty.
We consider the collection of functions F = {FP : P ∈ P}. Now we observe that V
defines a computationally sound proof of knowledge over ρ if and only F is pointwise
negligible, and V defines a uniformly computationally sound proof of knowledge over
ρ if and only if F is uniformly negligible. We then show that F is uniformly negligible
if and only if it is pointwise negligible as before.
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