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Abstract. Recently Victor Shoup noted that there is a gap in the widely believed se-
curity result of OAEP against adaptive chosen-ciphertext attacks. Moreover, he showed
that, presumably, OAEP cannot be proven secure from the one-wayness of the underly-
ing trapdoor permutation. This paper establishes another result on the security of OAEP.
It proves that OAEP offers semantic security against adaptive chosen-ciphertext attacks,
in the random oracle model, under the partial-domain one-wayness of the underlying
permutation. Therefore, this uses a formally stronger assumption. Nevertheless, since
partial-domain one-wayness of the RSA function is equivalent to its (full-domain) one-
wayness, it follows that the security of RSA-OAEP can actually be proven under the
sole RSA assumption, although the reduction is not tight.
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1. Introduction

The OAEP conversion method [3] was introduced by Bellare and Rogaway in 1994 and
was believed to provide semantic security against adaptive chosen-ciphertext attacks
[8], [12], based on the one-wayness of a trapdoor permutation, using the (corrected)
definition of plaintext-awareness [1].

Shoup [15] recently showed that it is quite unlikely that such a security proof exists—at
least for non-malleability—under the one-wayness of the permutation. He also proposed
a slightly modified version of OAEP, called OAEP+, which can be proven secure, under
the one-wayness of the permutation.
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Does Shoup’s result mean that OAEP is insecure or that it is impossible to prove the
security of OAEP? This would be a misunderstanding of [15]: Shoup’s result only states
that it is highly unlikely to find any proof, under just the one-wayness assumption. In
other words, it does not preclude the possibility of proving the security of OAEP from
stronger assumptions.

This paper uses such a stronger assumption. More precisely, in our reduction, a new
computational assumption is introduced to prove the existence of a simulator of the
decryption oracle. Based on this idea, we prove that OAEP is semantically secure against
adaptive chosen-ciphertext attack in the random oracle model [3], under the partial-
domain one-wayness of the underlying permutation, which is stronger than the original
assumption.

Since partial-domain one-wayness of the RSA function [13] is equivalent to the (full-
domain) one-wayness, the security of RSA-OAEP can actually be proven under the
one-wayness of the RSA function.

The rest of this paper is organized as follows. Section 2 recalls the basic notions of
asymmetric encryption and the various security notions. Section 3 reviews the OAEP
conversion [3], with a thorough discussion of its proven security. Section 4 presents our
new security result together with a formal proof for general OAEP applications, using
Shoup’s formalism [15] which differs from our original paper [7]. In Section 5 we focus
on the RSA application of OAEP, RSA-OAEP. Finally, Section 6 and the Appendix
include a more precise, but more intricate proof, which provides a tighter security result.

2. Public-Key Encryption

The aim of public-key encryption is to allow anybody who knows the public key of Alice
to send her a message that only she will be able to recover by means of her private key.

2.1. Definitions

A public-key encryption scheme over a message spaceM is defined by the three fol-
lowing algorithms:

– The key generation algorithm K(1k), where k is the security parameter, produces a
pair (pk, sk) of matching public and private keys. Algorithm K is probabilistic.

– The encryption algorithm Epk(m; r) outputs a ciphertext c corresponding to the
plaintext m ∈M, using random coins r .

– The decryption algorithm Dsk(c) outputs the plaintext m associated to the cipher-
text c.

We occasionally omit the random coins and write Epk(m) in place of Epk(m; r). Note
that the decryption algorithm is deterministic.

2.2. Security Notions

The first security notion that one would like for an encryption scheme is one-wayness:
starting with just public data, an attacker cannot recover the complete plaintext of a given
ciphertext. More formally, this means that, for any adversary A, its success probability
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in inverting E without the private key should be negligible over the probability space
M × �, where M is the message space and � includes the random coins r used for
the encryption scheme, and the internal random coins of the adversary. For the sake of
consistency, the message space M is assumed to be quite large, whereas the random
space � is of any size (it can even be empty, if one considers a deterministic encryption
scheme). In symbols, the success probability reads

Succow(A) = Pr[(pk, sk)←K(1k),m
R←M: A(pk, Epk(m)) = m].

However, many applications require more from an encryption scheme, namely semantic
security (a.k.a. polynomial security or indistinguishability of encryptions [8], denoted
IND): if the attacker has some information about the plaintext, for example that it is
either “yes” or “no” to a crucial query, no adversary should learn more with the view of
the ciphertext. This is an extension of the above one-wayness, when the message space
may be made quite small. This security notion requires computational impossibility to
distinguish between two messages, chosen by the adversary, one of which has been
encrypted, with a probability significantly better than one half: the advantage Advind(A),
where the adversaryA is seen as a 2-stage Turing machine (A1, A2), should be negligible,
where Advind(A) is formally defined as

2× Pr

[
(pk, sk)←K(1k), (m0,m1, s)← A1(pk),

b
R←{0, 1}, c = Epk(mb): A2(m0,m1, s, c) = b

]
− 1.

Another notion was defined thereafter, the so-called non-malleability (NM) [6], in which
the adversary tries to produce a new ciphertext such that the plaintexts are meaningfully
related. This notion is stronger than the above one, but it is equivalent to semantic security
in the most interesting scenario [1].

On the other hand, an attacker can use many kinds of attacks: since we are con-
sidering asymmetric encryption, the adversary can encrypt any plaintext of its choice
with the public key, hence chosen-plaintext attack. It may, furthermore, have access
to more information, modeled by restricted or unrestricted access to various oracles.
A plaintext-checking oracle receives as its input a pair (m, c) and answers whether
c encrypts message m. This gives rises to plaintext-checking attack [11]. A validity-
checking oracle answers whether its input c is a valid ciphertext or not. This scenario
has been termed reaction attack [9]. It has been successfully applied to break the famous
PKCS #1 v1.5 encryption scheme [4]. Finally, a decryption oracle returns the decryption
of any ciphertext, with the only restriction that it should be different from the challenge
ciphertext. When the oracle access is only granted to the adversary before the view of the
challenge ciphertext, the corresponding scenario is termed indifferent chosen-ciphertext
attack (a.k.a. non-adaptive chosen-ciphertext attack or lunchtime attack [10]), denoted
CCA1. When the adversary also has access to the decryption oracle in the second stage,
we talk about adaptive chosen-ciphertext attack [12], denoted CCA2. This latter scenario
is the strongest one. A general study of these security notions and attacks was given in
[1]. The results are summarized in Fig. 1.

Thus, in the latter scenario, semantic security and non-malleability are equivalent. This
is the strongest security notion that we now consider: semantic security against adaptive
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Fig. 1. Relations between security notions.

chosen-ciphertext attacks (IND-CCA2)—where the adversary just wants to distinguish
which plaintext, between two messages of its choice, had been encrypted; it can ask any
query to a decryption oracle (except the challenge ciphertext).

2.3. Plaintext-Awareness

A further notion that has been defined in the literature and has been the source of potential
misconceptions is plaintext-awareness. It was introduced by Bellare and Rogaway [3]
to state formally the impossibility of creating a valid ciphertext without “knowing” the
corresponding plaintext. This goes through the definition of a plaintext-extractor PE .
Such a definition only makes sense in the random oracle model: in this model, one
can store the query/answer list H that an adversary A obtains while interacting with
the oracle H . Basically, the plaintext-extractor PE is able to simulate the decryption
algorithm correctly, without the private key, when it receives a candidate ciphertext y
produced by any adversaryA, together with the listH produced during the execution of
A. In other words, given y andH, the plaintext-extractorPE outputs the plaintext (or the
“Reject” answer), with overwhelming success probability, where probabilities are taken
over the random coins of A and PE :

Succwpa(PE) = Pr[(pk, sk)←K(1k), (y,H)←ExecA(pk): PE(y,H) = Dsk(y)].

The wpa superscript in the above relates to the name weak plaintext-awareness (WPA
or PA94), that the notion has later received. Actually, it is not an appropriate definition
for practical applications, since, in many scenarios, the adversary may have access to
additional valid ciphertexts that it has not manufactured—say by eavesdropping.

Accordingly, the definition was modified in [1], to give the adversary A access to an
encryption oracle outputting valid ciphertexts. We denote by C the list of ciphertexts
obtained by the adversary from the encryption oracle. Since the adversary is given
access to additional resources, the new notion is stronger: the adversary outputs a fresh
ciphertext y (not in C), this ciphertext is given to the plaintext-extractor, together with
the listsH and C . Based on these data,PE outputs the plaintext (or the “Reject” answer)
with overwhelming success probability Succpa(PE), where

Pr[(pk, sk)←K(1k), (y,C,H)←ExecA
Epk
(pk): PE(y,C,H) = Dsk(y)].
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It is of course important to note that y 	∈ C . In other words, y has been duly manufactured
by the attacker and not obtained from the encryption oracle.

The new definition of plaintext-awareness (PA or PA98) allows us to reach the strongest
security level, IND-CCA2. Indeed, it is easily seen that the combination of IND-CPA and PA
yields IND-CCA2, whereas the combination of IND-CPA and WPA only yields IND-CCA1.
This does not even imply NM-CPA.

3. Review of OAEP

3.1. The OAEP Cryptosystem

We briefly describe the OAEP cryptosystem (K, E,D) obtained from a permutation f ,
whose inverse is denoted by g (see Fig. 2). We need two hash functions G and H :

G: {0, 1}k0 −→ {0, 1}k−k0 and H : {0, 1}k−k0 −→ {0, 1}k0 .

Then

– K(1k): specifies an instance of the function f , and of its inverse g. The public key
pk is therefore f and the private key sk is g.

– Epk(m; r): given a message m ∈ {0, 1}n , and a random value r
R←{0, 1}k0 , the

encryption algorithm Epk computes

s = (m ‖ 0k1)⊕ G(r) and t = r ⊕ H(s),

and outputs the ciphertext c = f (s, t).
– Dsk(c): thanks to the private key, the decryption algorithm Dsk extracts

(s, t) = g(c), and next r = t ⊕ H(s) and M = s ⊕ G(r).

If [M]k1 = 0k1 , the algorithm returns [M]n , otherwise it returns “Reject.”

In the above description, [M]k1 denotes the k1 least significant bits of M , while [M]n

denotes the n most significant bits of M .

Fig. 2. Optimal Asymmetric Encryption Padding.



86 E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern

3.2. Previous Security Results

As already mentioned, paper [3] includes a proof that, provided f is a one-way trapdoor
permutation, the resulting OAEP encryption scheme is both semantically secure and
weakly plaintext-aware. This implies the semantic security against indifferent chosen-
ciphertext attacks, also called security against lunchtime attacks (IND-CCA1). We briefly
comment on the intuition behind (weak) plaintext-awareness. When the plaintext-extrac-
tor receives a ciphertext c, then:

– either s has been queried to H and r has been queried to G, in which case the
extractor finds the cleartext by inspecting the two query lists G andH,

– or else the decryption of (s, t) remains highly random and there is little chance to
meet the redundancy 0k1 : the plaintext extractor can safely declare the ciphertext
invalid.

The argument collapses when the plaintext-extractor receives additional valid cipher-
texts, since this puts additional implicit constraints on G and H . These constraints
cannot be seen by inspecting the query lists.

3.3. Shoup’s Counter-Example

In his paper [15], Shoup showed that it was quite unlikely to extend the results of
[3] to obtain adaptive chosen-ciphertext security, under the sole one-wayness of the
permutation. His counter-example made use of the ad hoc notion of an XOR-malleable
trapdoor one-way permutation: for such permutation f0, one can compute f0(x ⊕ a)
from f0(x) and a, with non-negligible probability.

Let f0 be such an XOR-malleable permutation. Define f by f (s ‖ t) = s ‖ f0(t).
Clearly, f is also a trapdoor one-way permutation. However, it leads to a malleable
encryption scheme as we now show. Start with a challenge ciphertext y = f (s ‖ t) =
s ‖ u, where s ‖ t is the output of the OAEP transformation on the redundant message
m ‖ 0k1 and the random string r (see Fig. 3),

s = G(r)⊕ (m ‖ 0k1), t = H(s)⊕ r and u = f0(t).

Since f is the identity on its leftmost part, we know s, and can define � = δ ‖ 0k1 , for
any random string δ, and s ′ = s⊕�. We then set t ′ = H(s ′)⊕ r = t⊕ (H(s)⊕ H(s ′)).

Fig. 3. Shoup’s Attack.
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The XOR-malleability of f0 allows one to obtain u′ = f0(t ′) from u = f0(t) and
H(s)⊕ H(s ′), with significant probability. Finally, y′ = s ′ ‖ u′ is a valid ciphertext of
m ′ = m ⊕ δ, built from r ′ = r , since

t ′ = f −1
0 (u′) = t ⊕ (H(s)⊕ H(s ′)) = H(s ′)⊕ r, r ′ = H(s ′)⊕ t ′ = r

and

s ′ ⊕ G(r ′) = �⊕ s ⊕ G(r) = �⊕ (m ‖ 0k1) = (m ⊕ δ) ‖ 0k1 .

Note that the above definitely contradicts adaptive chosen-ciphertext security: asking
the decryption of y′ after having received the ciphertext y, an adversary obtains m ′ and
easily recovers the actual cleartext m from m ′ and δ. Also note that Shoup’s counter-
example exactly stems from where the intuition developed at the end of the previous
section failed: a valid ciphertext y′ was created without querying the oracle at the cor-
responding random seed r ′, using in place the implicit constraint on G coming from the
received valid ciphertext y.

Using methods from relativized complexity theory, Shoup [15] built a non-standard
model of computation, where there exists an XOR-malleable trapdoor one-way permuta-
tion. As a consequence, it is very unlikely that one can prove the IND-CCA2 security of the
OAEP construction, under the sole one-wayness of the underlying permutation. Indeed,
all methods of proof currently known still apply in relativized models of computation.

4. The Security of OAEP

4.1. Security Result

Shoup [15] furthermore provided a specific proof for RSA with public exponent 3.
However, there is little hope of extending this proof for higher exponents.

In the following, we provide a general security analysis, but under a stronger assump-
tion about the underlying permutation. Indeed, we prove that the scheme is IND-CCA2
in the random oracle model [2], relative to the partial-domain one-wayness of permu-
tation f .

4.2. Outline of the Proof

In the following we use starred letters (r 	, s	, t	 and y	) to refer to the challenge ciphertext,
whereas unstarred letters (r , s, t and y) refer to the ciphertext asked to the decryption
oracle.

The Intuition

Referring to our description of the intuition behind the original OAEP proof of security,
given in Section 3.2, we can carry a more subtle analysis by distinguishing the case
where s has not been queried from oracle H from the case where r has not been queried
from G. If s is not queried, then H(s) is random and uniformly distributed and r is
necessarily defined as t ⊕ H(s). This holds even if s matches with the string s	 coming
from the valid ciphertext y	. There is a minute probability that t ⊕ H(s) is queried from
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G or equals r 	. Thus, G(r) is random: there is little chance that the redundancy 0k1 is
met and the extractor can safely reject.

We claim that r cannot match with r 	, unless s	 is queried from H . This is because
r 	 = t	⊕ H(s	) equals r = t ⊕ H(s) with minute probability. Thus, if r is not queried,
then G(r) is random and we similarly infer that the extractor can safely reject. The
argument fails only if s	 is queried.

Thus rejecting when it cannot combine elements of the lists G and H so as to build
a pre-image of y, the plaintext extractor is only wrong with minute probability, unless
s	 has been queried by the adversary. This seems to show that OAEP leads to an IND-
CCA2 encryption scheme if it is difficult to invert f “partially”, which means: given
y = f (s ‖ t), find s.

The Strategy

Based on the intuition just described, we can formally prove that applying OAEP encod-
ing to a trapdoor permutation which is difficult to partially invert, leads to an IND-CCA2
encryption scheme, hence the partial-domain one-wayness, which expresses the fact that
the above partial inversion problem is difficult. Precise definitions are given in the next
paragraph.

As the original proof from [3], our proof has two steps: it is first shown that the OAEP
scheme is IND-CPA relative to another notion termed set partial-domain one-wayness.
Next, chosen-ciphertext security is addressed, by turning the intuition explained above
into a formal argument, involving a restricted variant of plaintext-awareness (where the
list C of ciphertexts is limited to only one ciphertext, the challenge ciphertext y	).

Partial-Domain One-Wayness

Let f be a permutation f : {0, 1}k −→ {0, 1}k , which can also be written as

f : {0, 1}n+k1 × {0, 1}k0 −→ {0, 1}n+k1 × {0, 1}k0 ,

with k = n + k0 + k1. In the original description of OAEP from [3], it is only required
that f is a trapdoor one-way permutation. However, in the following, we consider two
additional related problems, namely partial-domain one-wayness and set partial-domain
one-wayness:

– Permutation f is (τ, ε)-one-way if any adversaryAwhose running time is bounded
by τ has success probability Succow(A) upper-bounded by ε, where

Succow(A) = Pr
s,t

[A( f (s, t)) = (s, t)].

– Permutation f is (τ, ε)-partial-domain one-way if any adversaryA whose running
time is bounded by τ has success probability Succpd-ow(A) upper-bounded by ε,
where

Succpd-ow(A) = Pr
s,t

[A( f (s, t)) = s].

– Permutation f is (�, τ, ε)-set partial-domain one-way if any adversaryA, outputting
a set of � elements within time bound τ , has success probability Succs-pd-ow(A)
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upper-bounded by ε, where

Succs-pd-ow(A) = Pr
s,t

[s ∈ A( f (s, t))].

We denote by Succow(τ ) (resp. Succpd-ow(τ ) and Succs-pd-ow(�, τ )) the maximal success
probability Succow(A) (resp. Succpd-ow(A) and Succs-pd-ow(A)). The maximum ranges
over all adversaries whose running time is bounded by τ . In the third case, there is
an obvious additional restriction on this range from the fact that A outputs sets with �
elements. It is clear that for any τ and � ≥ 1,

Succs-pd-ow(�, τ ) ≥ Succpd-ow(τ ) ≥ Succow(τ ).

Note that, by randomly selecting an element in the set returned by an adversary to the
set partial-domain one-wayness, one breaks partial-domain one-wayness with probabil-
ity Succs-pd-ow(A)/�. This provides the following inequality Succpd-ow(τ ) ≥ Succs-pd-ow

(�, τ )/�. However, for specific choices of f , more efficient reductions may exist. Also,
in some cases, all three problems are polynomially equivalent. This is the case for the
RSA permutation [13], hence the results in Section 5.

4.3. The Formal Proof

In the following we prove that OAEP is IND-CCA2, in the random oracle model [2],
relative to the set partial-domain one-wayness of f . More precisely, the rest of the paper
is devoted to proving the following theorem:

Theorem 1. Let A be a CCA2-adversary against the semantic security of the OAEP
encryption scheme (K, E,D). Assume that A has advantage ε and running time τ and
makes qD , qG and qH queries to the decryption oracle, and the hash functions G and
H , respectively. Then

Succs-pd-ow(qH , τ
′) ≥ ε

2
−

(
qDqG + qD + qG

2k0
+ qD

2k1

)
,

with τ ′ ≤ τ + qG · qH · (Tf +O(1)),
where Tf denotes the time complexity for evaluating f .

Our method of proof is inspired by Shoup [15]: we define a sequence Game1, Game2,
etc., of modified attack games starting from the actual game Game0. Each of the games
operates on the same underlying probability space: the public and private keys of the cryp-
tosystem, the coin tosses of the adversaryA, the random oracles G and H and the hidden
bit b for the challenge. Only the rules defining how the view is computed differ from
game to game. To go from one game to another, we repeatedly use the following lemma
from [15]:

Lemma 1. Let E1, E2 and F1, F2 be events defined on a probability space

Pr[E1 ∧¬F1] = Pr[E2 ∧¬F2] and Pr[F1] = Pr[F2] = ε �⇒ |Pr[E1]−Pr[E2]| ≤ ε.
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Proof. The proof follows from easy computations:

|Pr[E1]− Pr[E2]| = |Pr[E1 ∧ ¬F1]+ Pr[E1 ∧ F1]− Pr[E2 ∧ ¬F2]− Pr[E2 ∧ F2]|
= |Pr[E1 ∧ F1]− Pr[E2 ∧ F2]|
= |Pr[E1 | F1] · Pr[F1]− Pr[E2 | F2] · Pr[F2]|
= |Pr[E1 | F1]− Pr[E2 | F2]| · ε ≤ ε.

Semantic Security

Lemma 2. Let A be a CPA-adversary against the semantic security of the OAEP en-
cryption scheme (K, E,D). Assume that A has advantage ε and running time τ and
makes qG and qH queries, respectively, to the hash functions G and H . Then

Succs-pd-ow(qH , τ ) ≥ ε

2
− qG

2k0
.

Proof. As explained, we start with the game coming from the actual attack, and modify
it step by step in order finally to obtain a game directly related to the ability of the
adversary to partially invert permutation f . The IND-CPA security level of OAEP has
already been proven by Bellare and Rogaway [3], relative to an even weaker assumption:
the one-wayness of the permutation. In the following we only consider partial-domain
one-wayness, and, accordingly, we provide a specific proof which is similar to Bellare
and Rogaway’s original proof, but is based on this new algorithmic assumption. We later
extend our proof to deal with chosen-ciphertext attacks.

Game0. A pair of keys (pk, sk) is generated using K(1k). Adversary A1 is fed with
pk, the description of f , and outputs a pair of messages (m0,m1). Next a challenge
ciphertext is produced by flipping a coin b and producing a ciphertext y	 of mb. This

ciphertext comes from a random r 	
R←{0, 1}k0 and a string x	 such that y	 = f (x	). We

set x	 = s	 ‖ t	, where s	 = (mb ‖ 0k1)⊕ G(r 	) and t	 = r 	 ⊕ H(s	). On input y	, A2

outputs bit b′. We denote by S0 the event b′ = b and use a similar notation Si in any
Gamei below. By definition, we have Pr[S0] = 1

2 + ε/2.

Game1. We modify the above game, by making the value of the random seed r 	 explicit
and moving its generation upfront. In other words, one randomly chooses ahead of time,

r+
R←{0, 1}k0 and g+

R←{0, 1}k−k0 , and uses r+ instead of r 	, as well as g+ instead of
G(r 	). The game obeys the following two rules:

Rule 1. r 	 = r+ and s	 = (mb ‖ 0k1)⊕ g+, from which it follows that

t	 = r 	 ⊕ H(s	), x	 = s	 ‖ t	 and y	 = f (x	).

Rule 2. Whenever the random oracle G is queried at r+, the answer is g+.

Since we replace a pair of elements, (r 	,G(r 	)), by another, (r+, g+), with exactly the
same distribution (by definition of the random oracle G):

Pr[S1] = Pr[S0].
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Game2. In this game we drop the second rule above and restore (potentially inconsis-
tent) calls to G. Therefore, g+ is just used in x	 but does not appear in the computation.
Thus, the input to A2 follows a distribution that does not depend on b. Accordingly,
Pr[S2] = 1

2 . One may note that Game1 and Game2 may differ if r 	 is queried from G. Let
AskG2 denotes the event that, in Game2, r 	 is queried from G (except by the encryption
oracle, for producing the challenge). We use an identical notation AskGi for any Gamei

below. Then

|Pr[S2]− Pr[S1]| ≤ Pr[AskG2].

Game3. We now define s	 independently of anything else, as well as H(s	). In other

words, one randomly chooses ahead of time, s+
R←{0, 1}k−k0 and h+

R←{0, 1}k0 , and uses
s+ instead of s	, as well as h+ instead of H(s	). The only change is that s	 = s+ instead
of (mb ‖ 0k1)⊕ g+. The game uses the following two rules:

Rule 1′. g+ = (mb ‖ 0k1)⊕ s+ and t	 = r 	 ⊕ h+.
Rule 2′. Whenever the random oracle H is queried at s+, the answer is h+.

Since we replace the quadruple (s	, H(s	), g+, b) by another with exactly the same
distribution (by definition of the random oracle H ):

Pr[AskG3] = Pr[AskG2].

Game4. In this game we drop the second rule above and restore (potentially inconsis-
tent) calls to H . Therefore, h+ is just used in x	 but does not appear in the computation.
One may note that Game3 and Game4 may differ if s	 is queried from H . Let AskH4

denote the event that, in Game4, s	 is queried from H (except by the encryption oracle,
for producing the challenge). We use an identical notation AskHi for any Gamei below.
Then

|Pr[AskG4]− Pr[AskG3]| ≤ Pr[AskH4].

Furthermore, r 	 = t	 ⊕ h+ is uniformly distributed, and independent of the adversary’s
view, since h+ is never revealed: Pr[AskG4] ≤ qG/2k0 , where qG denotes the number of
queries asked to G.

Game5. In order to evaluate AskH4, we again modify the previous game. When man-

ufacturing the challenge ciphertext, we randomly choose y+
R←{0, 1}k , and simply set

y	 = y+, ignoring the encryption algorithm altogether. Once again, the distribution of y	

remains the same: due to the fact that f is a permutation, the previous method defining
y	 = f (s	 ‖ t	), with s	 = s+ and t	 = h+ ⊕ r+ was already generating a uniform
distribution over the k-bit elements. Thus, we have

Pr[AskH5] = Pr[AskH4].

Simply outputting the list of queries to H during this game, one gets

Pr[AskH5] ≤ Succs-pd-ow(qH , τ ).
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Finally,

ε

2
= |Pr[S0]− Pr[S2]| ≤ Pr[AskG2] ≤ Pr[AskG4]+ Pr[AskH4]

≤ Pr[AskG4]+ Pr[AskH5] ≤ Succs-pd-ow(qH , τ )+ qG

2k0
.

Simulating the Decryption Oracle

In order to prove the security against adaptive chosen-ciphertext attacks, it is necessary
to simulate calls to a decryption oracle. As usual, this goes through the design of a
plaintext-extractor. The situation is more intricate than in the original paper [3]: in
particular, the success probability of the extractor cannot be estimated unconditionally
but only relatively to some computational assumption.

Definition of the plaintext-extractor PE . The plaintext-extractor receives as part of its
input two lists of query-answer pairs corresponding to calls to the random oracles G and
H , which we respectively denote by G-List and H-List. It also receives a valid ciphertext
y	. Given these inputs, the extractor should decrypt a candidate ciphertext y 	= y	.

On query y = f (s ‖ t), PE inspects each query/answer pair (γ,Gγ ) ∈ G-List and
(δ, Hδ) ∈ H-List. For each combination of elements, one from each list, it defines

σ = δ, θ = γ ⊕ Hδ, µ = Gγ ⊕ δ,
and checks whether

y = f (σ ‖ θ) and [µ]k1 = 0k1 .

If both equalities hold, PE outputs [µ]n and stops. If no such pair is found, the extractor
returns a “Reject” message.

Comments. One can easily check that the output of PE is uniquely defined, regardless
of the ordering of the lists. To see this, observe that since f is a permutation, the value of
σ = s is uniquely defined and so is δ. Keep in mind that the G-List and H-List correspond
to input–output pairs for the functions G and H , and at most one output is related to
a given input. This makes Hδ uniquely defined as well. Similarly, θ = t is uniquely
defined, and thus γ and Gγ : at most one µ may be selected, which is output depending
on whether [µ]k1 = 0k1 or not.

Furthermore, if both r and s have been queried by the adversary, the plaintext-extractor
perfectly simulates the decryption oracle.

Semantic Security against Adaptive Chosen-Ciphertext Attacks

In the following, y	 is the challenge ciphertext, obtained from the encryption oracle.
Since we have in mind using the plaintext-extractor instead of the decryption oracle,
trying to contradict semantic security, we assume that y	 is a ciphertext of mb and denote
by r 	 its random seed. We have

r 	 = H(s	)⊕ t	 and G(r 	) = s	 ⊕ (mb ‖ 0k1).
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In what follows all unstarred variables refer to the decryption queries.
We now present a complete proof, which is an easy extension of the previous one,

but makes use of the decryption oracle. We sequentially discard all cases for which the
above plaintext-extractor may fail.

GAME0. This game is played as Game0 but the adversary is given additional access
to a decryption oracle Dsk during both steps of the attack. The only requirement is that
the challenge ciphertext cannot be queried from the decryption oracle. By definition, we
have Pr[S0] = 1

2 + ε/2.

GAME1. In this game, one randomly chooses r+
R←{0, 1}k0 and g+

R←{0, 1}k−k0 , and
uses r+ instead of r 	, as well as g+ instead of G(r 	). The game obeys the same rules as
Game1:

Pr[S1] = Pr[S0].

GAME2. In this game we drop the second rule of GAME1. Then, as was the case for
Game2, Pr[S2] = 1

2 , and

|Pr[S2]− Pr[S1]| ≤ Pr[AskG2],

where AskG2 denotes the event that, in GAME2, r 	 is queried from G (by the adversary,
or by the decryption oracle).

GAME3. We now define s	 independently of anything else, as well as H(s	), by randomly

choosing s+
R←{0, 1}k−k0 and h+

R←{0, 1}k0 , and using s+ instead of s	, as well as h+

instead of H(s	). The game obeys the same rules as Game3:

Pr[AskG3] = Pr[AskG2].

GAME4. In this game we drop the second rule of GAME3. Then, as was the case for
Game4,

|Pr[AskG4]− Pr[AskG3]| ≤ Pr[AskH4],

where AskH4 denotes the event that, in GAME4, s	 is queried from H (by the adversary,
or by the decryption oracle).

Furthermore, r 	 = t	⊕h+ is uniformly distributed, and independent of the adversary’s
view: Pr[AskG4] ≤ (qG+qD)/2k0 , where qG and qD denote the number of queries asked
by the adversary to G, or to the decryption oracle, respectively.

GAME5. We manufacture the challenge ciphertext as in Game5. We randomly choose

y+
R←{0, 1}k , and simply set y	 = y+. As before, we have

Pr[AskH5] = Pr[AskH4].
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We now deal with the decryption oracle, which has remained perfect up to this game.

GAME6. We make the decryption oracle reject all ciphertexts y such that the corre-
sponding r value has not been previously queried from G by the adversary. This makes
a difference only if y is a valid ciphertext, while G(r) has not been asked. Since G(r)
is uniformly distributed, equality [s ⊕ G(r)]k1 = 0k1 happens with probability 1/2k1 .
Summing up for all decryption queries, we get

|Pr[AskH6]− Pr[AskH5]| ≤ qD

2k1
.

GAME7. We now make the decryption oracle reject all ciphertexts y such that the
corresponding s value has not been previously queried from H by the adversary. This
makes a difference only if y is a valid ciphertext, and r has been queried from G, while
H(s) has not been asked. Since r = H(s)⊕t is uniformly distributed, it has been queried
from G with probability less than qG/2k0 (note that in the previous game, the decryption
oracle makes no additional query to G). Summing up for all decryption queries, we get

|Pr[AskH7]− Pr[AskH6]| ≤ qDqG

2k0
.

GAME8. We finally replace the decryption oracle by the plaintext-extractor which per-
fectly simulates the decryption, since both r and s have been previously queried:

Pr[AskH8] = Pr[AskH7].

Simply outputting the list of queries to H during this game, one gets

Pr[AskH8] ≤ Succs-pd-ow(qH , τ
′).

Therefore,

ε

2
= |Pr[S0]− Pr[S2]| ≤ Pr[AskG2] ≤ Pr[AskG4]+ Pr[AskH4]

≤ qG + qD

2k0
+ Pr[AskH5]

≤ qG + qD

2k0
+ qD

2k1
+ Pr[AskH6] ≤ qG + qD

2k0
+ qD

2k1
+ qDqG

2k0
+ Pr[AskH7]

≤ qG + qD + qDqG

2k0
+ qD

2k1
+ Succs-pd-ow(qH , τ

′).

To conclude the proof of Theorem 1, one just has to comment on the running time τ ′.
Although the plaintext-extractor is called qD times, there is no qD multiplicative factor
in the bound for τ ′. This comes from a simple bookkeeping argument. Instead of only
storing the lists G-List and H-List, one stores an additional structure consisting of tuples
(γ,Gγ , δ, Hδ, y). A tuple is included only for (γ,Gγ ) ∈ G-List and (δ, Hδ) ∈ H-List. For
such a pair, one defines σ = δ, θ = γ ⊕ Hδ , µ = Gγ ⊕ δ and computes y = f (σ, θ). If
[µ]k1 = 0k1 , one stores the tuple (γ,Gγ , δ, Hδ, y). The cumulative cost of maintaining



RSA-OAEP Is Secure under the RSA Assumption 95

the additional structure is qG · qH · (Tf +O(1)) but handling it to the plaintext-extractor
allows one to output the expected decryption of y, by table lookup, in constant time. Of
course, a time–space tradeoff is possible, giving up the additional table, but raising the
computing time to qD · qG · qH · (Tf +O(1)).

5. Application to RSA-OAEP

The main application of OAEP is certainly the famous RSA-OAEP, which has been used
to update the PKCS #1 standard [14]. In his paper [15], Shoup was able to repair the
security result for a small exponent, e = 3, using Coppersmith’s algorithm from [5].
However, our result can be applied to repair RSA-OAEP, regardless of the exponent;
thanks to the random self-reducibility of RSA, the partial-domain one-wayness of RSA
is equivalent to that of the whole RSA problem, as soon as a constant fraction of the
most significant bits (or the least significant bits) of the pre-image can be recovered.

We note that, in the original RSA-OAEP [3], the most significant bits are involved in
the H function, but in PKCS #1 standards v2.0 and v2.1 [14] and RFC2437, the least
significant bits are used: the value maskedSeed ‖ maskedDB is the input to f , the RSA
function, where maskedSeed plays the role of t , and maskedDB the role of s. However,
it is clear that the following result holds in both situations (and can be further extended).

One may also remark that the following argument can be applied to any random
(multiplicatively) self-reducible problem, such as the Rabin function. Before presenting
the final reduction, we consider the problem of finding small solutions for a linear
modular equation.

Lemma 3. Consider an equation t + αu = c mod N which has solutions t and u
smaller than 2k0 . For all values of α ∈ {0, . . . , N − 1}, except a fraction 22k0+6/N of
them, (t, u) is unique and can be computed within time bound O((log N )3).

Proof. Consider the lattice

L(α) = {(x, y) ∈ Z2 | x − αy = 0 mod N }.

We say that L(α) is an �-good lattice (and that α is an �-good value) if there is no
non-zero vector of length at most � (with respect to the Euclidean norm). Otherwise,
we use the wording �-bad lattices (and �-bad values, respectively). It is clear that there
are approximately less than π�2 such �-bad lattices, which we bound by 4�2. Indeed,
each bad value for α corresponds to a point with integer coordinates in the disk of radius
�. Furthermore, the above lattices have pairwise intersection limited to the single point
(0, 0), if � < p, where p is the smallest factor of N . Thus, the proportion of bad values
for α is less than 4�2/N .

Given an �-good lattice, one applies the Gaussian reduction algorithm. One gets within
timeO((log N )3) a basis of L(α) consisting of two non-zero vectors U and V such that

‖U‖ ≤ ‖V ‖ and |(U, V )| ≤ ‖U‖2/2.
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Let T be the point (t, u), where (t, u) is a solution of the equation t+αu = c mod N ,
with both t and u less than 2k0 : T = λU + µV , for some real λ,µ.

‖T ‖2 = λ2‖U‖2 + µ2‖V ‖2 + 2λµ(U, V ) ≥ (λ2 + µ2 − λµ)× ‖U‖2

≥ ((λ− µ/2)2 + 3µ2/4)× ‖U‖2 ≥ 3µ2/4× ‖U‖2 ≥ 3µ2�2/4.

Since furthermore we have ‖T ‖2 ≤ 2× 22k0 ,

|µ| ≤ 2
√

2 · 2k0

√
3 · � and |λ| ≤ 2

√
2 · 2k0

√
3 · � by symmetry.

Assuming that we have set from the beginning � = 2k0+2 > 2k0+2
√

2
3 , then

− 1
2 < λ, µ < 1

2 .

Choose any integer solution T0 = (t0, u0) of the equation simply by picking a random
integer u0 and setting t0 = c−αu0 mod N . Write it in the basis (U, V ): T0 = ρU +σV
using real numbers ρ and σ . These coordinates can be found, so T − T0 is a solution to
the homogeneous equation, and thus indicate a lattice point: T − T0 = aU + bV , with
unknown integers a and b. However,

T = T0 + aU + bV = (a + ρ)U + (b + σ)V = λU + µV,

with − 1
2 ≤ λ,µ ≤ 1

2 . As a conclusion, a and b are the closest integers to −ρ and −σ ,
respectively. With a, b, ρ and σ , one can easily recover λ and µ and thus t and u, which
are necessarily unique.

Lemma 4. Let A be an algorithm that outputs a q-set containing k − k0 of the most
significant bits of the eth root of its input (partial-domain RSA, for any 2k−1 < N < 2k ,
with k > 2k0), within time bound t , with probability ε. There exists an algorithm B that
solves the RSA problem (N , e) with success probability ε′, within time bound t ′ where

ε′ ≥ ε × (ε − 22k0−k+6),

t ′ ≤ 2t + q2 ×O(k3).

Proof. Thanks to the random self-reducibility of RSA, with part of the bits of the eth
root of X = (x · 2k0 + r)e mod N , and the eth root of Y = Xαe = (y · 2k0 + s)e mod N ,
for a randomly chosen α, one gets both x and y. Thus,

(y · 2k0 + s) = α × (x · 2k0 + r) mod N ,

αr − s = (y − xα)× 2k0 mod N ,

which is a linear modular equation with two unknowns r and s which is known to have
small solutions (smaller than 2k0 ). It can be solved using Lemma 3.

Algorithm B just runs A twice, on inputs X and Xαe and next runs the Gaussian
reduction on all the q2 pairs of elements coming from both sets. If the partial pre-images
are in the sets, they will be found, unless the random α is bad (see the Gaussian reduction
in Lemma 3.)



RSA-OAEP Is Secure under the RSA Assumption 97

Remark 1. The above lemma can be extended to the case where a constant fraction �
of the leading or trailing bits of the eth root is found. The reduction runs the adversary
A 1/� times, and the success probability decreases to approximately ε1/�. Extensions
to any constant fraction of consecutive bits are also possible. Anyway, in PKCS #1 v2.0,
k0 is much smaller than k/2.

Theorem 2. Let A be a CCA2-adversary against the “semantic security” of RSA-
OAEP (where the modulus is k-bit long, k > 2k0), with running time bounded by t
and advantage ε, making qD , qG and qH queries to the decryption oracle, and the hash
functions G and H , respectively. Then the RSA problem can be solved with probability
ε′ greater than

ε2

4
− ε ·

(
qDqG + qD + qG

2k0
+ qD

2k1
+ 32

2k−2k0

)
within time bound t ′ ≤ 2t + qH · (qH + 2qG)×O(k3).

Proof. Theorem 1 states that

Succs-pd-ow(qH , τ ) ≥ ε

2
− qDqG + qD + qG

2k0
− qD

2k1
,

with τ ≤ t + qG · qH · (Tf +O(1)), and Tf = O(k3). Using the previous results relating
qH -set partial-domain-RSA and RSA, we easily conclude.

Remark 2. There is a slight inconsistency in piecing together the results from Sections 4
and 5, coming from the fact that RSA is not a permutation over k-bit strings. Research
papers usually ignore the problem. Of course, standards have to cope with it. Observe
that one may decide only to encode a message of n − 8 bits, where n is k − k0 − k1 as
before, as is done in the PKCS #1 standard. The additional redundancy leading bit can
be treated the same way as the 0k1 redundancy, especially with respect to decryption.
However, this is not enough since G(r) might still carry the string (s ‖ t) outside the
domain of the RSA encryption function. An easy way out is to start with another random
seed if this happens. On average, 256 trials will be enough.

6. Improved Security Result

We can improve the reduction cost in the above theorem a little. More precisely:

Theorem 3. Let A be a CCA2-adversary against the “semantic security” of RSA-
OAEP (where the modulus is k-bit long, k > 2k0), with running time bounded by t
and advantage ε, making qD , qG and qH queries to the decryption oracle, and the hash
functions G and H , respectively. Then the RSA problem can be solved with probability
ε′ greater than

ε2 − 2ε ·
(

2qDqG + qD + qG

2k0
+ 2qD

2k1
+ 32

2k−2k0

)

within time bound t ′ ≤ 2t + qH · (qH + 2qG)×O(k3).
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This theorem comes from the lemma stated below, which is proved in the Appendix.

Lemma 5. Let A be a CCA2-adversary against the “semantic security” of the OAEP
conversion (K, E,D), with advantage ε and running time t , making qD , qG and qH

queries to the decryption oracle, and the hash functions G and H , respectively. Then
Succs-pd-ow(qH , t ′) is greater than

ε − 2qDqG + qD + qG

2k0
− 2qD

2k1
,

where t ′ ≤ t + qG · qH · (Tf +O(1)), and Tf denotes the time complexity of function f .

7. Conclusion

Our conclusion is that one can still trust the security of RSA-OAEP, but the reduction is
more costly than the original one. However, for other OAEP applications, more care is
needed, since the security does not actually rely on the one-wayness of the permutation,
only on its partial-domain one-wayness.
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Appendix. Proof of Lemma 5

The next section is devoted to proving this lemma. Hereafter, we repeatedly use the
following simple result:

Lemma 6. For any probability events E, F and G,

Pr[E ∧ F | G] ≤
{

Pr[E | F ∧ G],

Pr[F | G].

We prove Lemma 5 in three stages. The first presents the reduction of an IND-CCA2 ad-
versary A to an algorithm B for breaking the partial-domain one-wayness of f . The
second shows that there exists a plaintext-extractor which correctly simulates the de-
cryption oracle, with overwhelming probability, under the partial-domain one-wayness
of f . Finally, we analyze the success probability of our reduction in total, through the
incorporation of the above-mentioned analysis of the plaintext-extractor.

A.1. Description of the Reduction

In this first part we recall how reduction operates. Let A = (A1, A2) be an adversary
against the semantic security of (K, E,D), under chosen-ciphertext attacks. Within time
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bound τ ,A asks qD , qG and qH queries to the decryption oracle and the random oracles
G and H respectively, and distinguishes the right plaintext with an advantage greater
than ε. We describe the reduction B.

Top Level Description of the Reduction

1. B is given a function f (defined by the public key) and y	← f (s	, t	), for (s	, t	)
R←{0, 1}k−k0 × {0, 1}k0 . The aim of B is to recover the partial pre-image s	 of y	.

2. B runs A1 on the public data, and gets a pair of messages {m0,m1} as well as state
information st . It chooses a random bit b, and then gives y	 to A1, as the ciphertext
of mb. B simulates the answers to the queries of A1 to the decryption oracle and
random oracles G and H , respectively. See the description of these simulations
below.

3. B runs A2(y	, st) and finally gets answer b′. B simulates the answers to the queries
of A2 to the decryption oracle and random oracles G and H , respectively. See the
description of these simulations below. B then outputs the partial pre-image s	 of
y	, if one has been found among the queries asked to H (see below), or the list of
queries asked to H .

Simulation of Random Oracles G and H

The random oracle simulation has to simulate the random oracle answers, managing
query/answer lists G-List and H-List for the oracles G and H , respectively, both are
initially set to empty lists:

– For a fresh query γ to G, one looks at the H-List, and for any query δ asked to H
with answer Hδ , one builds z = γ ⊕ Hδ , and checks whether y	 = f (δ, z). If for
some δ, that relation holds, function f has been inverted, and we can still correctly
simulate G, by answering Gγ = δ ⊕ (mb ‖ 0k1). Note that Gγ is then a uniformly
distributed value since δ = s	, and the latter is uniformly distributed. Otherwise,
one outputs a random value Gγ . In both cases, the pair (γ,Gγ ) is concatenated to
the G-List.

– For a fresh query δ to H , one outputs a random value Hδ , and the pair (δ, Hδ) is
concatenated to the H-List. Note that, once again, for any (γ,Gγ ) ∈ G-List, one may
build z = γ ⊕ Hδ , and check whether y	 = f (δ, z). If for some γ that relation
holds, we have inverted the function f .

Simulation of the Decryption Oracle

We refer the reader to Section 4.3, since the simulation works exactly the same way.

Remarks. When we have found the pre-image of y	, and thus inverted f , we could
output the expected result s	 and stop the reduction. However, for this analysis, we
assume the reduction goes on and that B only outputs it, or the list of queries asked to
H , once A2 has answered b′ (or after a time limit).

Even if no answer is explicitly specified, except by a random value for new queries,
some are implicitly defined. Indeed, y	 is defined to be a ciphertext of mb with random
tape r 	, thus r 	← H(s	)⊕ t	 and G(r 	)← s	 ⊕ (mb ‖ 0k1).
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Since H(s	) is randomly defined, r 	 can be seen as a random variable. We denote by
AskG the event that query r 	 has been asked to G, and by AskH the event that query s	

has been asked to H . We furthermore denote by GBad the event that r 	 has been asked to
G, but the answer is something other than s	⊕ (mb ‖ 0k1) (bit b is fixed in the reduction
scenario). Note that the event GBad implies AskG. One may remark that GBad is the only
event that makes the random oracle simulation imperfect, in the chosen-plaintext attack
scenario. In the chosen-ciphertext attack scenario, we described a decryption simulator
that may sometimes fail. Such an event of decryption failure will be denoted by DBad.
We thus denote Bad = GBad ∨ DBad.

A.2. Notations

In order to proceed with the analysis of the success probability of the above reduction,
one needs to set up notations. First, we still denote with a star (	) all variables related to
the challenge ciphertext y	, obtained from the encryption oracle. Indeed, this ciphertext,
of either m0 or m1, implicitly defines hash values, but the corresponding pairs may not
appear in the G or H lists. All other (unstarred) variables refer to the decryption query y,
asked by the adversary to the decryption oracle, and thus to be decrypted by the simulator.
We consider several further events about a ciphertext queried to the decryption oracle:

– CBad denotes the union of the bad events, CBad = RBad ∨ SBad, where
• SBad denotes the event that s = s	;
• RBad denotes the event that r = r 	, and thus H(s)⊕ t = H(s	)⊕ t	;

– AskRS denotes the intersection of both events about the oracle queries, AskRS =
AskR∧ AskS, which means that both r and s have been asked to G and H , respec-
tively, since
• AskR denotes the event that r (= H(s)⊕ t) has been asked to G;
• AskS denotes the event that s has been asked to H ;

– Fail denotes the event that the above decryption oracle simulator outputs a wrong
decryption answer to query y. (More precisely, we let Faili denote the instantiation
of Fail on the i th query yi (i = 1, . . . , qD). For our analysis, however, we can
evaluate probabilities regarding event Faili in a uniform manner for any i . Hence,
we just employ the notation Fail.) Therefore, in the global reduction, the event DBad
will be set to true as soon as one decryption simulation fails.

Note that the Fail event is limited to the situation in which the plaintext-extractor rejects
a ciphertext whereas it would be accepted by the actual decryption oracle. Indeed, as
soon as it accepts, we see that the ciphertext is actually valid and corresponds to the
output plaintext.

A.3. Analysis of the Decryption Oracle Simulation

We analyze the success probability of decryption oracle simulator PE .

Security Claim

We claim the following, which repairs the previous proof [3], based on the new compu-
tational assumption. More precisely, we show that additional cases to consider, due to
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the corrected definition of plaintext-awareness [1], are very unlikely under the partial-
domain one-wayness of the permutation f :

Lemma 7. When at most one ciphertext y	 = f (s	, t	) has been directly obtained from
the encryption oracle, but s	 has not been asked to H , the plaintext-extractor correctly
produces the decryption oracle’s output on query (ciphertext) y (	= y	) with probability
greater than ε′, within time bound τ ′, where

ε′ ≥ 1−
(

2

2k1
+ 2qG + 1

2k0

)
and τ ′ ≤ qG · qH · (Tf +O(1)).

We refer the reader to Section 4.3 for a discussion about the plaintext-extractor. We
just insist on the fact that if the ciphertext has been correctly built by the adversary (r has
been asked to G and s to H ), the simulation will output the correct answer. However, it
will output “Reject” in any other situation, whereas the adversary may have built a valid
ciphertext without asking both queries to the random oracles G and H .

Success Probability

Since our goal is to prove the security relative to the partial-domain one-wayness of
f , we are only interested in the probability of the event Fail, while ¬AskH occurred,
which may be split according to other events. Granted ¬CBad ∧ AskRS, the simulation
is perfect, and cannot fail. Thus, we have to consider the complementary events:

Pr[Fail | ¬AskH] = Pr[Fail ∧ CBad | ¬AskH]+ Pr[Fail ∧ ¬CBad ∧ ¬AskRS | ¬AskH].

Concerning the second contribution to the right-hand side, we first note that both

¬AskRS = ¬AskR ∨ ¬AskS = (¬AskR) ∨ (¬AskS ∧ AskR),

¬CBad = ¬RBad ∧ ¬SBad.

Forgetting ¬AskH for a while, using Lemma 6, one gets that the probability Pr[Fail ∧
¬CBad ∧ ¬AskRS] is less than

Pr[Fail ∧ ¬RBad ∧ ¬AskR]+ Pr[Fail ∧ ¬SBad ∧ (AskR ∧ ¬AskS)]

≤ Pr[Fail | ¬AskR ∧ ¬RBad]+ Pr[AskR | ¬AskS ∧ ¬SBad].

However, without having asked r to G, taking into account the further event¬RBad, G(r)
is unpredictable, and thus the probability that [s⊕G(r)]k1 = 0k1 is less than 2−k1 . On the
other hand, the probability of having asked r to G, without any information about H(s)
and thus about r (H(s) not asked, and s 	= s	, which both come from the conditioning
¬AskS∧¬SBad), is less than qG · 2−k0 . Furthermore, this event is independent of AskH,
which yields

Pr[Fail ∧ ¬CBad ∧ ¬AskRS | ¬AskH] ≤ 2−k1 + qG · 2−k0 .

We now focus on the first contribution to the right-hand side, Fail ∧ CBad, while
¬AskH, which was missing in the original proof [3] based on a weaker notion of plaintext-
awareness. It can be split according to the disjoint sub-cases of CBad, which are SBad
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and ¬SBad ∧ RBad. Then again using Lemma 6,

Pr[Fail ∧ CBad | ¬AskH] ≤ Pr[Fail | SBad ∧ ¬AskH]+ Pr[RBad | ¬SBad ∧ ¬AskH].

The latter event means that RBad occurs provided s 	= s	 and the adversary has not
queried s	 from H . When s	 has not been asked to H , and s 	= s	, H(s	) is unpredictable
and independent of H(s), as well as t and t	. Then event RBad, H(s	) = H(s)⊕ t ⊕ t	,
occurs with probability at most 2−k0 .

The former event can be further split according to AskR, and, using once again
Lemma 6, it is upper-bounded by

Pr[AskR | SBad ∧ ¬AskH]+ Pr[Fail | ¬AskR ∧ SBad ∧ ¬AskH].

The former event means that r is asked to G whereas s = s	 and H(s	) is unpredictable,
thus H(s) is unpredictable. Since r is unpredictable, the probability of this event is at
most qG ·2−k0 (the probability of asking r to G). On the other hand, the latter event means
that the simulator rejects the valid ciphertext y whereas H(s) is unpredictable and r is
not asked to G. From the one-to-one property of the Feistel network, it follows from
s = s	 that r 	= r 	, and thus G(r) is unpredictable. Then the redundancy cannot hold
with probability greater than 2−k1 . To sum up, Pr[Fail | SBad∧¬AskH] ≤ 2−k1+qG ·2−k0 ,
thus Pr[Fail ∧ CBad | ¬AskH] ≤ 2−k1 + (qG + 1) · 2−k0 .

As a consequence,

Pr[Fail | ¬AskH] ≤ 2

2k1
+ 2qG + 1

2k0
.

The running time of this simulator includes just the computation of f (σ, θ) for all
possible pairs and is thus bounded by qG · qH · (Tf +O(1)).

A.4. Success Probability of the Reduction

This subsection analyzes the success probability of our reduction with respect to the
advantage of the IND-CCA2 adversary. The goal of the reduction is, given y	 = f (s	, t	),
to obtain s	. Therefore, the success probability is obtained by the probability that event
AskH occurs during the reduction (i.e., Pr[AskH] ≤ Succs-pd-ow(qH , t ′), where t ′ is the
running time of the reduction).

We thus evaluate Pr[AskH] by splitting event AskH according to event Bad:

Pr[AskH] = Pr[AskH ∧ Bad]+ Pr[AskH ∧ ¬Bad].

We evaluate the first term, using Lemma 6 and that GBad implies AskG:

Pr[AskH ∧ Bad] = Pr[Bad]− Pr[¬AskH ∧ Bad]

≥ Pr[Bad]− Pr[¬AskH ∧ GBad]− Pr[¬AskH ∧ DBad]

≥ Pr[Bad]− Pr[AskG | ¬AskH]− Pr[DBad | ¬AskH]

≥ Pr[Bad]− 2qDqG + qD + qG

2k0
− 2qD

2k1
.
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Here, Pr[DBad | ¬AskH] ≤ qD(2 · 2−k1 + (2qG + 1) · 2−k0) is directly obtained from
Lemma 7. When ¬AskH occurs, H(s	) is unpredictable, and r 	 = t	 ⊕ H(s	) is also
unpredictable. Hence Pr[AskG | ¬AskH] ≤ qG · 2−k0 .

We then evaluate the second term.

Pr[AskH ∧ ¬Bad] ≥ Pr[A = b ∧ AskH ∧ ¬Bad]

= Pr[A = b ∧ ¬Bad]− Pr[A = b ∧ ¬AskH ∧ ¬Bad].

Here, when¬AskH occurs, H(s	) is unpredictable, thus r 	 = t	⊕H(s	) is unpredictable,
and so is b as well. This fact is independent from event ¬AskH ∧ ¬Bad. In addition,

Pr[Bad]+ (Pr[AskH ∧ ¬Bad]+ Pr[¬AskH ∧ ¬Bad]) = 1.

Let PA = Pr[AskH ∧ ¬Bad], hence

Pr[A = b ∧ ¬AskH ∧ ¬Bad] = Pr[¬AskH ∧ ¬Bad] · Pr[A = b | ¬AskH ∧ ¬Bad]

= (1− PA − Pr[Bad]) · 1
2 .

Furthermore,

Pr[A = b ∧ ¬Bad] ≥ Pr[A = b]− Pr[Bad] = ε

2
+ 1

2
− Pr[Bad].

Therefore,

PA = Pr[AskH ∧ ¬Bad] ≥ ε

2
+ 1

2
− Pr[Bad]− (1− PA − Pr[Bad]) · 1

2

= ε + PA − Pr[Bad]

2
.

That is, PA = Pr[AskH ∧ ¬Bad] ≥ ε − Pr[Bad].
Combining the evaluation for the first and second terms, one finally gets

Pr[AskH] ≥ ε − 2qDqG + qD + qG

2k0
− 2qD

2k1
.
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