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Abstract. We introduce a new class of computational problems which we call the
“one-more-RSA-inversion” problems. Our main result is that two problems in this class,
which we call the chosen-target and known-target inversion problems, respectively,
have polynomially equivalent computational complexity. We show how this leads to a
proof of security for Chaum’s RSA-based blind signature scheme in the random oracle
model based on the assumed hardness of either of these problems. We define and prove
analogous results for “one-more-discrete-logarithm” problems. Since the appearence of
the preliminary version of this paper, the new problems we have introduced have found
other uses as well.
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1. Introduction

We introduce a new class of computational problems which we call the “one-more-RSA-
inversion” problems. We then use problems from this class as a basis to prove security of
Chaum’s RSA-based blind signature scheme [12]. We begin with a high-level description
of our approach and its motivation.

Example. Blind signature schemes are the central cryptographic component of digital-
cash schemes, used to enable a Withdrawer to obtain a Bank’s signature on some token
without revealing this token to the bank, thereby creating a valid but anonymous e-coin.
Chaum’s RSA-based blind signature scheme [12] is simple and practical, and (assuming
the underlying hash function is properly chosen) has so far resisted attacks. Yet there
seems little hope of proving its security based on the “standard” one-wayness assumption
about the RSA function: the security of the scheme seems to rely on different, and perhaps
stronger, properties of RSA.

1.1. The Gap between Proofs and Practice

The above is a common situation in cryptography. It exhibits a gap created by the
computational assumptions we prefer to make and the schemes we want to use.

The reliance on unproven computational properties of RSA for security naturally
inclines us to be conservative and to stick to standard assumptions, of which the favorite
is that RSA is one-way. Designers who have worked with RSA know, however, that
it seems to have many additional strengths. These are typically exploited, implicitly
rather than explicitly, in their designs. The resulting schemes might well resist attack but
are dubbed “heuristic” because no proof of security based on the standard assumption
seems likely. This leads designers to seek alternative schemes that can be proven secure
under the standard assumptions. If the alternatives have cost comparable with that of the
original scheme, then they are indeed attractive replacements for the latter. However,
often they are more expensive. Meanwhile, the use of the original practical scheme is
being discouraged even though it might very well be secure.

Making New Assumptions. We suggest that practical RSA-based schemes that have
resisted attack (for example, Chaum’s RSA-based blind signature scheme) might be
manifestations of strengths of the RSA function that have not so far been properly ab-
stracted or formalized. We suggest that one should build on the intuition of designers and
formulate explicit computational problems that capture the above-mentioned strengths
and suffice to prove the security of the scheme. These problems can then be studied,
to see how they relate to other problems and to what extent we can believe in them as
assumptions. This process will lead to a better understanding of the security of schemes.
It will also highlight computational problems that might then be recognized as being at
the core of other schemes, and enlarge the set of assumptions we might be willing to
make, leading to benefits in the design or analysis of other schemes.

This Paper. In this paper we formalize a class of computational problems which we
call one-more-RSA-inversion problems. They are natural extensions of the RSA-inversion
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problem underlying the notion of one-wayness to a setting where the adversary has access
to a decryption oracle. We study several specific problems in this class and the relations
between them, and then show how the assumed hardness of some of these problems
leads to a proof of security of Chaum’s blind signature scheme in the random oracle
model [7].

1.2. The One-More-RSA-Inversion Problems

Recall that associated to a modulus N and an encryption exponent e are the RSA function
and its RSA-inverse defined by

RSAN ,e(x) = xe mod N and RSA−1
N ,e(y) = yd mod N ,

where x, y ∈ Z∗N and d is the decryption exponent. To invert RSA at a point y ∈ Z∗N
means to compute x = RSA−1

N ,e(y). The commonly made and believed assumption that
the RSA function is one-way says that the following problem is (computationally) hard:
given N , e, and a random target point y ∈ Z∗N , compute yd mod N . In this paper we are
interested in settings where the legitimate user (and hence the adversary) has access to
an oracle RSA−1

N ,e(·) for the inverse RSA function. (The adversary can provide a value
y ∈ Z∗N to its oracle and get back x = RSA−1

N ,e(y) = yd mod N , but it is not directly
given d .) A security property apparently possessed by RSA is that an adversary can only
make “trivial” use of this oracle. We capture this in the following way. The adversary is
given some random target points y1, . . . , yn ∈ Z∗N , and we say it wins if the number of
these points whose RSA-inverse it manages to compute exceeds the number of calls it
makes to its oracle. That is, it computes “one more RSA-inverse.”

Within this framework we consider two specific problems. In the known-target in-
version problem, the adversary, to win, must output the inverses of all target points,
using a number of decryption oracle queries that is one fewer than the number of target
points. In the chosen-target inversion problem, the adversary does not have to compute
the RSA-inverses of all target points but instead can choose to invert any number of them
that it likes, and wins as long as the number of decryption oracle queries that it makes is
strictly fewer than the number of target points it correctly inverts.

Note that the special case of the known-target inversion problem in which there is just
one target point is exactly the problem underlying the notion of one-wayness. In this
sense, we consider security against known-target inversion to be a natural extension of
one-wayness to a setting where the adversary has access to an RSA-inversion oracle.

The formal definitions of the problems provided in Section 2 are parameterized via the
number of target points, and, for the chosen-target inversion problem, also the number
of these that the adversary inverts. These parameterized formulations are more conve-
nient for the proof of our main result. An alternative, un-parameterized formulation that
seems more convenient for applications is provided and proved equivalent to the original
formulation in Section 5.

As noted in Remark 2.5, these problems can be hard only if factoring does not re-
duce to RSA inversion. Some evidence that the latter is true is provided by Boneh and
Venkatesan [11].
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1.3. Relations Among One-More-RSA-Inversion Problems

It is easy to see that if the chosen-target inversion problem is hard, then so is the known-
target inversion problem. However, it is conceivable that the ability to choose the target
points might help the adversary considerably. Our main result is that this is not so.
Corollary 4.2 says that the chosen-target inversion problem is hard if and only if the
known-target inversion problem is hard. We prove this by showing how, given any
polynomial-time adversary B that solves the chosen-target inversion problem, we can
design a polynomial-time adversary A that solves the known-target inversion problem
with about the same probability. The reduction exploits linear algebraic techniques which
in this setting are complicated by the fact that the order ϕ(N ) of the group over which
we must work is not known to the adversary.

1.4. Security of Chaum’s RSA-Based Blind Signature Scheme

In Chaum’s RSA-based blind signature scheme, the signer’s public key is N , e and its
secret key is N , d where these quantities are as in the RSA system. The signature of a
message M is

x = RSA−1
N ,e(H(M)) = H(M)d mod N , (1)

where H : �∗ → Z∗N is a public hash function. A message-tag pair (M, x) is said to be
valid if x is as in (1). The blind signature protocol enables a user to obtain the signature
of a message M without revealing M to the signer, as follows. The user picks r at
random in Z∗N , computes M̄ = re · H(M) mod N , and sends M̄ to the signer. The latter
computes x̄ = RSA−1

N ,e(M̄) = M̄d mod N and returns x̄ to the user, who extracts the
signature x = x̄ · r−1 mod N of M from it. Two properties are desired, blindness and
unforgeability. Blindness means the signer does not learn anything about M from the
protocol that it did not know before, and it is easy to show that this is unconditionally
true [12]. Unforgeability in this context is captured via the notion of one-more-forgery
of Pointcheval and Stern [27], [28]. (The standard notion of [18] does not apply to blind
signatures.) The forger can engage in interactions with the signer in which it might not
follow the prescribed protocol for the user. (As discussed further in Section 6 there are,
in general, a variety of attack models for these interactions [27], [28], [20], [25], but
in the case of the RSA blind signature protocol, all are equivalent.) Nothing prevents it
from coming up with one valid message-tag pair per protocol execution (to do this, it just
has to follow the user protocol) but we want it to be hard to come up with more. We ask
that the number of valid message-tag pairs that a forger can produce does not exceed the
number of executions of the blind signature protocol in which it engages with the signer.

It is the unforgeability property that has been the open question about the RSA-based
blind signature scheme. Michels et al. [24] show that one can successfully obtain one-
more forgery if the hash function is poorly implemented. Here, we assume that the hash
function is a random oracle. (The forger and signer both get an oracle for H .) In that
case, the signature scheme is the FDH scheme of [8]. This scheme is proven to meet
the standard security notion for digital signatures of [18] in the random oracle model
assuming that RSA is one-way [8], [13], but this result will not help us here. To date, no
attacks against the one-more-forgery goal are known on the blind FDH-RSA signature
scheme. We would like to support this evidence of security with proofs.
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When the forger interacts with a signer in Chaum’s blind signature protocol detailed
above, the former effectively has access to an RSA-inversion oracle: it can provide
the signer any M̄ ∈ Z∗N and get back M̄d mod N . It is the presence of this oracle that
makes it unlikely that the one-wayness of RSA alone suffices to guarantee unforgeability.
However, the one-more-RSA-decryption problems were defined precisely to capture
settings where the adversary has an RSA-inversion oracle, and we will be able to base
the security of the signature scheme on hardness assumptions about them.

In Lemma 6.4 we provide a reduction of the security against one-more-forgery of the
FDH-RSA blind signature scheme, in the random oracle model, to the security of the
RSA chosen-target inversion problem. Appealing to Corollary 4.2 we then get a proof
of unforgeability for the blind FDH-RSA scheme, in the random oracle model, under
the assumption that the RSA known-target inversion problem is hard. These results
simplify the security considerations of the blind FDH-RSA scheme by eliminating the
hash function and signature issues from the picture, leaving us natural problems about
RSA to study.

1.5. Perspective

An obvious criticism of our results is that the proof of security of the blind FDH-RSA
signature scheme is under a novel and extremely strong assumption which is not only
hard to validate but crafted to have the properties necessary to prove the security of
the signature scheme. This is true, and we warn that the assumptions should be treated
with caution. However, we suggest that our approach and results have pragmatic value.
Certainly, one could leave the blind RSA signature scheme unanalyzed until someone
proves security based on the one-wayness of RSA, but this is likely to be a long wait.
Meanwhile, we would like to use the scheme and the practical thing to do is to understand
the basis of its security as best we can. Our results isolate clear and simply stated
properties of the RSA function that underlie the security of the blind signature scheme
and make the task of the security analyst easier by freeing him or her from consideration
of properties of signatures and hash functions. It is better to know exactly what we are
assuming, even if this is very strong, than to know nothing at all.

1.6. One-More-Discrete-Logarithm Problems

The analogues of the one-more-RSA-inversion problems can be formulated for any fam-
ily of one-way permutations. Section 7 provides formulations of the one-more-discrete-
log problems that underly the discrete exponentiation one-way permutation in appro-
priate groups, and proves that the known-target inversion and chosen-target inversion
problems have polynomially equivalent computational complexity. This proof is actually
easier than the one for RSA because in the discrete log case the order of the group is
public information.

Other RSA-Related Assumptions. Other non-standard RSA-related computational
problems whose study has been fruitful include: strong-RSA, introduced in [16], [3]
and used effectively in [17], [14]; dependent-RSA [26]; and an additive RSA related
problem from [21]. For more information about RSA properties and attacks see [10].
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1.7. Relation to Preliminary Version of This Paper

A preliminary version of this paper appeared as [4]. The version you are reading con-
tains the following extensions or additions: Corollary 4.2 (and hence Corollary 6.3) in
the preliminary version of this paper had made the assumption that the RSA encryption
exponent is a prime number, an assumption removed in this paper; the alternative formu-
lations of the one-more-inversion problems in Section 5 are new; this paper provides the
definitions and proofs about one-more-discrete-logarithm problems that were claimed
in the preliminary version.

Subsequent Work. Since the one-more-inversion problems were introduced in the pre-
liminary version of this paper [4], they have found numerous other uses:

• Bellare and Palacio [6] prove that the GQ identification scheme [19] is secure
against impersonation under active (and concurrent) attack under the assumption
that the RSA known-target inversion problem is hard, and that Schnorr’s identifica-
tion scheme [30] is secure against impersonation under active (and concurrent) at-
tack assuming that the known-target one-more-discrete-logarithm problem is hard.
In both cases, they are answering quite long-standing open questions.
• Assuming hardness of the RSA known-target inversion problem, Bellare and Neven

[5] prove the security of an RSA based transitive signature scheme suggested by
Micali and Rivest [23].
• These problems have been used to prove security of some practical two-party RSA-

based signature protocols [9].

2. The One-More-RSA-Inversion Problems

Throughout this paper, k ∈ N denotes the security parameter. An RSA key generator is
a (randomized) poly(k)-time algorithm KeyGen that on input k returns a triple (N , e, d)
where: the modulus N is a product of two distinct odd primes p, q and satisfies 2k−1 ≤
N < 2k ; the encryption exponent e and decryption exponent d are elements of Z∗ϕ(N )
satisfying ed ≡ 1 (mod N ) where ϕ(N ) = (p − 1)(q − 1). We say that KeyGen is a
prime-exponent RSA key generator if e is always a prime number.

In this paper we do not pin down any particular choice of key generator, but rather
formulate computational problems in which the key generator is a parameter. For this
purpose, we now fix an RSA key generator KeyGen that will be referred to throughout.
(There are numerous different possible RSA key generators, which might differ in the
distribution or structure of the primes p, q chosen, or the values of the encryption ex-
ponent. For example, one might want to use e = 3, in which case p, q would be chosen
such that neither p− 1 nor q − 1 is a multiple of 3. Another common choice is that both
p and q are random primes of approximately equal length, and e is chosen at random
from Z∗ϕ(N ).)

In this section we define the parameterized versions of the known-target and chosen-
target RSA inversion problems. The alternative formulations are presented in Section 5.

Our definitional paradigm is to associate to any given adversary an advantage function
which on input the security parameter k returns the probability that an associated experi-
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ment returns 1. The problem is hard if the advantage of any adversary of time-complexity
poly(k) is negligible, and is easy if it is not hard.

2.1. Definitions of the Problems

As an introduction to the notions we introduce, it is useful to recall the standard notion,
couching it in a way more suitable for comparison with the new notions.

Definition 2.1 (Single-Target Inversion Problem: RSA-STI). Let k ∈ N be the secu-
rity parameter. Let A be an adversary. Consider the following experiment:

Experiment Exprsa-sti
A (k)

(N , e, d)
R← KeyGen(k)

y
R← Z∗N ; x ← A(N , e, k, y)

If xe ≡ y (mod N ) then return 1 else return 0

We define the advantage of A via

Advrsa-sti
A (k) = Pr[Exprsa-sti

A (k) = 1].

The RSA-STI problem is said to be hard—in more standard terminology, RSA is said
to be one-way—if the function Advrsa-kti

A,m (·) is negligible for any adversary A whose
time-complexity is polynomial in the security parameter k.

We now proceed to define the known-target inversion problem. We denote by (·)dmod
N the oracle that takes input y ∈ Z∗N and returns its RSA-inverse yd . An adversary
solving the known-target inversion problem is given oracle access to (·)d mod N and is
given m(k)+ 1 targets where m: N→ N. Its task is to compute the RSA-inverses of all
the targets while submitting at most m(k) queries to the oracle.

Definition 2.2 (Known-Target Inversion Problem: RSA-KTI[m]). Let k ∈ N be the
security parameter, and let m: N → N be a function of k. Let A be an adversary with
access to an RSA-inversion oracle (·)d mod N . Consider the following experiment:

Experiment Exprsa-kti
A,m (k)

(N , e, d)
R← KeyGen(k)

For i = 1 to m(k)+ 1 do yi
R← Z∗N

(x1, . . . , xm(k)+1)← A(·)
d modN (N , e, k, y1, . . . , ym(k)+1)

If the following are both true then return 1 else return 0
– ∀i ∈ {1, . . . ,m(k)+ 1}: xe

i ≡ yi (mod N )
– A made at most m(k) oracle queries

We define the advantage of A via

Advrsa-kti
A,m (k) = Pr[Exprsa-kti

A,m (k) = 1].
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The RSA-KTI[m] problem is said to be hard if the function Advrsa-kti
A,m (·) is negligible for

any adversary A whose time-complexity is polynomial in the security parameter k. The
RSA-KTI is said to be hard if RSA-KTI[m] is hard for all polynomially bounded m(·).

Notice that RSA-KTI[0] is the same as RSA-STI. That is, the standard assumption that
RSA is one-way is exactly the same as the assumption that RSA-KTI[0] is hard.

We proceed to the chosen-target inversion problem. An adversary solving this problem
is given access to an RSA-inversion oracle as above, and n(k) target points, where
n: N→ N. Its task is to compute the RSA-inverses of m(k)+1 of the given targets, where
m: N→ N and m(k) < n(k), while submitting at most m(k) queries to the oracle. The
adversary indicates which m(k)+ 1 points, out of the n(k) target points, it has chosen to
invert, by outputting an injective map π as specified below. We assume that the adversary
outputs this map in a canonical format such as a list of values (π(1), π(2), . . .).

Definition 2.3 (Chosen-Target Inversion Problem: RSA-CTI[n,m]). Let k ∈ N be the
security parameter, and let m, n: N → N be functions of k such that m(·) < n(·). Let
B be an adversary with access to an RSA-inversion oracle (·)d mod N . Consider the
following experiment:

Experiment Exprsa-cti
B,n,m(k)

(N , e, d)
R← KeyGen(k)

For i = 1 to n(k) do ȳi
R← Z∗N

(π, x̄1, . . . , x̄m(k)+1)← B(·)
d modN (N , e, k, ȳ1, . . . , ȳn(k))

If the following are all true then return 1 else return 0
– π : {1, . . . ,m(k)+ 1} → {1, . . . , n(k)} is injective
– ∀i ∈ {1, . . . ,m(k)+ 1}: x̄ e

i ≡ ȳπ(i) (mod N )
– A made at most m(k) oracle queries

We define the advantage of B via

Advrsa-cti
B,n,m(k) = Pr[Exprsa-cti

B,n,m(k) = 1].

The RSA-CTI[n,m] problem is said to be hard if the function Advrsa-cti
B,n,m(·) is negligible

for any adversary B whose time-complexity is polynomial in the security parameter k.
The RSA-CTI problem is said to be hard if RSA-CTI[n,m] is hard for all polynomially
bounded n(·) and m(·) where m(·) < n(·).

2.2. Simple Relations among the Problems

We note a few simple relations before going to the main result.

Remark 2.4. Let n,m: N → N be polynomially bounded functions of the security
parameter k such that m(·) < n(·). If the RSA-CTI[n,m] problem is hard, then so
is the RSA-KTI[m] problem. This is justified as follows: given an adversary A for
RSA-KTI[m], we let B be the adversary for RSA-CTI[n,m] that runs A on input the
first m(k) + 1 of B’s target points and returns the values returned by A, together with
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the map π defined by π(i) = i for i = 1, . . . ,m(k)+1. Then B’s advantage is the same
as A’s.

Remark 2.5. If factoring reduces to RSA inversion, then there exists a polynomially
bounded function m: N → N such that RSA-KTI[m] is easy. (So the assumption that
either the known-target or chosen-target inversion problems is hard is at least as strong
as the assumption that factoring does not reduce to RSA-inversion.) Let us briefly justify
this. Assume that factoring reduces to RSA inversion. This means there is a polynomial-
time algorithm R such that the probability that the following experiment returns 1 is
non-negligible:

(N , e, d)
R← KeyGen(k)

p← R(·)
d modN (N , e, k)

If p �= 1 and p �= N and p divides N then return 1 else return 0

Let m: N → N be a polynomially-bounded, polynomial-time computable function
such that the number of oracle queries made by R is strictly less than m(k) whenever
the security parameter is k in the experiment above. We define adversary A as follows:

Adversary A(·)
d modN (N , e, k, y1, . . . , ym(k)+1)

p← R(·)
d modN (N , e, k)

Compute d from p and N/p
Compute and return yd

1 , . . . , yd
m(k)+1 mod N

The adversary A runs the algorithm R, answering to its inversion queries with the answers
from its own oracle. It uses the fact that possession of the prime factors of N enables
computation of the decryption exponent d, and having computed d, it can of course
compute the RSA-inversions of as many points as it pleases.

We now present some technical lemmas, and then proceed to the proof of Theorem 4.1.
The reader might prefer to begin with Section 4 and refer to Section 3 as needed.

3. Technical Lemmas

Below, if s ≥ 1 is an integer, then Is denotes the s by s identity matrix.

Lemma 3.1. Let s ≥ 1 be an integer, and let

C =




c1,1 · · · c1,s
...

...

cs,1 · · · cs,s


 and D =




d1,1 · · · d1,s
...

...

ds,1 · · · ds,s




be integer matrices such that C · D = det(C) · Is . Suppose N , e is an RSA public key
and N , d is the corresponding secret key. Suppose yi , ȳi , vi ∈ Z∗N for i = 1, . . . , s are
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related via

ȳi ≡ v−e
i ·

s∏
j=1

y
cj,i

j (mod N ). (2)

Let x̄i = ȳd
i mod N for i = 1, . . . , s. Then, for j = 1, . . . , s, we have

(yd
j )

det(C) ≡
s∏

i=1

(vi · x̄i )
di, j (mod N ). (3)

Proof. Let δl, j = 1 if l = j and 0 otherwise. Since C · D = det(C) · Is we know that

s∑
i=1

cl,i di, j = det(C) · δl, j (4)

for all l, j = 1, . . . , s. We now verify (3). Suppose 1 ≤ j ≤ s. In the following,
computations are all mod N . From (2), we have

s∏
i=1

(vi · x̄i )
di, j =

s∏
i=1


vi ·

(
v−e

i ·
s∏

l=1

ycl,i

l

)d



di, j

=
s∏

i=1

[
vi · v−1

i ·
s∏

l=1

(yd
l )

cl,i

]di, j

.

Simplifying the last expression, we obtain

s∏
i=1

s∏
l=1

(yd
l )

cl,i di, j =
s∏

l=1

s∏
i=1

(yd
l )

cl,i di, j =
s∏

l=1

(yd
l )
∑s

i=1cl,i di, j =
s∏

l=1

(yd
l )

det(C)·δl, j ,

where the last equality is by (4). Finally, we use the fact that δl, j = 1 if l = j and 0
otherwise. This tells us that the above is (yd

j )
det(C) as desired.

Lemma 3.2. Let N , e be an RSA public key and let N , d be the corresponding secret
key. Let α ∈ N and y, z ∈ Z∗N . If gcd(α, e) = 1 and (yd)α ≡ z (mod N ), then
(za yb)e ≡ y (mod N ) where a, b are the unique integers such that aα + be = 1.

Proof. This is a standard calculation:

(za yb)e = (ydα)ae ybe = yαa+be = y1 = y,

where the computations are all mod N .

Next, we consider a question in probabilistic linear algebra. Let q ≥ 2 and s ≥ 1 be
integers. Let GLP(s, q) denote the probability that gcd(det(M), q) = 1 when M is an s
by s matrix formed by choosing all entries uniformly and independently from Zq . Then
we have the following lower bounds:

Lemma 3.3. Let q ≥ 2 and s ≥ 1 be integers, and assume q ≤ 2k . Then

GLP(s, q) � 1

2862
· 1

ln(k)2
. (5)
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Furthermore, if q is prime, the following better lower bound holds:

GLP(s, q) ≥ 1− 1

q
− 1

q2
. (6)

The proof of the above lemma is in the Appendix.

4. The Equivalence Result

We provide a converse to the claim of Remark 2.4.

Theorem 4.1. Let n,m: N→ N be polynomially bounded functions satisfying m(·) <
n(·). Then for any adversary B, there exists an adversary A so that

Advrsa-cti
B,n,m(k) ≤ O(ln(k)2) · Advrsa-kti

A,m (k), (7)

and A has time-complexity

TA(k) = TB(k)+ O(k3n(k)m(k)+ k4m(k)+ k2m(k)5 + km(k)6), (8)

where TB(·) is the time-complexity of B. Furthermore, if KeyGen is a prime-exponent
key generator, then (7) can be improved to

Advrsa-cti
B,n,m(k) ≤ 9

5 · Advrsa-kti
A,m (k). (9)

In this theorem, the time-complexity of the adversary refers to the function which on
input k returns the execution time of the full associated experiment including the time
taken to compute answers to oracle calls, plus the size of the code of the adversary,
in some fixed model of computation. This convention simplifies the concrete security
considerations in the theorem.

A simple consequence of Theorem 4.1 and Remark 2.4 is the following equivalence,
which is our main result:

Corollary 4.2. Let n,m: N→ N be polynomially bounded functions satisfying m(·) <
n(·). Then the RSA-KTI[m] problem is hard if and only if the RSA-CTI[n,m] problem
is hard.

Now we present the proof of Theorem 4.1.

Proof of Theorem 4.1. The adversary A is depicted in Fig. 1. Its input is (N , e, k) and
s = m(k)+ 1 target points y1, . . . , ys . Its goal is to compute yd

1 , . . . , yd
s mod N .

Adversary A will begin by computing n(k) points ȳ1, . . . , ȳn(k) as a (randomized)
function of the given points y1, . . . , ys . The property we want these to have is that, given
the RSA-inverses of any s of the points ȳ1, . . . , ȳn(k), it is possible to extract in polynomial
time the RSA-inverses of the original target points, at least with high probability. If such
a “reversible embedding” can be implemented, then A’s work is complete since invoking
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Algorithm A(·)d modN (N , e, k, y1, . . . , ym(k)+1)

1 q ← e; s ← m(k)+ 1
2 For i = 1, . . . , n(k) do

3 v[i]
R← Z∗N

4 For j = 1, . . . , s do c[ j, i]
R← Zq

5 ȳi ← v[i]−e
∏s

j=1 yc[ j,i]
j mod N

6 (π, x̄1, . . . , x̄s)← B(·)d modN (N , e, k, ȳ1, . . . , ȳn(k))

7 For j = 1, . . . , s do
vj ← v[π( j)]
For l = 1, . . . , s do cj,l ← c[ j, π(l)]

8 C ←


c1,1 . . . c1,s

.

.

.
.
.
.

cs,1 . . . cs,s




9 α← det(C)
10 If α = 0 then abort
11 Compute a matrix

D =


d1,1 . . . d1,s

.

.

.
.
.
.

ds,1 . . . ds,s




with integer entries such that C · D = det(C) · Is

12 For j = 1, . . . , s do
13 zj ←

∏s
i=1(vi · x̄i )

di, j mod N
14 If gcd(α, e) �= 1 then abort
15 Compute a, b ∈ Z such that aα + be = 1 via extended Euclid algorithm
16 For j = 1, . . . , s do
17 xj ← za

j · yb
j mod N

18 Return x1, . . . , xs

Fig. 1. Adversary A of the proof of Theorem 4.1.

B on the points ȳ1, . . . , ȳn(k) will cause the RSA-inverses of some s of these points to
be returned. The question is, thus, how to compute and later reverse this “reversible
embedding.”

Lines 2–5 of Fig. 1 show how to compute it. For each j , the point ȳj is created
by first raising each of y1, . . . , ys to a random power and then multiplying the obtained
quantities. (This product is then multiplied by a random group element of which A knows
the RSA-inverse in order to make sure that ȳ1, . . . , ȳn(k) are uniformly and independently
distributed and thus are appropriate to feed to B.) A detail worth remarking here is the
choice of the range from which the exponents c[ j, i] are chosen. This is Zq where we
have set q equal to the encryption exponent e. We will see the reasons for this choice
later.

Once the points ȳ1, . . . , ȳn(k) have been defined, B is invoked. In executing B, adver-
sary A will invoke its own oracle to answer RSA-inversion oracle queries of B. Notice
that this means that the number of oracle queries made by A is exactly equal to the num-
ber made by B which is s − 1 = m(k). Assuming that B succeeds, A is in possession
of x̄ j ≡ ȳd

π( j) (mod N ) for j = 1, . . . , s where π( j) are indices of B’s choice that A
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could not have predicted beforehand. The final step is to recover the RSA-inverses of
the original target points.

To this end, A creates the matrix C shown in line 8 of the code. If this matrix has zero
determinant, then A will not be able to reverse its embedding and aborts. Assuming a
non-zero determinant, A would like to invert matrix C . Since the entries are exponents,
A would like to work modulo ϕ(N ) but A does not know this value. Instead, it works
over the integers. A can compute a “partial” RSA-inverse, namely, an integer matrix D
such that C · D is a known integer multiple of the s by s identity matrix Is . The integer
multiple in question is the determinant of C , and thus the matrix D is the adjoint of
C . (We will discuss the computation of D more later.) Lines 12–18 show how A then
computes x1, . . . , xs which we claim equal yd

1 , . . . , yd
s .

We now proceed to the detailed analysis. Let NS be the event that gcd(det(C), e) = 1.
Let “A succeeds” denote the event that xi = yd

i for all i = 1, . . . , s. Let “B succeeds”
denote the event that x̄ j = ȳd

π( j) for all j = 1, . . . , s. Then

Pr[A succeeds] ≥ Pr[A succeeds ∧ B succeeds ∧ NS]

= Pr[A succeeds | B succeeds ∧ NS] · Pr[B succeeds ∧ NS]. (10)

We claim that

Pr[A succeeds | B succeeds ∧ NS] = 1, (11)

Pr[B succeeds ∧ NS] ≥ GLP(s, q) · Advrsa-cti
B,n,m(k). (12)

Equations (10)–(12), together with Lemma 3.3, imply (7). So it remains to verify (11),
(12), and the time-complexity claimed in (8). We begin with (11). Lemma 3.1 tells us
that, assuming that B succeeds and that det(C) �= 0, after line 13 of Fig. 1, we have

(yd
j )

det(C) ≡ zj (mod N ) (13)

for j = 1, . . . , s. Assume gcd(α, e) = 1. Then (13) and Lemma 3.2 imply that at line 17
we have xe

j = yj for all j = 1, . . . , s, in other words, A succeeds. Now, note that event
NS implies that det(C) �= 0. This completes the proof of (11).

We now move on to the proof of (12). Due to the random choice of v[1], . . . , v[n(k)],
the points ȳ1, . . . , ȳn(k) computed at line 5 and then fed to B are uniformly and inde-
pendently distributed over Z∗N regardless of the choices of c[ j, i]. This means that the
events “B succeeds” and NS are independent and also that the probability of the former
is the advantage of B. Thus, we have

Pr[B succeeds ∧ NS] = Pr[NS] · Pr[B succeeds] = Pr[NS] · Advrsa-cti
B,n,m(k).

By definition of NS we have

Pr[NS] = GLP(s, q).

So (12) follows. Now, if KeyGen is a prime-exponent key generator, we note that q = e
(line 1 in Fig. 1), so q is a prime, and q ≥ 3 for RSA. Then, we can apply (6) from
Lemma 3.3 to obtain (9) in Theorem 4.1 as follows.

Pr[NS] = GLP(s, q) � 1− 1

q
− 1

q2
= 1− 1

e
− 1

e2
� 1− 1

3
− 1

32
= 5

9
.
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Table 1. Costs of computations of the algorithm of Fig. 1.
Recall that s = m(k)+ 1.

Code Cost

“For” loop at line 2 O(k3) · n(k) · s
det(C) O(s4k + s3k2)

Matrix D s2 · O(s4k + s3k2)

“For” loop at line 12 O(k2s) · O(sk)
Lines 14 and 15 O(sk) · O(k)
“For” loop at line 16 O(k2) · O(k2s)

Total O(k3n(k)s + k4s + k2s5 + ks6)

If KeyGen is not a prime-exponent key generator, we note that q = e and apply (5) from
Lemma 3.3 to obtain (7) in Theorem 4.1.

We now justify the claim of (8) about the time-complexity. The costs of various steps
of the algorithm of the adversary A are summarized in Table 1. We now briefly explain
them. As in the code, we let s = m(k)+ 1. The “For” loop beginning at line 2 involves
n(k) · s exponentiations of k-bit exponents which has the cost shown. Computation of
determinants is done using the algorithm of [1]. This takes O(r4(log(r) + k) + r3k2)

time to compute the determinant of an r by r integer matrix, each of whose entries is
at most k-bits long. (Although somewhat faster algorithms are known [15], they are
randomized, and for simplicity, we use a deterministic algorithm.) We use this algorithm
in Step 9. In the worst case, e (and hence q) is k-bits long. So the entries of C are at
most k-bits long, and the cost of computing det(C) is O(s4(log(s)+k)+ s3k2), which is
O(s4k+s3k2) since log(s) = O(k). The matrix D is the adjoint matrix of C , namely, the
transpose of the co-factor matrix of C . We compute it by computing the co-factors using
determinants. This involves computing s2 determinants of submatrices of C so the cost is
at most s2 times the cost of computing the determinant of C . Line 13 involves computing
exponentiations modulo N with exponents of the size of entries in D. The Hadamard
bound tells us that the entries of D are bounded in size by O(s(log(s) + k)), which
simplifies to O(sk), so the cost is this many k-bit multiplications. Euclid’s algorithm
used for lines 14 and 15 runs in time the product of the lengths of α and e. Finally, the
lengths of a, b cannot exceed this time, and they are the exponents in line 17.

5. Alternative Formulations of the Problems

We consider formulations of the one-more-RSA-inversion problems that are an alterna-
tive to the parameterized formulations of Section 2, and prove them equivalent to the
original ones. This is useful because the alternative formulations are often more con-
venient in using the one-more-RSA-inversion problems as assumptions in proving the
security of other schemes, and, in particular, these formulations are used in Section 6
and in [6] and [5].

In these analogues, rather than directly giving an adversary the points to invert as
inputs, we allow the adversary to query a challenge oracle to obtain the points. A
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challenge oracle is an oracle that takes no input and simply returns a random challenge
point in Z∗N , where N is the RSA modulus, each time it is queried. (The point is chosen
independently and uniformly from Z∗N each time the oracle is invoked.) The adversary
is given access to this oracle and the RSA-inversion oracle. With this setup we consider
the known-target and chosen-target versions of the problem in turn.

In the alternative formulation of the known-target inversion problem, the adversary is
considered successful if it outputs correct inverses of all the points returned in response
to queries it makes to its challenge oracle, while querying its decryption oracle a number
of times that is strictly fewer than the number of times it queries its challenge oracle. This
differs from the previous, parameterized formulation of the problem in that the number
of target points m is a random variable that depends on the adversary’s inputs and coin
tosses. This might lead one to think that the adversary’s power is increased, but, as we
will see, the two formulations end up being equivalent.

Definition 5.1 (Known-Target Inversion Problem, alternative formulation: RSA-
AKTI). Let k ∈ N be the security parameter. Let A be an adversary with access to
the RSA-inversion oracle (·)d mod N and the challenge oracle ON . Consider the fol-
lowing experiment:

Experiment Exprsa-akti
A (k)

(N , e, d)
R← KeyGen(k)

(x1, . . . , xm)← A(·)
d modN ,ON (N , e, k) where m is the number of queries

to ON

Let y1, . . . , ym be the challenges returned by ON

If the following are both true then return 1 else return 0
– ∀i ∈ {1, . . . ,m}: xe

i ≡ yi (mod N )
– A made strictly fewer than m queries to (·)d mod N

We define the advantage of A via

Advrsa-akti
A (k) = Pr[Exprsa-akti

A (k) = 1].

The RSA-AKTI problem is said to be hard if the function Advrsa-akti
A (·) is negligible for

any adversary A whose time-complexity is polynomial in the security parameter k.
In the alternative formulation of the chosen-target inversion problem, the adversary

must provide correct inverses of some of the points returned by the challenge oracle
while making a number of decryption oracle queries strictly fewer than the number
of points it outputs. However, the number of points the adversary chooses to invert
is up to the adversary, i.e., it is a random variable in the adversary’s inputs and coin
tosses.

Definition 5.2 (Chosen-Target Inversion Problem, alternative formulation: RSA-
ACTI). Let k ∈ N be the security parameter. Let B be an adversary with access
to the RSA-inversion oracle (·)d mod N and the challenge oracle ON . Consider the
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following experiment:

Experiment Exprsa-acti
B (k)

(N , e, d)
R← KeyGen(k)

(π, x̄1, . . . , x̄m)← B(·)
d modN ,ON (N , e, k) where m is an integer

Let n be the number of queries to ON

Let ȳ1, . . . , ȳn be the challenges returned by ON

If the following are all true then return 1 else return 0
– π : {1, . . . ,m} → {1, . . . , n} is injective
– ∀i ∈ {1, . . . ,m}: x̄ e

i ≡ ȳπ(i) (mod N )
– B made strictly fewer than m queries to (·)d mod N

We define the advantage of B via

Advrsa-acti
B (k) = Pr[Exprsa-acti

B (k) = 1].

The RSA-ACTI problem is said to be hard if the function Advrsa-acti
B (·) is negligible for

any adversary B whose time-complexity is polynomial in the security parameter k.
The following theorem states that the original and alternative known-target inversion

problems are computationally equivalent.

Theorem 5.3. The RSA-KTI problem is hard if and only if the RSA-AKTI problem is
hard.

Proof. First, for any polynomial-time adversary A, we show that there exists a
polynomial-time adversary B and a polynomially bounded function m such that for
all k,

Advrsa-akti
A (k) ≤ Advrsa-kti

B,m (k).

It follows that if the RSA-KTI problem is hard then the RSA-AKTI problem is also
hard. The construction is as follows. By assumption, A has running time polynomial
in k. So we can choose a polynomial-time computable, polynomially bounded function
m: N→ N such that m(k) is strictly more than the running time of A in Exprsa-akti

A (k)
for all k ∈ N. We now construct adversary B as shown below.

Algorithm B(·)
d mod N (N , e, k, y1, . . . , ym(k)+1)

count← 0
Run A on input (N , e, k), replying to its oracle queries as follows:

If A makes a query to its challenge oracle then
count← count + 1; Return ycount to A

If A makes a query y to its decryption oracle then
Query y to (·)d mod N ; Return the response to A

Until A halts with some output (x1, . . . , xcount)

For i = count + 1, . . . ,m(k)+ 1 do
Query yi to (·)d mod N ; Let xi be the response

Return (x1, . . . , xm(k)+1)
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Our assumption that m(k) exceeds the running time of A means that B will not run out
of target points to provide A. If A is successful, it must invert m ′ +1 points while making
at most m ′ queries to its inversion oracle, for some m ′. Regardless of the value of m ′,
adversary B will invert m(k) + 1 points while making m(k) queries to its decryption
oracle.

Second, let B be any polynomial-time adversary, and let m: N → N be any poly-
nomial-time computable, polynomially bounded function. We show that there is a
polynomial-time adversary A such that for all k,

Advrsa-kti
B,m (k) ≤ Advrsa-akti

A (k).

It follows that if the RSA-AKTI problem is hard, then the RSA-KTI[m] problem is hard
for all polynomially bounded functions m and hence the RSA-KTI problem is hard. (If
m is not polynomial-time computable, it can be bounded above by a polynomial-time
computable function, so restricting our construction to polynomial-time computable
functions is enough.) The construction is as follows. The adversary A first computes m(k),
using the assumption that m is polynomial-time computable. It then submits m(k) + 1
queries to its challenge oracle ON to obtain m(k) + 1 challenges. Then it runs B with
the challenges as inputs, replying to B’s queries via its own RSA-inversion oracle. It
terminates when B does and outputs what B outputs.

An analogous result is true for the chosen-target versions of the problems.

Theorem 5.4. The RSA-CTI problem is hard if and only if the RSA-ACTI problem is
hard.

Proof. First, for any polynomial-time adversary A, we show that there exists a poly-
nomial-time adversary B and polynomially bounded functions n,m such that m(·) < n(·)
and for all k,

Advrsa-acti
A (k) ≤ Advrsa-cti

B,n,m(k).

It follows that if the RSA-CTI problem is hard then the RSA-ACTI problem is also
hard. The construction is as follows. By assumption, A has running time polynomial
in k. So we can choose a polynomial time computable, polynomially bounded function
m: N→ N such that m(k) is strictly more than the running time of A in Exprsa-akti

A (k)
for all k ∈ N. We let n(·) = m(·)+ 1. We now construct adversary B as shown below.

Algorithm B(·)
d mod N (N , e, k, y1, . . . , yn(k))

count← 0
Run A on input (N , e, k), replying to its oracle queries as follows:

If A makes a query to its challenge oracle then
count← count + 1; Return ycount to A

If A makes a query y to its decryption oracle then
Query y to (·)d mod N ; Return the response to A

Until A halts with some output (π, x̄1, . . . , x̄count)

i ← 0
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For j = count + 1, . . . , n(k) do
i ← i + 1
If i is not in the range of π then

Query yi to (·)d mod N ; Let x̄ j be the response
Set π( j) to i

Return (π, x̄1, . . . , x̄n(k))

Second, let B be any polynomial-time adversary, and let n,m: N→ N be any poly-
nomial time computable, polynomially bounded functions satisfying m(·) < n(·). We
show that there is a polynomial-time adversary A such that for all k,

Advrsa-cti
B,n,m(k) � Advrsa-acti

A (k).

As in the proof of Theorem 5.3, it follows that if the RSA-ACTI problem is hard, then
the RSA-CTI problem is hard. The construction is as follows. The adversary A first
computes n(k),m(k), using the assumption that the functions in question are polynomial-
time computable. It then submits n(k) queries to its challenge oracle ON to obtain n(k)
challenges. Then it runs B with the challenges as inputs, replying to B’s queries via its
own RSA-inversion oracle. It halts when B does and outputs what B outputs.

6. The RSA Blind Signature Scheme

The RSA blind signature scheme [12] consists of three components: the key generation
algorithm KeyGen described in Section 2; the signing protocol depicted in Fig. 2; and
the verification algorithm. The signer has public key N , e and secret key N , d. Here
H : �∗ → Z∗N is a public hash function which in our security analysis will be modeled
as a random oracle [7]. In that case, the signature schemes is the FDH-RSA scheme of
[8]. A message-tag pair (M, x) is said to be valid if xe mod N is equal to H(M). The
verification algorithm is the same as that of FDH-RSA: to verify the message-tag pair
(M, x) using a public key (N , e), one simply checks if the message-tag pair is valid.

Unforgeability. In the standard formalization of security of a digital signature scheme—
namely, unforgeability under adaptive chosen-message attack [18]—the adversary gets

User Signer

Input: N , e,M Input: N , d

r
R← Z∗N

M̄ ← re · H(M) mod N

M̄ ✲
x̄ ← (M̄)d mod N

x̄✛
x ← r−1 · x̄ mod N

Fig. 2. Blind signing protocol for FDH-RSA.
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to submit messages of its choice to the signer and obtain their signature, and is then
considered successful if it can forge the signature of a new message. This formalization
does not apply for blind signatures because here nobody submits any messages to the
signer to sign, and in fact the user is supposed to use the signer to compute a signature on
a message which the signer does not know. Instead, we use the notion of security against
one-more-forgery introduced in [27] and [28]. The adversary (referred to as a forger in
this context) is allowed to play the role of the user in the blind signature protocol. After
some number of such interactions, it outputs a sequence of message-tag pairs. It wins if
the number of these that are valid exceeds the number of protocol instances in which it
engaged.

There are numerous possibilities with regard to the manner in which the adversary
is allowed to interact with the signer, giving rise to different attack models. Some that
have been considered are the sequential [27], [28] (where the adversary must complete
one interaction before beginning another), the parallel [27], [28] or adaptive-interleaved
[20] (where the adversary can engage the signer in several concurrent interactions), and
a restricted version of the latter called synchronized-parallel [25]. However, in the blind
signature protocol for FDH-RSA, the signer has only one move, and in this case the
power of all these different types of attacks is the same.

Notice that in its single move the signer simply inverts the RSA function on the
value supplied to it by the user in the previous move. Thus, the signer is simply an
RSA inversion oracle. With this simplification we can make the following definition for
security against one-more forgery which will cover all types of attacks.

Below, we let [�∗ → Z∗N ] denote the set of all maps from �∗ to Z∗N . It is convenient

to let the notation H
R← [�∗ → Z∗N ] mean that we select a hash function H at random

from this set. The discussion following the definition clarifies how we implement this
selection of an object at random from an infinite space.

Definition 6.1 (Unforgeability of the blind FDH-RSA signature scheme). Let k ∈ N
be the security parameter. Let F be a forger with access to an RSA-inversion oracle
and a hash oracle, denoted (·)d mod N and H(·), respectively. Consider the following
experiment:

Experiment Exprsa-omf
F (k)

H
R← [�∗ → Z∗N ]

(N , e, d)
R← KeyGen(k)

((M1, x1), . . . , (Mm, xm))← F (·)d modN ,H(·)(N , e, k) where m is an integer
If the following are all true, then return 1 else return 0

– ∀i ∈ {1, . . . ,m}: H(Mi ) ≡ xe
i mod N

– Messages M1, . . . ,Mm are all distinct
– F made strictly fewer than m queries to its RSA-inversion oracle

We define the advantage of the forger F via

Advrsa-omf
F (k) = Pr[Exprsa-omf

F (k) = 1].
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The FDH-RSA blind signature scheme is said to be polynomially secure against one-more
forgery if the function Advrsa-omf

F (·) is negligible for any forger F whose time-complexity
is polynomial in the security parameter k.

We need a convention regarding choosing the function H since it is an infinite object.
The convention is that we do not actually view it as being chosen all at once, but rather
view it as being built dynamically and stored in a table. Each time a query of M to the hash
oracle is made, we charge the cost of the following: check whether a table entry H(M)
exists and if so return it; otherwise, pick an element y of Z∗N at random, make a table
entry H(M) = y, and return y. Furthermore, as above, we adopt the convention that the
time-complexity refers to the entire experiment. In this regard, the cost of maintaining
this table-based implementation of the hash function is included.

Security. We show that the FDH-RSA blind signature scheme is secure as long as the
RSA known-target inversion problem is hard.

Theorem 6.2. For any forger F attacking the FDH-RSA blind signature scheme, there
exists an adversary A for the RSA known-target inversion problem such that

Advrsa-omf
F (k) ≤ O(ln(k)2) · Advrsa-akti

A (k),

and the time-complexity of A is polynomial in the time-complexity of F .

As a simple corollary, we have:

Corollary 6.3 (Unforgeability of the FDH-RSA blind signature scheme). If the RSA
known-target inversion problem is hard, then the FDH-RSA blind signature scheme
is polynomially secure against one-more forgery.

Corollary 6.3 follows from Theorems 4.1, 5.3, and 5.4, and the following lemma saying
that the FDH-RSA blind signature scheme is secure if the RSA chosen-target inversion
problem is hard.

Lemma 6.4. If the RSA chosen-target inversion problem is hard, then the FDH-RSA
blind signature scheme is polynomially secure against one-more forgery. Concretely, for
forger F , there exists an adversary B so that

Advrsa-omf
F (k) ≤ Advrsa-acti

B (k)

and the time-complexity of B is polynomial in the time-complexity of the forger F .

Proof. Adversary B uses the forger F to achieve its goal by running F and providing
answers to F’s oracle queries. In response to hash-oracle queries, B simply returns its
own targets to F . RSA-inversion oracle queries of F are forwarded by B to its own
RSA-inversion oracle and the results returned to F .
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Algorithm B(·)d modN ,ON (N , e, k)

1 count← 0
2 Initialize associative arrays Hash and Ind to empty
3 Initialize arrays Msg, X to empty
4 Run F on input N , e, k replying to its oracle queries as follows:
5 When F submits a hash query M do
6 If Hash[M] is undefined then
7 count← count + 1;Hash[M]← ON ;Msg[count]← M
8 Return Hash[M]
9 When F submits an RSA-inversion query y do

10 Submit y to the RSA-inversion oracle (·)d mod N and
return its response.

11 ((M1, x1), . . . , (Mm , xm))← F
12 For j = 1 to m, do
13 If Hash[Mj ] is undefined then
14 count← count + 1;Hash[Mj ]← ON ;Msg[count]← Mj

15 Ind[ j]← Find(Msg,Mj);X[Ind[j]]← xj
16 Return (Ind, X [Ind[1]], . . . , X [Ind[s]])

Fig. 3. Adversary B for the proof of Lemma 6.4.

A detailed description of B is given in Fig. 3. It uses a subroutine Find that looks for
a given value in a given array. Specifically, it takes as its inputs an array of values A
and a target value a assumed to be in the array, and returns the least index i such that
a = A[i].

The simulation is a largely straightforward use of random oracle techniques [7], [8]
so we confine the analysis to a few remarks. Note that B simulates hash-oracle queries
corresponding to the messages in the message-tag pairs output by F in case these are not
already made. This ensures that the advantages of the two algorithms are identical. The
time spent by B to maintain the hash-oracle table is the same as that spent in Exprsa-omf

F (k)
as per the conventions discussed following Definition 6.1. We omit the details.

7. One-More-Discrete-Log: Problems and Results

We describe the discrete-log analogues of the one-more-RSA-inversion problems and
then state a theorem analogous to Theorem 4.1.

The security parameter is denoted by k ∈ N as before. A group generator is a
randomized, poly(k)-time algorithm that on input k returns a triple (G, q, g) such
that: 2k−1 ≤ q < 2k ; G is (the description of) a group of order q; and g is a generator
of G. Additionally, if q is an odd prime, then we refer to the algorithm as a prime-
order group generator. Group operations (multiplication and inverse) are assumed to
be poly(k)-time. There are numerous possible choices of group generators, so rather
than pin one down, we formulate computational problems in which the generator is
a parameter. For that purpose, we fix a group generator KeyGen for the rest of this
section.
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7.1. Definitions of the Problems

We recall the standard notion, couching it in a way more suitable for comparison with
the new notions.

Definition 7.1 (Single-Target Discrete Log Problem: DL-ST). Let k ∈ N be the secu-
rity parameter. Let A be an adversary. Consider the following experiment:

Experiment Expdl-st
A (k)

(G, q, g)
R← KeyGen(k)

x
R← Zq; y ← gx ; z← A(G, q, g, y, k)

If y = gz then return 1 else return 0

We define the advantage of A via

Advdl-st
A (k) = Pr[Expdl-st

A (k) = 1].

The DL-ST problem—in more standard terminology, the discrete log problem—is said
to be hard if the function Advdl-st

A (·) is negligible for any adversary A whose time-
complexity is polynomial in the security parameter k.

We now present the parameterized formulations of the one-more-discrete-logarithm
problems in the style of Section 2. Alternative formulations in the style of Section 5 can
be easily provided, and can be proved equivalent to the parameterized ones by arguments
analogous to those in Section 5. We note that the alternative formulation of the known-
target version of the problem is presented and used in [6]. We now proceed to define the
known-target inversion problem.

We denote by d logg(·) the oracle that takes input y ∈ G and returns its discrete
log, namely, a value x ∈ Zq such that y = gx . An adversary solving the known-target
discrete log problem is given oracle access to d logg(·) and is given m(k)+1 targets where
m: N→ N. Its task is to compute the discrete logs of all the targets while submitting at
most m(k) queries to the oracle.

Definition 7.2 (Known-Target Discrete Log Problem: DL-KT[m]). Let k ∈ N be the
security parameter, and let m: N → N be a function of k. Let A be an adversary with
access to a discrete-log oracle d logg(·). Consider the following experiment:

Experiment Expdl-kt
A,m (k)

(G, q, g)
R← KeyGen(k)

For i = 1 to m(k)+ 1 do xi ← Zq; yi ← gxi

(z1, . . . , zm(k)+1)← Ad logg(·)(G, q, g, k, y1, . . . , ym(k)+1)

If the following are both true then return 1 else return 0
– ∀i ∈ {1, . . . ,m(k)+ 1}: yi = gzi

– A made at most m(k) oracle queries
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We define the advantage of A via

Advdl-kt
A,m (k) = Pr[Expdl-kt

A,m (k) = 1].

The DL-KT[m] problem is said to be hard if the function Advdl-kt
A,m (·) is negligible for

any adversary A whose time-complexity is polynomial in the security parameter k.
The known-target inversion problem is said to be hard if DL-KT[m] is hard for all
polynomially bounded m(·).

Notice that DL-KT[0] is the same as DL-ST. That is, the standard assumption that the
discrete logarithm problem is hard is exactly the same as the assumption that DL-KT[0]
is hard.

We proceed to the chosen-target inversion problem. An adversary solving this problem
is given access to a discrete-log oracle as above, and n(k) targets where n: N→ N. Its
task is to compute m(k) + 1 discrete logs of the given targets, where m: N → N and
m(k) < n(k), while submitting at most m(k) queries to the oracle. The choice of which
targets to compute the discrete log is up to the adversary. This choice is indicated by the
range of the injective map π .

Definition 7.3 (Chosen-Target Discrete Log Problem: DL-CT[n,m]). Let k ∈ N be
the security parameter, and let m, n: N→ N be functions of k such that m(·) < n(·). Let
B be an adversary with access to a discrete-log oracle d logg(·). Consider the following
experiment:

Experiment Expdl-ct
B,n,m(k)

(G, q, g)
R← KeyGen(k)

For i = 1 to n(k) do x̄i
R← Zq; ȳi ← gx̄i

(π, z̄1, . . . , z̄m(k)+1)← Bd logg(·)(G, q, g, k, ȳ1, . . . , ȳn(k))

If the following are all true then return 1 else return 0
– π : {1, . . . ,m(k)+ 1} → {1, . . . , n(k)} is injective
– ∀i ∈ {1, . . . ,m(k)+ 1}: ȳi = gz̄π(i)

– A made at most m(k) oracle queries

We define the advantage of B via

Advdl-ct
B,n,m(k) = Pr[Expdl-ct

B,n,m(k) = 1].

The DL-CT[n,m] problem is said to be hard if the function Advdl-ct
B,n,m(·) is negligible

for any adversary B whose time-complexity is polynomial in the security parameter k.
The chosen-target discrete log problem is said to be hard if DL-CT[n,m] is hard for all
polynomially bounded n(·) and m(·).

7.2. The Equivalence Result

The following theorem is the analogue of Corollary 4.2.
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Theorem 7.4. Let n,m: N→ N be polynomially bounded functions satisfying m(·) <
n(·). Then the DL-KT[m] problem is hard if and only if the DL-CT[n,m] problem is
hard.

Proof. It is easy to see that if the DL-KT[m] problem is hard, then so is the DL-CT[n,
m] problem. We concentrate on the converse. For any adversary B, we show that there
exists an adversary A so that

Advdl-ct
B,n,m(k) ≤ O(ln(k)2) · Advdl-kt

A,m (k)

and A has time-complexity equal to that of B plus poly(k). Furthermore, if KeyGen is a
prime-order group generator, then (7.2) can be improved to

Advdl-ct
B,n,m(k) ≤ 9

5 · Advdl-kt
A,m (k). (14)

The adversary A takes G, q, g, and s = m(k)+ 1 target points y1, . . . , ys . Its goal is to
compute x1, . . . , xs such that yi = gxi for any i ∈ {1, . . . , s}. The proof follows the same
approach as that of Theorem 4.1. Figure 4 describes the adversary A in detail. We denote
the adversary solving the RSA-CTI[n,m] problem by B. The analysis is similar to that
in the proof of Theorem 4.1. As before, let NS be the event that gcd(det(C), q) = 1.
Let “A succeeds” denote the event that yi = gxi for all i = 1, . . . , s. Let “B succeeds”
denote the event that ȳj = gx̄π( j) for all j = 1, . . . , s. Then

Pr[A succeeds] ≥ Pr[A succeeds ∧ B succeeds ∧ NS]

= Pr[A succeeds | B succeeds ∧ NS] · Pr[B succeeds ∧ NS]

= 1 · Pr[B succeeds ∧ NS]

= Pr[B succeeds] · Pr[NS]

= Pr[NS] · Advdl-ct
B,n,m(k).

If KeyGen is a prime-order group generator, then we note that q ≥ 3 and apply (6) from
Lemma 3.3 to obtain (14) as follows.

Pr[NS] = GLP(s, q) � 1− 1

q
− 1

q2
� 1− 1

3
− 1

32
= 5

9
.

If KeyGen is not a prime-order group generator, then we apply (5) from Lemma 3.3 to
obtain (7.2).

We have not stated the concrete-security of the reduction, but it is worth making
a remark about how concrete-security is measured. Recall that in the RSA case, the
time-complexity of an adversary was defined as that of the entire associated experiment,
including the time to compute replies to oracle queries. With regard to the decryption
oracle, this meant cubic time, since the computation is done by an oracle in possession of
the trapdoor information d . This convention regarding measurement of time-complexity
must be dropped in the discrete-logarithm case, since the time to compute discrete-
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Algorithm Ad logg(·)(G, q, g, k, y1, . . . , ym(k)+1)

1 s ← m(k)+ 1
2 For i = 1, . . . , n(k) do

3 v[i]
R← Zq

4 For j = 1, . . . , s do c[ j, i]
R← Zq

5 ȳi ← gv[i]
∏s

j=1 yc[ j,i]
j

6 (π, x̄1, . . . , x̄s)← Bd logg(·)(G, q, g, k, ȳ1, . . . , ȳn(k))

7 For j = 1, . . . , s do
vj ← v[π( j)]
For l = 1, . . . , s do cj,l ← c[ j, π(l)]

8 C ←


c1,1 . . . c1,s

.

.

.
.
.
.

cs,1 . . . cs,s




9 α← det(C)
10 If α = 0 then abort
11 Compute a matrix

D =


d1,1 . . . d1,s

.

.

.
.
.
.

ds,1 . . . ds,s




with integer entries such that C · D = det(C) · Is

12 For j = 1, . . . , s do
13 zj ←

∑s
i=1 (x̄i − vi ) · di, j mod q

14 If gcd(α, q) �= 1 then abort
15 β ← α−1 mod q
16 For j = 1, . . . , s do
17 xj ← β · zj mod q
18 Return x1, . . . , xs

Fig. 4. Adversary A of the proof of Theorem 7.4.

logarithms is exponential, and the complexity estimates end up being meaningless if we
adopt the same convention as we did for RSA.

Appendix. Proof of Lemma 3.3

Let q ≥ 2 and s ≥ 1 be integers. We define the set of s by s matrices over the ring Zq and
denote it by Ms(q). This is the set of all s by s matrices with entries in Zq . The matrices
in Ms(q) are added and multiplied modulo q, meaning that the underlying computations
on entries are performed modulo q. A matrix A ∈ Ms(q) is said to be invertible if there
exists a matrix B ∈ Ms(q) such that AB = BA = Is . We let GLs(q) denote the set of
all invertible matrices in Ms(q). This is the so-called general linear group under matrix
multiplication modulo q .

We state various linear algebraic facts without proof. The first of these is that a matrix
over a ring is invertible if and only if its determinant is invertible in the underlying
ring [2]. Since the ring here is Zq , this in turn means that a matrix over a ring is invertible
if and only if its determinant is relatively prime to q.
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Fact A.1 [2]. Let q ≥ 2 and s ≥ 1 be integers. Then

GLs(q) = {M ∈ Ms(q) : gcd(det(M), q) = 1}.

We are interested in the probability GLP(s, q) that gcd(det(M), q) = 1 when M is
chosen uniformly at random from Ms(q). We first apply Fact A.1 to see that

GLP(s, q) = |GLs(q)|
|Ms(q)| .

The denominator above is easy to compute. We now turn to estimating the numerator.
This will require a few more facts. We say that q = qn1

1 · · · qnk
k is the prime factorization

of q if 2 ≤ q1 < q2 < · · · < qk are primes and n1, . . . , nk ≥ 1 are integers.

Fact A.2 [22]. Let q ≥ 2 and s ≥ 1 be integers, and let q = qn1
1 · · · qnk

k be the prime
factorization of q . Then

GLs(q) � GLs(q
n1
1 )× · · · × GLs(q

nk
k ),

where � denotes group isomorphism.

The above reduces the computation of GLs(q) to computation of the same quantity for
the case where q is a prime power. The following fact gives the exact number of elements
for the latter.

Fact A.3 [22]. Let q ≥ 2 be a prime and let s, n ≥ 1 be integers. Then

|GLs(q
n)| =




qs2 ·
s−1∏
j=0

(1− q j−s) if n = 1,

qs2(n−1) · |GLs(q)| otherwise.

(15)

When q is a prime, it is tempting to think that the determinant of a random matrix from
Ms(q) is a random value and hence that GLP(s, q) = 1−1/q. This, however, is not true.
For example, a simple computation shows that GLP(2, q) = 1− 1/q − 1/q2+ 1/q3 for
any prime q . The following lemma provides bounds for the probability of the complement
event, namely, the probability SMP(s, q) that gcd(det(M), q) �= 1 when M is chosen
uniformly at random from Ms(q). This is the probability that a matrix chosen at random
from Ms(q) is not invertible modulo q.

Lemma A.4. Let q ≥ 2 be a prime and let s ≥ 1 be an integer. Then

1

q
≤ SMP(s, q) ≤ 1

q
+ 1

q2
.
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Recall that ϕ(·) denotes the Euler Phi function. The following lower bound is a corollary
of Rosser and Schoenfeld [29, Theorem 15].

Fact A.5 [29]. Let n ≥ 3 be an integer. Then,

ϕ(n)

n
� 1

286
· 1

ln ln(n)
.

We conclude the proof of Lemma 3.3 given the above, and then return to prove Lem-
ma A.4.

Proof of Lemma 3.3. Let q = qn1
1 · · · qnk

k be the prime factorization of q. Below, we
obtain (16) by Fact A.1; (17) by Fact A.2; (18) by Fact A.3; and (19) by Lemma A.4:

GLP(s, q) = |GLs(q)|
|Ms(q)| (16)

= |GLs(q
n1
1 )× · · · × GLs(q

nk
k )|

qs2 (17)

=
∏k

i=1 |GLs(q
ni
i )|∏k

i=1 qni s2

i

=
k∏

i=1

|GLs(q
ni
i )|

qni s2

i

=
k∏

i=1

q(ni−1)s2

i · |GLs(qi)|
qni s2

i

(18)

=
k∏

i=1

|GLs(qi)|
qs2

i

=
k∏

i=1

GLP(s, qi )

≥
k∏

i=1

(
1− 1

qi
− 1

q2
i

)
. (19)

If q is prime, the lower bound is 1− 1/q − 1/q2 as claimed. If q is not prime, we derive
a lower bound as follows. The inequality 1 − x − x2 ≥ (1 − x)2 is valid for all real
numbers x ≤ 1

2 . Above qi ≥ 2, and hence 1/qi ≤ 1
2 , and hence we get

GLP(s, q) �
k∏

i=1

(
1− 1

qi

)2

=
[

k∏
i=1

(
1− 1

qi

)]2

. (20)
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Let n = q1 · · · qk . Applying Fact A.5 and letting lg(·) denote the logarithm to base two,
we have

k∏
i=1

(
1− 1

qi

)
= ϕ(n)

n

≥ 1

286
· 1

ln ln(n)

≥ 1

286
· 1

ln ln(q)

≥ 1

286
· 1

ln lg(q)
.

Combining the above with (20) completes the proof of Lemma 3.3.

Proof of Lemma A.4. Let M ∈ Ms(q). For i = 1, . . . , s, let Mi denote the vector
which is the i th column of M , and let LIi denote the event that the vectors M1, . . . ,Mi

are linearly independent over Zq . It is convenient to let LI0 be the event having proba-
bility one. Let SMP(s, q, i) = Pr[¬LIi ] for i = 0, . . . , s, and note that SMP(s, q) =
SMP(s, q, s). Fact A.3 implies that

GLP(s, q) =
s−1∏
j=0

(1− q j−s). (21)

We use it to derive the desired lower bound. (The upper bound is derived by a separate
inductive argument.) Upper bounding the product term of (21) by a single, smallest term
for the product, we obtain

SMP(s, q) ≥ 1−
(

1− 1

q

)
= 1

q
.

For the upper bound, we first claim that the following recurrence is true for i = 0, . . . , s:

SMP(s, q, i) =



0 if i = 0,

qi−1

qs
+
(

1− qi−1

qs

)
· SMP(s, q, i − 1) if i ≥ 1.

(22)

The initial condition is simply by the convention we adopted that Pr[LI0] = 1. The
recurrence is justified as follows for i ≥ 1:

SMP(s, q, i) = Pr[¬LIi ]

= Pr[¬LIi | LIi−1] · Pr[LIi−1]+ Pr[¬LIi | ¬LIi−1] · Pr[¬LIi−1]

= Pr[¬LIi | LIi−1] · (1− SMP(s, q, i − 1))+ 1 · SMP(s, q, i − 1)

= Pr[¬LIi | LIi−1]+ (1− Pr[¬LIi | LIi−1]) · SMP(s, q, i − 1)

= qi−1

qs
+
(

1− qi−1

qs

)
· SMP(s, q, i − 1).
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We claim that

SMP(s, q, i) � qi

qs
· 1

q − 1
for i = 0, . . . , s. (23)

This will be justified below. It already gives us an upper bound on SMP(s, q) =
SMP(s, q, s), namely, 1/(q− 1), but this is a little worse than our claimed upper bound.
To get the latter, we use the recurrence for i = s and use (23) with i = s − 1. This give
us

SMP(s, q) = SMP(s, q, s) = qs−1

qs
+
(

1− qs−1

qs

)
· SMP(s, q, s − 1)

≤ qs−1

qs
+
(

1− qs−1

qs

)
· qs−1

qs
· 1

q − 1
.

Simplifying this further, we get

SMP(s, q) ≤ 1

q
+
(

1− 1

q

)
·
(

1

q

)
·
(

1

q − 1

)
= 1

q
+
(

q − 1

q

)
·
(

1

q2
− 1

q

)
≤ 1

q
+ 1

q2
.

This is the claimed upper bound. It remains to justify (23) which we do by induction on
i . When i = 0, (23) puts a positive upper bound on SMP(s, q, 0), and hence is certainly
true. So assume i ≥ 1. Substituting into the recurrence of (22), we get

SMP(s, q, i) = qi−1

qs
+
(

1− qi−1

qs

)
· SMP(s, q, i − 1)

≤ qi−1

qs
+ SMP(s, q, i − 1).

Using the inductive hypothesis and simplifying, we have

SMP(s, q, i) � qi−1

qs
+ qi−1

qs

1

q − 1
= qi−1

qs

(
1+ 1

q − 1

)
= qi

qs
· 1

q − 1

as desired.
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