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Abstract. Divide-and-conquer correlation attacks on the alternating step generator,
the bilateral stop/go generator, and the alleged A5 generator are proposed. They are
based on appropriately defined edit probabilities incorporating the stop/go clocking in
these generators. Recursive algorithms for the efficient computation of the edit probabil-
ities are derived. It is shown how the edit probabilities can be used to mount statistically
optimal correlation attacks on the corresponding subsets of stop/go clocked shift reg-
isters. By using a statistical hypothesis testing method for estimating the underlying
false alarm probability, it is argued that the minimum output sequence length required
to be known for a successful attack is linear in the total length of the targeted shift
registers. This is illustrated by experimental attacks on the alternating step generator
and the bilateral stop/go generator composed of relatively short shift registers.

Key words. Stream ciphers, Stop/go clocked shift registers, Edit probability, Corre-
lation attack

1. Introduction

A common type of keystream generators for additive stream cipher applications con-
sists of a number of irregularly clocked linear feedback shift registers (LFSRs) that are
combined by a function, which can even be linear and memoryless. Such generators can
produce sequences with long period, high linear complexity, and good statistical prop-
erties (e.g., see [10]). On the other hand, they may in principle be vulnerable to certain
secret key reconstruction attacks (for a survey, see [12], [13], and [4]). Typically, the
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attacks require an exhaustive search over the initial states of a subset of the LFSRs and
are hence feasible only if the effective secret key controlling these initial states is short.

The stop-and-go (stop/go) clocking is interesting particularly for high speed applica-
tions. At any time, a stop/go shift register is clocked once if the clock-control input bit
is equal to one (or zero) and is not clocked at all otherwise. The best known examples
of keystream generators incorporating stop/go LFSRs are the stop/go cascades [10],
the alternating step generator (ASG) [11], the bilateral stop/go generator (BSGG) [14],
[15], and the alleged A5 generator (see [13]).

In this paper divide-and-conquer correlation attacks on the ASG, the BSGG, and
the alleged A5 are investigated. Their objective is to recover the secret-key-controlled
LFSR initial states from a known segment of the keystream sequence in the known
plaintext scenario, by targeting a chosen subset of the LFSRs whose initial states are
tested exhaustively. The LFSR feedback polynomials are assumed to be known. The
correlation attacks are based on appropriate edit probabilities as measures of correlation.
Note that edit distance and edit probability correlation attacks on irregularly clocked
shift registers, which are clocked at least once at a time, are introduced in [7] and [9],
respectively. Regarding the stop/go clocking, a specific edit distance correlation attack
on the ASG is proposed in [6]. The main problems considered in this paper are how to
define the edit probabilities, how to compute them efficiently, and how to estimate the
known keystream sequence length required for a successful correlation attack.

The ASG consists of two stop/go clocked binary LFSRs, LFSR1 and LFSR2, and a
regularly clocked clock-control binary LFSR, LFSR3. At each time, the clock-control
bit defines which of the two LFSRs is clocked, and the output sequence is obtained as the
bitwise sum of the two stop/go clocked LFSR sequences (see Section 2.1). It is shown
in [11] that the initial state of LFSR3 can be recovered by a specific divide-and-conquer
attack based on the fact that if and only if the guess about the initial state of LFSR3 is
correct, then the first (binary) derivative of the output sequence can be de-interleaved
into the first (binary) derivatives of regularly clocked LFSR1 and LFSR2 sequences.

The target of the edit distance correlation attack [6] on the ASG are the initial states
of LFSR1 and LFSR2 combined. The objective of the edit probability correlation attack
considered here are the initial states of each of LFSR1 and LFSR2 individually. The
fact that the first derivative of the ASG output sequence is bitwise correlated (with the
correlation coefficient 1

2 ) to the first derivative of the output sequence of each of the
stop/go clocked LFSR1 and LFSR2 indicates that such a divide-and-conquer attack may
be possible. Interestingly, it can be shown that the corresponding edit distance correlation
attack cannot be successful (see [8]). In principle, this is not surprising as [8], although
for a different type of clocking, shows that the edit probability approach may sometimes
work when the edit distance one cannot.

The BSGG consists of two binary LFSRs, LFSR1 and LFSR2, which mutually stop/go
clock-control each other. More precisely, a clock-control function derives two clock-
control bits from the states of the two LFSRs which are used to stop/go clock-control
the LFSRs, respectively. The two clock-control bits are never simultaneously equal to
zero, so that at each time at least one of the two LFSRs is clocked. The output sequence is
formed as the bitwise sum of the two stop/go clocked LFSR sequences (see Section 2.2).
No attacks on such a structure are reported in the open literature. Our objective here is to
propose an edit probability correlation attack on one of the LFSRs. The fact that the first
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derivative of the BSGG output sequence is bitwise correlated to the first derivative of the
output sequence of each of the stop/go clocked LFSR1 and LFSR2 (with the correlation
coefficient 1

5 ) suggests that a divide-and-conquer attack may be possible.
The alleged A5 generator consists of three binary LFSRs which are mutually clocked

in the stop/go manner. Middle taps in each of the LFSRs are used to produce the clock-
control bits and the clocking rule is such that at least two LFSRs are clocked at each
time. The output sequence is formed as the bitwise sum of the three stop/go clocked
LFSR sequences (see Section 2.3). This keystream generator along with a re-initialization
scheme is allegedly used under the name A5 for stream cipher encryption in the GSM
standard for digital cellular mobile telephones (see [13]). In [3] and [5] a cryptanalytic
approach consisting of several methods for LFSR internal states reconstruction, LFSR
initial states reconstruction, and secret session key reconstruction is proposed.1 The
methods include the internal state reconstruction consisting of generating and solving a
specific set of linear equations, the internal state reconstruction based on a time–memory
tradeoff, and the internal state reversion based on the theory of branching processes. The
time–memory tradeoff method is further developed in [1].

Our objective here is to propose an edit probability correlation attack on any two of
the three LFSRs. Note that a correlation attack on individual LFSRs is not possible,
because in the probabilistic model where the regularly clocked LFSR sequences are
assumed to be independent and purely random2 each stop/go clocked LFSR sequence is
statistically independent of the output sequence [3], [5]. The fact that the first derivative
of the alleged A5 output sequence is bitwise correlated (with the correlation coefficient
1
4 ) to the first derivative of the bitwise sum of any two stop/go clocked LFSR sequences
indicates that such a divide-and-conquer attack may be possible. Such an attack is not
directly applicable to the GSM version of the alleged A5, because of a very short available
keystream sequence.

In Section 2 more detailed descriptions of the ASG, the BSGG, and the alleged A5
are provided. For the ASG, the BSGG, and the alleged A5, the corresponding edit
probabilities and the recursive algorithms for their efficient computation are presented
in Sections 3, 4, and 5, respectively. The general framework of the correlation attack
on all three generators, including the underlying statistical hypothesis testing model, is
explained in Section 6. The concrete correlation attacks on the ASG, the BSGG, and the
alleged A5 along with the corresponding experimental results are presented in Sections 7,
8, and 9, respectively. Conclusions are given in Section 10. A number of tables showing
the relevant statistics of the edit probabilities are displayed in the Appendices.

2. Description of Generators

2.1. Description of Alternating Step Generator

As shown in Fig. 1, the output of the ASG [11] is obtained by bitwise addition (modulo 2)
of the output sequences of two binary LFSRs, LFSR1 and LFSR2, whose stop/go clocking

1 The initialization scheme considered in [3] and [5] is more complicated than the one from the GSM
standard.

2 A sequence of independent uniformly distributed random variables over a finite set is called purely random.
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Fig. 1. Alternating step generator.

is defined by a binary clock-control generator (CCG), which is typically another, but
regularly clocked LFSR, LFSR3. It is assumed that LFSR1 and LFSR2 have different
irreducible feedback polynomials of respective degrees r1 and r2 and coprime periods.
At every step, only one LFSR is stepped and the output bit is assumed to be produced
in the step-then-add manner. Let c(t) denote the output bit of the CCG at step t ≥ 1. In
order to obtain the output bit o(t) at step t , we first step LFSR1 or LFSR2 depending on
whether c(t) = 1 or c(t) = 0, respectively, and then add modulo 2 the output bits of
LFSR1 and LFSR2.

In [11] good standard cryptographic properties of the ASG, such as a long period, a high
linear complexity, and approximately uniform relative frequency of short output patterns
on a period are established, under the assumption that the clock-control sequence is a
de Bruijn sequence and that the feedback polynomials of LFSR1 and LFSR2 are primitive.
It is expected that similar results also hold if the CCG is an LFSR (LFSR3) with a primitive
feedback polynomial whose period is coprime to the periods of LFSR1 and LFSR2.

2.2. Description of Bilateral Stop/Go Generator

As shown in Fig. 2, the output of the BSGG is obtained by bitwise addition of the
output sequences of two binary LFSRs, LFSR1 and LFSR2, which mutually clock-
control each other by stop/go clocking (see [14] and [15]). It is assumed that LFSR1

and LFSR2 have primitive feedback polynomials of the same degree L . At each step,
the output bit is assumed to be produced in the step-then-add manner as follows. Let
si,L(t) and si,L−1(t), i = 1, 2, denote the contents at step t ≥ 0 of the stages of LFSRi

at positions L and L − 1, respectively. For any t ≥ 1, the clock-control symbol c(t),
specifying which LFSRs are clocked in order to produce the output bit o(t), is defined
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Fig. 2. Bilateral stop/go generator.
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by c(t) = h(s1,L(t − 1), s1,L−1(t − 1), s2,L(t − 1), s2,L−1(t − 1)), where h is a 3-
valued clock-control function of four binary variables such that h(a, b, c, d) equals {1}
if (a, b) = (0, 1), {2} if (c, d) = (0, 1) �= (a, b), and {1, 2} otherwise. The output bit
is produced as the binary (modulo 2) sum o(t) = s1,1(t) ⊕ s2,1(t). Note that the clock-
control bits ci (t), i = 1, 2, are derived from c(t) by using the stop/go clocking rule: at
time t , LFSRi is clocked if ci (t) = 1 and is not clocked if ci (t) = 0.

Some theory of the BSGG is given in [14]. The state diagram of the BSGG consists
of 3 · 2L−2 − 1 branched cycles each of length T = 5 · 2L−2 − 1. At any cycle state
there is at most one branch. Every branch has length 1 and starts with a state having
no predecessor. By using L such that T is a prime, the linear complexity of the output
sequence has a lower bound of the same order of magnitude as T (see [14] and [15]).

Interestingly, under the assumption that the regularly clocked LFSR sequences are
independent and purely random, it turns out that the probability distribution of the 4-bit
input to the clock-control function h is time-dependent. One can show that the under-
lying Markov chain with 16 states defined by these 4-bit inputs is ergodic, but, perhaps
surprisingly, has a stationary probability distribution which is not uniform. As a conse-
quence, Pr{c(t) = {1}} and Pr{c(t) = {2}} both quickly converge to 1

5 as t increases.
The stationary correlation coefficients between the first derivatives of the BSGG out-
put sequence and of the output sequences of the stop/go clocked LFSR1 and LFSR2,
respectively, are then both equal to 1

5 .

2.3. Description of Alleged A5 Generator

The alleged A5 keystream generator considered is shown in Fig. 3. The feedback poly-
nomials of all three binary LFSRs are assumed to be primitive. Let Si (t) = (si,l(t))

ri
l=1

denote the internal state of LFSRi of length ri at time t ≥ 0 (Si (0) is the initial state) and
let τi , τi ≥ 1, denote a middle tap from LFSRi used for clock-control, i = 1, 2, 3. For
any t ≥ 1, the clock-control symbol c(t), specifying which LFSRs are clocked in order
to produce the output bit o(t), is defined by c(t) = h(s1,τ1(t −1), s2,τ2(t −1), s3,τ3(t −1)),
where h is a 4-valued majority function of three binary variables such that h(s1, s2, s3)

is equal to {i, j} if si = sj �= sk , for i < j and k �= i, j , and to {1, 2, 3} if s1 = s2 = s3.
The output bit is produced as the binary sum o(t) = s1,1(t) ⊕ s2,1(t) ⊕ s3,1(t). Note
that the clock-control bits ci (t), i = 1, 2, 3, are derived from c(t) by using the stop/go
clocking rule.
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Fig. 3. Alleged A5 generator.
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In [2] it is argued that the period of the output sequence is only slightly bigger than
the period of the longest LFSR. Under the assumption that the regularly clocked LFSR
sequences are independent and purely random, it is shown in [3] and [5] that the clock-
control and output sequences are both purely random and, moreover, that the bitwise sum
of any two stop/go clocked LFSR sequences is also purely random. This implies that
each stop/go clocked LFSR sequence is statistically independent of the output sequence.
Also, it follows that the probability distribution of the 3-bit input to the clock-control
function h is uniform at any time.

3. Edit Probabilities for ASG

In this paper we use the notation A = (ai )
∞
i=1 = a1, a2, . . . for a sequence of symbols

from a finite set, and An = (ai )
n
i=1 = a1, a2, . . . , an for a string constituted by the first

n symbols of A. Also, let An
k = (ai )

n
i=k = ak, ak+1, . . . , an . For a binary sequence A,

its first (binary) derivative is denoted by Ȧ = ȧ1, ȧ2, . . . , where ȧi = ai ⊕ ai+1. The
bitwise binary complement of A is denoted by Ā = a1, a2, . . . , where ai = 1 ⊕ ai is the
binary complement of ai .

For simplicity, we keep the same notation for random variables and their values.

3.1. Edit Probability for One Input String

Let Xn+2 = x1, x2, . . . , xn+2 and Y n+2 = y1, y2, . . . , yn+2 denote two binary input
strings and let Cn+1 = c1, c2, . . . , cn+1 denote a binary clock-control string. Let On+1 =
o1, o2, . . . , on+1 = Fn+1(Xn+2, Y n+2, Cn+1) denote the combination string of length
n +1 produced from Xn+2 and Y n+2 by the step-then-add alternating stepping according
to Cn+1 (Xn+2 and Y n+2 correspond to the initial segments of regularly clocked LFSR1

and LFSR2 sequences, respectively). Accordingly, we initially have o1 = x1 ⊕ y2 if
c1 = 0 and o1 = x2 ⊕ y1 if c1 = 1, whereas for any 0 ≤ s ≤ n, if l denotes the number
of ones in Cs+1, then os+1 = xl+1 ⊕ ys+2−l .

The process of producing the first derivative of On+1, Ȯn = Ḟn(Xn+2, Y n+2, Cn+1),
from a given Xn+2 is called the edit transformation of Xn+2 into Ȯn according to Y n+2

and Cn+1.
Assume a probabilistic model where the strings Xn+2, Y n+2, and Cn+1 are independent

and purely random. Let Zn = z1, z2, . . . , zn denote a binary output string. The edit
probability for a given input string Xn+2 and a given output string Zn , denoted as
P(Xn+2; Zn), is then defined as the probability that Xn+2 is transformed into Zn by
the (random) edit transformation according to random Y n+2 and Cn+1. Formally, it is
defined as the conditional probability

P(Xn+2; Zn) = Pr{Ḟn(Xn+2, Y n+2, Cn+1) = Zn | Xn+2}. (1)

The statistically optimal edit probability (minimizing the error probability when de-
ciding on Xn+2 given Zn) is given as

Pr{Xn+2, Ḟn(Xn+2, Y n+2, Cn+1) = Zn} = P(Xn+2; Zn) · Pr{Xn+2}. (2)
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Since Pr{Xn+2} = 2−n−2 for every Xn+2, the edit probability (1) is also statistically
optimal.

If the input strings Xn+2 and Y n+2 change places, then the resulting edit probability
P ′(Y n+2; Zn) is not formally the same as the alternating stepping is not symmetric
with respect to Xn+2 and Y n+2 for a given clock-control string Cn+1. However, since
Ḟn(Xn+2, Y n+2, Cn+1) = Ḟn(Y n+2, Xn+2, C̄n+1), it follows that P ′ = P .

Our basic objective is to examine whether the defined edit probability can be computed
efficiently by an algorithm whose computational complexity is significantly smaller than
22n+3, which corresponds to the computation of (1) by the summation of the elementary
probability 2−2n−3 over all Y n+2 and Cn+1 such that Ḟn(Xn+2, Y n+2, Cn+1) = Zn . To
this end, for any 1 ≤ s ≤ n and 0 ≤ l ≤ s + 1, we define the partial edit probability
P(l, s) as the joint probability

P(l, s) = Pr{Ḟ s(Xs+2, Y s+2, Cs+1) = Zs, w(Cs+1) = l | Xs+2}, (3)

where w(Cs+1) is the Hamming weight of Cs+1. If w(Cs+1) = l, then os+1 = xl+1 ⊕
ys+2−l , so that the edit transformation in (3) involves the prefixes Xl+1 and Y s+2−l only.

The next theorem enables the efficient computation of the edit probability based on a
recursive property of the partial edit probability.

Theorem 1. For any given Xn+2 and Zn , we have

P(Xn+2; Zn) =
n+1∑

l=0

P(l, n), (4)

where the partial edit probability P(l, n) is computed recursively by

P(l, s) = 1
4 P(l, s − 1) + 1

2 ẋl ⊕ zs P(l − 1, s − 1) (5)

for 1 ≤ s ≤ n and 0 ≤ l ≤ s + 1, with the initial values P(0, 0) = P(1, 0) = 1
2 . (For

each 0 ≤ s ≤ n, if l < 0 or l > s + 1, then it is assumed that P(l, s) = 0, so that the
corresponding terms in (5) are not computed.)

Proof. First observe that (4) is an immediate consequence of the definition of the
partial edit probability. Second, for s = 1, (3) implies that P(0, 1) = 1

8 , P(1, 1) =
1
8 + ẋ1 ⊕ z1/4, and P(2, 1) = ẋ2 ⊕ z1/4. The same values can also be obtained by (5)
from the given initial values.

Now assume that s ≥ 2. We partition all clock-control strings Cs+1 into two subsets
depending on whether cs+1 = 0 or cs+1 = 1. For simplicity of notation, the conditioning
on Xs+2 is removed from (3) and the resulting equations. Then (3) can be put into the
form

P(l, s) = Pr{Ḟ s(Xs+2, Y s+2, Cs+1) = Zs, w(Cs+1) = l | cs+1 = 0} · 1
2

+ Pr{Ḟ s(Xs+2, Y s+2, Cs+1) = Zs, w(Cs+1) = l | cs+1 = 1} · 1
2 . (6)
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If cs+1 = 0, then ȯs = ẏs+1−l , and if cs+1 = 1, then ȯs = ẋl . Consequently,

Pr{Ḟ s(Xs+2, Y s+2, Cs+1) = Zs, w(Cs+1) = l | cs+1 = 0}
= Pr{ẏs+1−l = zs | Ḟ s−1(Xs+1, Y s+1, Cs) = Zs−1, w(Cs) = l}

· Pr{Ḟ s−1(Xs+1, Y s+1, Cs) = Zs−1, w(Cs) = l} (7)

= Pr{ys+2−l = ys+1−l ⊕ zs | Ḟ s−1(Xs+1, Y s+1, Cs) = Zs−1, w(Cs) = l}
· P(l, s − 1) (8)

= 1
2 · P(l, s − 1). (9)

Equation (9) follows from (8) because ys+2−l remains independent of ys+1−l when con-
ditioned on Ḟ s−1(Xs+1, Y s+1, Cs) = Zs−1 and w(Cs) = l, as this condition involves
only Y s+1−l (not ys+2−l).

Similarly,

Pr{Ḟ s(Xs+2, Y s+2, Cs+1) = Zs, w(Cs+1) = l | cs+1 = 1}
= Pr{ẋl = zs | Ḟ s−1(Xs+1, Y s+1, Cs) = Zs−1, w(Cs) = l − 1}

· Pr{Ḟ s−1(Xs+1, Y s+1, Cs) = Zs−1, w(Cs) = l − 1}
= ẋl ⊕ zs · P(l − 1, s − 1). (10)

Equation (5) directly follows from (6), (9), and (10).

The time and space complexities of the recursive algorithm corresponding to Theorem
1 are clearly O(n2) and O(n), respectively. The algorithm is thus feasible even if n is
very large. The only computational problem is that the edit probability appears to be
exponentially small in the string length, so that one has to deal with very small numbers.
The following normalization turned out to be convenient in the conducted experiments:
P̄(Xn+2; Zn) = 2n+1 P(Xn+2; Zn). It can be computed by the recursion (5) modified by
mulitiplying its right-hand side and the initial values by 2.

3.2. Edit Probability for Two Input Strings

The edit probability for two given input strings Xn+2 and Y n+2 and a given output
string Zn , denoted as P(Xn+2, Y n+2; Zn), is defined as the probability that Xn+2 and
Y n+2 are transformed into Zn by the (random) edit transformation according to a purely
random Cn+1. The edit transformation is here defined as the process of producing Ȯn =
Ḟn(Xn+2, Y n+2, Cn+1) from given Xn+2 and Y n+2. More precisely, this edit probability
is defined as

P(Xn+2, Y n+2; Zn) = Pr{Ḟn(Xn+2, Y n+2, Cn+1) = Zn | Xn+2, Y n+2} (11)

(in contrast with (1), Y n+2 is here fixed rather than random).
By a similar argument as for P(Xn+2; Zn), it follows that this edit probability is

statistically optimal in the probabilistic model where Xn+2 is purely random. It is also
statistically optimal in the probabilistic model where Xn+2 and Y n+2 are independent and
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purely random (when deciding on Xn+2 and Y n+2 given Zn). This edit probability is sym-
metric with respect to the input strings Xn+2 and Y n+2, because Ḟn(Xn+2, Y n+2, Cn+1) =
Ḟn(Y n+2, Xn+2, C̄n+1).

In a similar way as for the edit probability for one input string, one can then prove the
following theorem.

Theorem 2. For any given Xn+2, Y n+2, and Zn , we have

P(Xn+2, Y n+2; Zn) =
n+1∑

l=0

P(l, n), (12)

where the partial edit probability P(l, n) is computed recursively by

P(l, s) = 1
2 ẏs+1−l ⊕ zs P(l, s − 1) + 1

2 ẋl ⊕ zs P(l − 1, s − 1) (13)

for 1 ≤ s ≤ n and 0 ≤ l ≤ s + 1, with the initial values P(0, 0) = P(1, 0) = 1
2 . (For

each 0 ≤ s ≤ n, if l < 0 or l > s + 1, then it is assumed that P(l, s) = 0, so that the
corresponding terms in (13) are not computed.)

The time and space complexities of the recursive computation are also O(n2) and
O(n), respectively, and the normalization can be performed in the same way as for the
edit probability for one input string.

The edit probability for one input string may be used to obtain a relatively small
number of candidates for the initial state of each of the stop/go clocked LFSRs from a
given output sequence. However, given a number of candidate initial states for one of
the LFSRs, it is more efficient to recover the initial state of the other one by using the
edit probability for two input strings.

4. Edit Probability for BSGG

Let Xn+2 = x1, x2, . . . , xn+2 and Y n+2 = y1, y2, . . . , yn+2, denote two binary input
sequences and let Cn+1 = c1, c2, . . . , cn+1 denote a 3-valued clock-control string, where
ci ∈ C, C = {{1}, {2}, {1, 2}}. Let On+1 = o1, o2, . . . , on+1 = Fn+1(Xn+2, Y n+2, Cn+1)

denote the combination string produced from Xn+2 and Y n+2 by the bilateral stop/go
clocking according to Cn+1, where Xn+2 and Y n+2 correspond to the initial segments of
regularly clocked LFSR1 and LFSR2 sequences, respectively.

More precisely, we initially have o1 = x2 ⊕ y1 if c1 = {1}, o1 = x1 ⊕ y2 if c1 = {2},
and o1 = x2 ⊕ y2 if c1 = {1, 2}. Let wi (Cs+1) denote the number of occurrences
of the symbol {i}, i = 1, 2, in a string Cs+1. For simplicity, let w1(Cs+1) = l1 and
w2(Cs+1) = l2. The number of occurrences of the symbol {1, 2} in Cs+1 is then s +
1 − l1 − l2. Then for any 0 ≤ s ≤ n, os+1 = xs+2−l2 ⊕ ys+2−l1 . Further, the clock-
control string is generated according to the BSGG scheme from Fig. 2 as a function
Cn+1 = Hn+1(Xn+L , Y n+L). Namely, c1 = h(xL , xL−1, yL , yL−1) and for 0 ≤ s ≤
n, cs+2 = h(xL+s+1−l2 , xL+s−l2 , yL+s+1−l1 , yL+s−l1). Altogether, we can write On+1 =
Gn+1(Xn+L ′

, Y n+L ′
), where L ′ = max(L , 2).

We adopt an approximative model for the BSGG which allows us to define and re-
cursively compute a suitable edit probability. Introduce an auxiliary random binary
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string R2n+2 = r1, r2, . . . , r2n+2 in order to replace the input string Y n+L in the role of
generating the input bits for the clock-control function h. In the approximative BSGG
model the clock-control string Cn+1 is generated as follows. Initially, we have c1 =
h(xL , xL−1, r2, r1) and for 0 ≤ s ≤ n, cs+2 = h(xL+s+1−l2 , xL+s−l2 , r2s+4, r2s+3). We
represent this by Cn+1 = H n+1(Xn+L , R2n+2). The output string is generated as On+1 =
Fn+1(Xn+2, Y n+2, Cn+1). Altogether, we can write On+1 = Gn+1(Xn+L ′

, Y n+2, R2n+2).
The process of producing the first derivative of On+1, Ȯn = Ġn(Xn+L ′

, Y n+2, R2n+2),
from a given input string Xn+L ′

according to an input string Y n+2 and an auxiliary clock-
control string R2n+2 is called the edit transformation of Xn+L ′

into Ȯn according to Y n+2

and R2n+2.
Assume a probabilistic model where the strings Xn+L ′

, Y n+2, and R2n+2 are inde-
pendent and purely random. Alternatively, R2n+2 can be more precisely modeled as a
sequence of independent pairs of successive bits (r2s+1, r2s+2), 0 ≤ s ≤ n, where the
probability distribution of each pair is derived from the (nonuniform) stationary distri-
bution of the Markov chain associated with the 4-bit inputs to the clock-control function.
However, it turns out that the simplified model is a sufficiently good approximation. Let
Zn = z1, z2, . . . , zn denote a given output string. The edit probability for a given input
string Xn+L ′

and a given output string Zn is the probability that Xn+L ′
is transformed into

Zn by the (random) edit transformation according to random Y n+2 and R2n+2. Formally,
it is defined as the conditional probability

P(Xn+L ′ ; Zn) = Pr{Ġn(Xn+L ′
, Y n+2, R2n+2) = Zn | Xn+L ′ }. (14)

The statistically optimal edit probability (minimizing the error probability when de-
ciding on Xn+L ′

given Zn) is given as

Pr{Xn+L ′
, Ġn(Xn+L ′

, Y n+2, R2n+2) = Zn} = P(Xn+L ′ ; Zn) · Pr{Xn+L ′ }. (15)

As Pr{Xn+L ′ } = 2−(n+L ′), the edit probability (14) is also statistically optimal.
Our objective is to examine whether the defined edit probability can be computed effi-

ciently by a recursive algorithm whose computational complexity is significantly smaller
than O(23n+4), which corresponds to the computation of (14) by the summation of the el-
ementary probability 2−(3n+4) over all Y n+2 and R2n+2 such that Ġn(Xn+L ′

, Y n+2, R2n+2)

= Zn . To this end, we define the partial edit probability depending on the distribution
of symbols in the clock-control string Cn+1.

For any 0 ≤ s ≤ n, a pair (l1, l2) is said to be permissible if 0 ≤ l1, l2 ≤ s + 1 and
l1 + l2 ≤ s + 1. For a given s, the set of all the permissible values of (l1, l2) is denoted
by Ls . For any 1 ≤ s ≤ n and (l1, l2) ∈ Ls , the partial edit probability is defined as the
conditional joint probability

P(l1, l2, s) = Pr{Ȯs = Zs, w1(C
s+1) = l1, w2(C

s+1) = l2 | Xs+L ′ }, (16)

where Ȯs = Ḟ s(Xs+2, Y s+2, Cs+1) and Cs+1 = H s+1(Xs+L , R2s+2). The following
theorem shows how to compute the edit probability efficiently, on the basis of a recursive
property of the partial edit probability.

Theorem 3. For any given Xn+L ′
and Zn , we have

P(Xn+L ′ ; Zn) =
∑

(l1,l2)∈Ln

P(l1, l2, n), (17)
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where the partial edit probability P(l1, l2, n) is computed recursively by

P(l1, l2, s) = P(l1 − 1, l2, s − 1)zs ⊕ ẋs+1−l2 xL+s−l2 xL+s−l2−1

+ 1
8 P(l1, l2 − 1, s − 1)xL+s−l2+1xL+s−l2

+ 3
8 P(l1, l2, s − 1)xL+s−l2 xL+s−l2−1 (18)

for 1 ≤ s ≤ n and all (l1, l2) ∈ Ls , with the initial values P(0, 0, 0) = 3
4 xL xL−1,

P(0, 1, 0) = 1
4 xL xL−1, and P(1, 0, 0) = xL xL−1. (For each 0 ≤ s ≤ n, if (l1, l2) is not

permissible, then it is assumed that P(l1, l2, s) = 0, so that the corresponding terms in
(18) are not computed.)

Proof. First observe that (17) is a direct consequence of (16) and (14).
Assume that s ≥ 2. We partition all clock-control strings Cs+1 into three subsets with

respect to the value of the last symbol cs+1. For simplicity of notation, the conditioning
on Xs+L ′

is removed from (16) and the resulting equations. Then (16) can be put into
the form

P(l1, l2, s)

= Pr{ȯs = zs | Ȯs−1 = Zs−1, w1(C
s) = l1 − 1, w2(C

s) = l2, cs+1 = {1}}
· Pr{cs+1 = {1} | Ȯs−1 = Zs−1, w1(C

s) = l1 − 1, w2(C
s) = l2}

· Pr{Ȯs−1 = Zs−1, w1(C
s) = l1 − 1, w2(C

s) = l2}
+ Pr{ȯs = zs | Ȯs−1 = Zs−1, w1(C

s) = l1, w2(C
s) = l2 − 1, cs+1 = {2}}

· Pr{cs+1 = {2} | Ȯs−1 = Zs−1, w1(C
s) = l1, w2(C

s) = l2 − 1}
· Pr{Ȯs−1 = Zs−1, w1(C

s) = l1, w2(C
s) = l2 − 1}

+ Pr{ȯs = zs | Ȯs−1 = Zs−1, w1(C
s) = l1, w2(C

s) = l2, cs+1 = {1, 2}}
· Pr{cs+1 = {1, 2} | Ȯs−1 = Zs−1, w1(C

s) = l1, w2(C
s) = l2}

· Pr{Ȯs−1 = Zs−1, w1(C
s) = l1, w2(C

s) = l2}. (19)

The third factor in each addend of (19) is easily recognized to be the partial edit
probability appearing in the corresponding addend of (18) (use (16) for s − 1).

Now, under the condition that w1(Cs) = l1 − 1 and w2(Cs) = l2, we have cs+1 =
h(xL+s−l2 , xL+s−l2−1, r2s+2, r2s+1), which equals {1} if and only if (xL+s−l2 , xL+s−l2−1) =
(0, 1). Further, if cs+1 = {1}, then ȯs = ẋs+1−l2 . Similarly, under the condition that
w1(Cs) = l1 and w2(Cs) = l2 − 1, we have cs+1 = h(xL+s−l2+1, xL+s−l2 , r2s+2, r2s+1),
which equals {2} if and only if (xL+s−l2+1, xL+s−l2) �= (0, 1) and (r2s+2, r2s+1) = (0, 1).
Also, if cs+1 = {2}, then ȯs = ẏs+1−l1 . Finally, under the condition that w1(Cs) = l1

and w2(Cs) = l2, we have cs+1 = h(xL+s−l2+1, xL+s−l2 , r2s+2, r2s+1), which equals
{1, 2} if and only if (xL+s−l2 , xL+s−l2−1) �= (0, 1) and (r2s+2, r2s+1) �= (0, 1). Also, if
cs+1 = {1, 2}, then ȯs = ẋs+1−l2 ⊕ ẏs+1−l1 .
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Consequently, we have (conditioned on Xs+L ′
) that

Pr{cs+1 = {1} | Ȯs−1 = Zs−1, w1(C
s) = l1 − 1, w2(C

s) = l2}
= xL+s−l2 xL+s−l2−1, (20)

Pr{cs+1 = {2} | Ȯs−1 = Zs−1, w1(C
s) = l1, w2(C

s) = l2 − 1}
= xL+s−l2+1xL+s−l2 · 1

4 , (21)

Pr{cs+1 = {1, 2} | Ȯs−1 = Zs−1, w1(C
s) = l1, w2(C

s) = l2}
= xL+s−l2 xL+s−l2−1 · 3

4 . (22)

Further, we get

Pr{ȯs = zs | Ȯs−1 = Zs−1, w1(C
s) = l1 − 1, w2(C

s) = l2, cs+1 = {1}}
= zs ⊕ ẋs+1−l2 , (23)

Pr{ȯs = zs | Ȯs−1 = Zs−1, w1(C
s) = l1, w2(C

s) = l2 − 1, cs+1 = {2}} = 1
2 , (24)

Pr{ȯs = zs | Ȯs−1 = Zs−1, w1(C
s) = l1, w2(C

s) = l2, cs+1 = {1, 2}} = 1
2 . (25)

Equation (24) follows from ȯs = ẏs+1−l1 by taking into account that ys+2−l1 remains
independent of ys+1−l1 when conditioned on Ȯs−1 = Zs−1, w1(Cs) = l1, and w2(Cs) =
l2 − 1, as this condition involves only Y s+1−l1 (not ys+2−l1 ). Equation (25) is proved
analogously.

Equation (18) is obtained from (19) by plugging in the determined probabilities.
For s = 1, the edit probability values are directly obtained from (16). When these

values are expressed in terms of the unknown initial values by the recursion (18), a
system of linear equations is formed. The initial values are then determined by solving
this system.

The time and space complexities of the recursive algorithm corresponding to The-
orem 3 are O(n3) and O(n2), respectively. Since the edit probability is exponentially
small in the string length, the following normalization turns out to be computationally
convenient: P̄(Xn+L ′ ; Zn) = 2n+1 P(Xn+L ′ ; Zn). It can be computed by the recursion
(18) modified by mulitiplying its right-hand side and the initial values by 2.

Note that one can similarly define and compute the edit probability with respect to
LFSR2 instead of LFSR1 as a target shift register.

5. Edit Probability for Alleged A5

Let Xn+2 = x1, x2, . . . , xn+2, Y n+2 = y1, y2, . . . , yn+2, and U n+2 = u1, u2, . . . , un+2

denote three binary input strings and let Cn+1 = c1, c2, . . . , cn+1 denote a 4-valued
clock-control string, where ci ∈ C, C = {{1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}. Let On+1 =
o1, o2, . . . , on+1 = Fn+1(Xn+2, Y n+2, U n+2, Cn+1) denote the combination string pro-
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duced from Xn+2, Y n+2, and U n+2 by the alleged A5 stop/go clocking according to
Cn+1, where Xn+2, Y n+2, and U n+2 correspond to the initial segments of regularly
clocked LFSR1, LFSR2, and LFSR3 sequences, respectively, and Cn+1 is generated
independently.

More precisely, we initially have o1 = x2 ⊕ y2 ⊕ u1 if c1 = {1, 2}, o1 = x1 ⊕ y2 ⊕ u2

if c1 = {2, 3}, o1 = x2 ⊕ y1 ⊕ u2 if c1 = {1, 3}, and o1 = x2 ⊕ y2 ⊕ u2 if c1 = {1, 2, 3}.
Let wi j (Cs+1)) denote the number of occurrences of the symbol {i, j} in Cs+1, 1 ≤ i <

j ≤ 3. For simplicity, let w12(Cs+1) = l1, w23(Cs+1) = l2, and w13(Cs+1) = l3. The
number of occurrences of the symbol {1, 2, 3} in Cs+1 is then s + 1 − l1 − l2 − l3. Then
for any 0 ≤ s ≤ n, os+1 = xs+2−l2 ⊕ ys+2−l3 ⊕ us+2−l1 .

The process of producing the first derivative of On+1, Ȯn = Ḟn(Xn+2, Y n+2, U n+2,

Cn+1), is called an edit transformation of Xn+2, Y n+2, and U n+2 into Ȯn according
to Cn+1.

In the alleged A5 keystream generator, instead of being independent of the LFSR
strings, the clock-control string is produced as a function of their phase-shifted versions.
A more realistic edit transformation should incorporate this feature. To achieve a divide-
and-conquer effect, the edit transformation should involve exactly two input strings, in
view of the fact that just one input string cannot be recovered from the output string. This
is because the bitwise sum of any two stop/go clocked LFSR sequences is purely random
(under the assumption that the regularly clocked LFSR sequences are independent and
purely random).

Let τ ′
i = max(τi , 2), where τi is the tap position in LFSRi used for clock-control,

i = 1, 2, 3. Then the combination string On+1 = Fn+1(Xn+2, Y n+2, U n+2, Cn+1) is
produced in the same way as above, whereas the clock-control string Cn+1 is generated
as a function Hn+1(Xn+τ1

τ1
, Y n+τ2

τ2
, U n+τ3

τ3
). More precisely, c1 = h(xτ1 , yτ2 , uτ3) and for

any 0 ≤ s ≤ n, cs+2 = h(xs+1+τ1−l2 , ys+1+τ2−l3 , us+1+τ3−l1). Altogether, we can write
On+1 = Gn+1(Xn+τ ′

1 , Y n+τ ′
2 , U n+τ ′

3).
In order to define an edit probability for two input strings that can be computed

recursively, we adopt an approximative model for the alleged A5 where instead of
U n+τ3

τ3
, an auxiliary random binary string Rn+1 is used to produce Cn+1. Thus, the

combination string On+1 is produced as Fn+1(Xn+2, Y n+2, U n+2, Cn+1) and the clock-
control string Cn+1 is generated as a function H n+1(Xn+τ1

τ1
, Y n+τ2

τ2
, Rn+1). More precisely,

c1 = h(xτ1 , yτ2 , r1) and for any 0 ≤ s ≤ n, cs+2 = h(xs+1+τ1−l2 , ys+1+τ2−l3 , rs+2). Alto-
gether, we have On+1 = Gn+1(Xn+τ ′

1 , Y n+τ ′
2 , U n+2, Rn+1).

The process of producing the first derivative of On+1, Ȯn = Ġn(Xn+τ ′
1 , Y n+τ ′

2 , U n+2,

Rn+1), from given input strings Xn+τ ′
1 and Y n+τ ′

2 according to an input string U n+2 and
an auxiliary clock-control string Rn+1 is called the edit transformation of Xn+τ ′

1 and
Y n+τ ′

2 into Ȯn according to U n+2 and Rn+1.
Assume a probabilistic model where the strings Xn+τ ′

1 , Y n+τ ′
2 , U n+2, and Rn+1 are

independent and purely random. Note that this model of Rn+1 is in accordance with the
uniform probability distribution of the 3-bit input to the clock-control function (unlike
the BSGG). Let Zn = z1, z2, . . . , zn denote a binary output string. The edit probability
for given input strings Xn+τ ′

1 and Y n+τ ′
2 and a given output string Zn is then defined as

the probability that Xn+τ ′
1 and Y n+τ ′

2 are transformed into Zn by the (random) edit trans-
formation according to random U n+2 and Rn+1. Formally, it is defined as the conditional
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probability

P(Xn+τ ′
1 , Y n+τ ′

2; Zn)

= Pr{Ġn(Xn+τ ′
1 , Y n+τ ′

2 , U n+2, Rn+1) = Zn | Xn+τ ′
1 , Y n+τ ′

2}. (26)

It is symmetric with respect to Xn+τ ′
1 and Y n+τ ′

2 .
The statistically optimal edit probability (minimizing the error probability when de-

ciding on Xn+τ ′
1 and Y n+τ ′

2 given Zn) is given as

Pr{Xn+τ ′
1 , Y n+τ ′

2 , Ġn(Xn+τ ′
1 , Y n+τ ′

2 , U n+2, Rn+1) = Zn}
= P(Xn+τ ′

1 , Y n+τ ′
2; Zn) · Pr{Xn+τ ′

1 , Y n+τ ′
2}. (27)

As Pr{Xn+τ ′
1 , Y n+τ ′

2} = 2−(2n+τ ′
1+τ ′

2), the edit probability (26) is also statistically optimal.
For any 0 ≤ s ≤ n, a triple (l1, l2, l3) is said to be permissible if 0 ≤ l1, l2, l3 ≤ s + 1

and l1 + l2 + l3 ≤ s + 1. For a given s, the set of all the permissible values of (l1, l2, l3)

is denoted by Ls . For any 1 ≤ s ≤ n and (l1, l2, l3) ∈ Ls , the corresponding partial edit
probability is defined as

P(l1, l2, l3, s) = Pr{Ȯs = Zs, w12(C
s+1) = l1, w23(C

s+1) = l2,

w13(C
s+1) = l3 | Xn+τ ′

1 , Y n+τ ′
2}, (28)

where Ȯs = Ḟ s(Xs+2, Y s+2, U s+2, Cs+1) and Cs+1 = H s+1(Xs+τ1
τ1

, Y s+τ2
τ2

, Rs+1). Its
recursive computation is established by the following theorem which can be proved by
using a similar, although more involved, technique as Theorem 3.

Theorem 4. For any given Xn+τ ′
1 , Y n+τ ′

2 , and Zn , we have

P(Xn+τ ′
1 , Y n+τ ′

2; Zn) =
∑

(l1,l2,l3)∈Ln

P(l1, l2, l3, n), (29)

where the partial edit probability P(l1, l2, l3, n) is computed recursively by

P(l1, l2, l3, s) = 1
2 P(l1 − 1, l2, l3, s − 1)zs ⊕ ẋs+1−l2 ⊕ ẏs+1−l3 xs+τ1−l2 ⊕ ys+τ2−l3

+ 1
4 (P(l1, l2 − 1, l3, s − 1)(xs+1+τ1−l2 ⊕ ys+τ2−l3)

+ P(l1, l2, l3 − 1, s − 1)(xs+τ1−l2 ⊕ ys+1+τ2−l3)

+ P(l1, l2, l3, s − 1)xs+τ1−l2 ⊕ ys+τ2−l3) (30)

for 1 ≤ s ≤ n and all (l1, l2, l3) ∈ Ls , with the initial values P(0, 0, 0, 0) = P(1, 0, 0, 0)

= xτ1 ⊕ yτ2/2 and P(0, 1, 0, 0) = P(0, 0, 1, 0) = (xτ1 ⊕ yτ2)/2. (For each 0 ≤ s ≤ n,
if (l1, l2, l3) is not permissible, then it is assumed that P(l1, l2, l3, s) = 0, so that the
corresponding terms in (30) are not computed.)

The time and space complexities of the recursive algorithm corresponding to Theo-
rem 4 are O(n4) and O(n3), respectively.

Since the edit probability is exponentially small in the string length, the following
normalization turned out to be computationally convenient in the conducted experiments:
P̄(Xn+τ ′

1 , Y n+τ ′
2; Zn) = 2n+1 P(Xn+τ ′

1 , Y n+τ ′
2; Zn). It can be computed by the recursion

(30) modified by mulitiplying its right-hand side and the initial values by 2.
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6. Correlation Attacks: General Framework

It is assumed that the LFSR feedback polynomials and a sufficiently long segment of
the keystream sequence, in the known plaintext scenario, are known. The objective of
cryptanalysis is to reconstruct the secret-key-dependent LFSR initial states by a method
faster than exhaustive search.

6.1. Main Lines

The correlation attack goes on as follows. Depending on the keystream generator con-
sidered, pick a target subset of the LFSRs whose initial states are to be reconstructed. Let
r be the total length of the chosen LFSRs. Initially, generate the output string of appro-
priate length n as the first derivative of a given segment of the keystream sequence (the
keystream segment length is n+1). Then assume the unknown initial states of the chosen
subset of the LFSRs and generate input strings of appropriate lengths as the initial seg-
ments of the corresponding regularly clocked LFSR sequences. In Section 6.3 we argue
that the length n should be proportional to r , whereas the lengths of the input strings are
defined as the maximum possible lengths that may give rise to an output string of length
n (depending on the generator). Compute the (normalized) edit probability associated
with the generated input strings and the output string by using the respective recursive
algorithm. Repeat this for every possible combination of the chosen LFSR initial states,
altogether 2r of them. The complexity is thus 2r steps each consisting of the computation
of the edit probability which itself has complexity polynomial in n, depending on the
keystream generator.

Provided that the edit probability is sufficiently larger in the case when our guess
about the unknown input strings is correct than in the opposite case, the candidates for
the correct combination of the LFSR initial states, roughly speaking, can be obtained as
those with the computed edit probability close to being maximal. In order to treat this
issue more precisely, we introduce a suitable statistical hypothesis testing model.

6.2. Statistical Hypothesis Testing

Consider the probability distribution of the edit probability under the following two
hypotheses:

• H0 (correlated case): The output string is produced by the respective keystream
generator in which the LFSR strings are assumed to be purely random and inde-
pendent.

• H1 (independent case): The output string and the input strings are purely random
and independent.

Clearly, H0 models the case when the guessed input string combination is correct, and
H1 models the opposite case.

For the maximum edit probability decision rule to work, it is necessary that the sep-
aration between the probability distributions in the correlated and independent cases
increases with the length n of the output string, and the faster the increase, the smaller
the string length required for successful decision making. Since a theoretical analysis of
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the separation between the two probability distributions appears to be very difficult, the
separation should be measured experimentally.

As we deal with a decision making problem, the separation is measured by the false
alarm probability (derived from H1) when the missing event probability (derived from
H0) is fixed. Since the number of correct input string combinations is only one, the
missing event probability can be fixed to a value which need not be very small (e.g.,
pm = 0.1 or pm = 0.01). Then a threshold is set according to pm and a tested input string
combination is classified under H0 or H1 depending on whether the edit probability is
bigger or smaller than the threshold. Thus, the false alarm probability pf becomes a
function of n, and if and only if this function is decreasing, then the separation between
the two distributions increases with n, as desired.

In the correlation attack, the threshold as a function of n is estimated empirically, by
computer simulations. A tested input string combination is classified as a candidate if
the corresponding edit probability is bigger than or equal to the threshold.

6.3. Output String Length

Ideally, if n is large enough, then there will remain only one candidate for the correct
input string combination. This can happen only if the false alarm probability pf(n) is
sufficiently small. Namely, since the expected number of false candidates is (2r −1)pf(n),
for an average output string, the correlation attack is deemed successful if and only if,
approximately,

2r pf(n) ≤ 1. (31)

The false alarm probability as a function of n is estimated empirically by computer
simulations. If the decrease of pf(n), for large n, is consistent with the exponential form
abn , where b < 1, then the parameters a and b can be estimated by the least mean
square approximation method applied to the logarithms (to the base 2) of the false alarm
probability estimates. Then (31) reduces to

n ≥ r + log2 a

− log2 b
, (32)

which means that the required output string length is essentially linear in the total length
of the chosen subset of the LFSRs. This is in accordance with the capacity argument for
the communication channel that can be associated with the reconstruction problem.

6.4. Final Reconstruction

The number of candidate input string combinations obtained cannot be reduced to just
one by increasing the length n if the threshold is computed according to a given pm,
because the targeted LFSR initial states generating relatively small (positive or negative)
phase shifts of the correct input strings give rise to the edit probability values that are
also close to being maximal. For all the keystream generators considered, this can be
explained by the respective recursions for the partial edit probability which change only
in the beginning for a negative phase shift (delay) or at the end for a positive phase shift,
and remain the same for the best part of the input strings. Therefore, small phase shifts of
the correct input strings are not well modeled by the hypothesis H1 (independent case).
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Accordingly, a relatively small number of candidate initial states for the chosen subset
of the LFSRs are obtained.

They are ranked and further tested in order of decreasing edit probabilities. The correct
initial states, along with the correct initial states of the remaining LFSRs, are identified
in the final stage of the attack. Namely, for each candidate initial state combination,
all possible initial states of the remaining LFSRs are tested by generating the output
sequence and comparing it with the known keystream sequence. If no match is found,
then the candidate initial state combination is discarded. The solution for the targeted
LFSR initial states need not be unique if the keystream generator (e.g., the alleged A5)
is such that there exist equivalent initial states, producing the same output sequence.

If r ′ is the total length of the remaining LFSRs, then the time complexity of the final
stage is O(2r ′

). If r ′ > r (for the ASG and the alleged A5), then the time complexity of
the final stage can be reduced by a more sophisticated method based on the appropriate
edit distance (see [6] for the ASG).

7. Correlation Attack on ASG

The general lines of the correlation attack are described in Section 6. Here we specify
the details adapted to the ASG and provide experimental results obtained by computer
simulations.

The objective is to recover the initial state of LFSR1 or LFSR2 individually, by using
the (normalized) edit probability for one input string introduced in Section 3.1. A number
of candidates for the initial state of LFSRi are obtained in this way. Then the candidates
for the initial state of the other shift register LFSRj , j �= i , can be obtained either by
using the edit probability for one input string or the edit probability for two input strings
defined in Section 3.2. In the final stage, the correct initial states of LFSR1, LFSR2, and
LFSR3 are all reconstructed. In view of the cyclic state diagram of the ASG, one may
expect that the solution for the LFSR initial states is unique.

7.1. Statistical Discrimination and Output String Length

The normalized edit probability P̄(Xn+2; Zn) is computed for the output string Zn and
an input string Xn+2, where Zn is constituted by the first n bits of the first derivative of the
known keystream sequence and Xn+2 is the first n+2 output bits generated by the LFSRi

recursion from an assumed initial state. The probability distribution of P̄(Xn+2; Zn) is
considered under the following two hypotheses:

• H0 (correlated case): Xn+2, Y n+2, and Cn+1 are purely random and independent
and Zn = Ḟn(Xn+2, Y n+2, Cn+1).

• H1 (independent case): Xn+2 and Zn are purely random and independent.

To measure the separation between H0 and H1, we conducted systematic experiments
and produced histograms of the two distributions for each n = 100, (10), 1000 on random
samples generated from 10,000 pairs (Xn+2, Zn) according to H0 and H1, respectively.
They show that although the distributions cannot be well approximated by the normal
distributions, the separation becomes significant even for relatively small values of n. It
thus turns out that P̄ is much larger under H0 than under H1, for a sufficiently large n.
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Table 1. ASG: Estimation of a and b on 20∗, 40∗∗, and 60∗∗∗ points.

pm a∗ a∗∗ a∗∗∗ b∗ b∗∗ b∗∗∗

0.1 0.7815 — — 0.9799 — —
0.01 1.288 1.922 — 0.9879 0.9858 —
0.001 1.346 2.184 2.897 0.9926 0.9901 0.9891

For illustration, Tables 1A and 2A given in Appendix A display the observed minimum,
maximum, mean, and median values along with the standard deviation of P̄ for each
n = 100, (100), 800 under H1 and H0, respectively.

For pm = 0.1, pm = 0.01, and pm = 0.001, Table 3A given in Appendix A displays the
estimated threshold, P̄th, and the false alarm probability, pf, for each n = 100, (100), 800.
For each considered pm, the estimated pf decreases with n and can be approximated
as abn , where the parameters a and b were obtained from the pf estimates for n =
100, (10), 1000 and are presented in Table 1.

The parameters a and b were estimated on the first 20 points for pm = 0.1, on the first
20 and 40 points for pm = 0.01, and on the first 20, 40, and 60 points for pm = 0.001,
respectively. The most reliable estimates were obtained for the first 20 points in all the
cases. To be on the conservative side, the false alarm probabilities are approximated by
using the maximum values of b as

p0.1
f (n) ≈ 0.78 · 0.98n, p0.01

f (n) ≈ 1.29 · 0.988n,

p0.001
f (n) ≈ 1.35 · 0.993n. (33)

In view of (33) and (32), the required output string length for a successful correlation
attack is then approximately given as

n ≥ 34.3ri − 12.3, (34)

n ≥ 57.4ri − 21.1, (35)

n ≥ 98.7ri − 42.7, (36)

for pm = 0.1, pm = 0.01, and pm = 0.001, respectively.

7.2. Final Reconstruction

In the correlation attack, we choose pm = 0.1 and thus obtain multiple candidates for
the initial state of LFSRi which are then ranked in order of decreasing normalized edit
probabilities. Candidates for the initial state of the other shift register LFSRj , j �= i , can
be produced in the same way by using the edit probability for one input string, regardless
of the initial state candidates obtained for LFSRi .

Alternatively, one may use the edit probability for two input strings defined in Sec-
tion 3.2 (the way the input strings Xn+2 and Y n+2 are assigned to LFSRi and LFSRj is
not important due to the symmetry). Namely, for each initial state candidate obtained
for LFSRi and each assumed initial state of LFSRj , j �= i , compute the normalized edit
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probability for two input strings, P̄(Xn+2, Y n+2; Zn), and then apply a similar statistical
hypothesis testing procedure as above to obtain the initial state candidates for LFSRj . In
this case:

• H0 (correlated case): Xn+2, Y n+2, and Cn+1 are purely random and independent
and Zn = Ḟn(Xn+2, Y n+2, Cn+1).

• H1 (independent case): Xn+2, X̂ n+2, Y n+2, and Cn+1 are purely random and inde-
pendent and Zn = Ḟn(X̂ n+2, Y n+2, Cn+1).

As the edit probability for two input strings makes use of the additional information
about one of the input strings, the required output string length for the same number
of multiple candidates is in this case smaller than for the edit probability for one input
string. Note that the search through the initial states of LFSRj is reduced if a prefix of
length smaller than rj of the considered input string is found such that the resulting edit
probability is equal to zero. In addition, this method also reduces the number of candidate
initial states for the first shift register LFSRi .

Accordingly, we obtain a relatively small number of candidate initial state pairs for
LFSR1 and LFSR2 in time O(2max(r1,r2)+2 log2 max(r1,r2)).

Both component candidate initial states are ranked in order of decreasing normalized
edit probabilities. The (unique) correct pair along with the correct initial state of LFSR3

can then all be reconstructed by the edit distance method from [6]. For each candidate
pair, by backtracking through the matrix of the corresponding partial edit distances one
can recover all possible clock-control strings Cn that together with the corresponding
input strings result in a given output string. Note that such clock-control strings need not
exist (nonzero edit distance) if a candidate pair is obtained by using the edit probability
for one input string for both LFSRs. The average number of such clock-control strings
of length n per candidate pair can be approximated as mn ≈ 1.2 · 20.27n (see [6]).
Alternatively, if the candidate initial states for the other shift register LFSRj are obtained
by the edit probability for two input strings, all possible clock-control strings for each
candidate initial state pair for LFSR1 and LFSR2 can also be obtained by backtracking
through the matrix of positive partial edit probabilities.

So, pick n = r3 and then test each obtained initial state triple for all the LFSRs by
generating the corresponding ASG output sequence and by comparing it with the given
one. In this final stage, the unique solution for the initial states of all the LFSRs is thus
found in O(20.27r3) time. This is considerably smaller than O(2r3) which corresponds to
exhaustive search over the initial states of LFSR3.

7.3. Experimental Correlation Attacks

A number of computer simulations were conducted to show that the above correlation
attack can work in practice.3 Only primitive feedback polynomials were used for all the
LFSRs. The correlation attack was performed by using the edit probability for one input
string to recover the initial state candidates for both LFSR1 and LFSR2.

3 For the experiments, we used a Macintosh PowerPC 8600 with a PowerPC 604 processor, clock frequency
180 MHz, and 256 MB of RAM.
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Table 2. ASG: Experimental results.

n = 200 n = 400 n = 600 (r1, r2, r3)

N1, N2 1380, 463 106, 37 22, 25
N1,2, N3 6, 40 6, 40 6, 40 (15, 14, 20)

k1, k2 43, 7 1, 2 1, 2

N1, N2 1125, 1168 36, 33 28, 31
N1,2, N3 3, 8100 3, 8100 3, 8100 (15, 16, 24)

k1, k2 1, 1 1, 1 1, 1

N1, N2 479, 289 28, 33 23, 23
N1,2, N3 4, 3168 4, 3168 4, 3168 (16, 16, 28)

k1, k2 7, 1 6, 1 1, 1

N1, N2 4353, 2243 125, 46 17, 20
N1,2, N3 2, 2484 2, 2484 2, 2484 (18, 17, 30)

k1, k2 3, 12 1, 37 1, 2

Some examples of the experimental results obtained are shown in Table 2. In each
experiment, described by the shift register lengths (r1, r2, r3), for any chosen n, Ni

denotes the number of candidate initial states for LFSRi , i = 1, 2, N1,2 denotes the
number of candidate initial state pairs (among N1 N2 of them) that passed the zero edit
distance test, ki denotes the rank of the normalized edit probability corresponding to the
correct initial state of LFSRi , i = 1, 2, and N3 stands for the number of clock-control
strings of length r3 that had to be tested per correct initial state pair. In each experiment, a
unique solution for the LFSR initial states was obtained. Notice that although a relatively
small number of multiple candidates for the initial states of LSFR1 and LFSR2 did appear,
the correct initial states always ranked the best or very close to the best provided n was
sufficiently large. As indicated by (34), it was observed that Ni was approximately
minimized by using n ≈ 40ri , i = 1, 2. However, in practice, it appears that ki reduces
to one or to a very small integer even if n ≈ 20ri .

8. Correlation Attack on BSGG

The general lines of the correlation attack are described in Section 6. Here we specify
the details adapted to the BSGG and provide experimental results obtained by computer
simulations.

The correlation attack consists of two phases. The goal of the first phase is to re-
cover the initial state of LFSR1 by using the (normalized) edit probability introduced
in Section 4. A number of candidates for the initial state of LFSR1 are obtained in this
way. Then, in the second phase, the correct initial states of LFSR1 and LFSR2 are both
reconstructed. In view of the state diagram of the BSGG, one may expect that there are at
most two solutions for the LFSR initial states and that the unique solution is more likely.
Note that the correlation attack on LFSR2 based on the corresponding edit probability
is expected to be equally efficient because of equal correlation coefficients and equal
LFSR lengths.
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8.1. Statistical Discrimination and Output String Length

The normalized edit probability P̄(Xn+L ′ ; Zn) is computed for the output string Zn and
an input string Xn+L ′

, where Zn is constituted by the first n bits of the first derivative
of the known keystream sequence and Xn+L ′

is the first n + L ′ output bits generated
by the LFSR1 recursion from an assumed initial state. The probability distribution of
P̄(Xn+L ′ ; Zn) is considered under the following two hypotheses:

• H0 (correlated case): Xn+L ′
and Y n+L ′

are purely random and independent and
Zn = Ġn(Xn+L ′

, Y n+L ′
).

• H1 (independent case): Xn+L ′
and Zn are purely random and independent.

We conducted systematic experiments and produced histograms of the two distri-
butions for each n = 100, (10), 800 on random samples generated from 1000 pairs
(Xn+L ′

, Zn) according to H0 (without essential difference, we chose L = 100) and H1,
respectively. They show that the separation between the distributions increases with n. It
thus turns out that the normalized edit probability is much larger under H0 than under H1,
for a sufficiently large n. For illustration, Tables 1B and 2B given in Appendix B display
the observed minimum, maximum, mean, and median values along with the standard
deviation of the normalized edit probability, for each n = 100, (100), 800, under H1 and
H0, respectively.

For pm = 0.1 and pm = 0.05, Table 3B given in Appendix B displays the estimated
threshold, P̄th, and false alarm probability, pf, for each n = 100, (100), 800. For each
considered pm, the estimated pf decreases with n and can be approximated as abn , where
the parameters a and b were obtained from the pf estimates for n = 100, (10), 1000 and
are presented in Table 3.

The parameters a and b were estimated on the first 10, 20, and 25 points for both
pm = 0.1 and pm = 0.05, respectively. The most reliable estimates were obtained
for the first 10 points. To be on the conservative side, the false alarm probabilities are
approximated by using the maximum values of b as

p0.1
f (n) ≈ 0.542 · 0.986n, p0.05

f (n) ≈ 0.520 · 0.990n. (37)

In addition, we also conducted experiments in which the correlated samples were
generated according to the approximative model for the BSGG used for defining the edit
probability. Namely, H0 was replaced by H′

0 where Xn+L ′
, Y n+2, and R2n+2 are purely

random and independent and Zn = Ġn(Xn+L ′
, Y n+2, R2n+2). Interestingly, it turns out

that the statistical discrimination between H1 and H0 is larger than the one between
H1 and H′

0. This can be regarded as a consequence of the randomization introduced by
the auxiliary random clock-control string, despite the fact that H′

0 is more suited to the
edit probability used.

Table 3. BSGG: Estimation of a and b on 10∗, 20∗∗, and 25∗∗∗ points.

pm a∗ a∗∗ a∗∗∗ b∗ b∗∗ b∗∗∗

0.1 0.542 0.585 0.551 0.986 0.986 0.986
0.05 0.520 0.736 0.731 0.990 0.987 0.987



62 J. Dj. Golić and R. Menicocci

In view of (37) and (32), the required output string length for a successful correlation
attack is then approximately given as

n ≥ 49.2L − 43.4, (38)

n ≥ 69.0L − 65.1, (39)

for pm = 0.1 and pm = 0.05, respectively.

8.2. Final Reconstruction

In the first phase of the correlation attack, a relatively small number of candidate initial
states for LFSR1 are obtained in time O(2L+3 log2 L). They are then ranked and tested in
order of decreasing normalized edit probabilities. Namely, each candidate initial state
for LFSR1 is associated with each of the 2L − 1 possible initial states of LFSR2 and the
corresponding output sequence is compared with the given BSGG output sequence. In
this phase the correct LFSR initial states are thus found in time O(2L).

8.3. Experimental Correlation Attacks

The correlation attack was tested on short LFSRs by computer simulations, which verified
that the attack can work in practice. Some results of our experiments are shown in
Table 4. For pm = 0.1, the required output string length was first estimated by (38) for
L = 14, 15, and 16. The experiments were also repeated by halving this string length.
The good results obtained for L = 14, 15, and 16 when reducing n to n/2 (and time
reduction) motivated the choice of n = 500 (400), instead of n = 800 (400), for L = 17.
The thresholds for the normalized edit probability were obtained from the data collected
for n = 100, (10), 800 (see Table 3B for n = 100, (100), 800). For n = 325, 375, we
used interpolation.

We counted the number of LFSR1 states giving rise to a normalized edit probability
not smaller than the given threshold (Candidates). For every candidate initial state for
LFSR1 we searched for a companion initial state of LFSR2 and counted the joint solutions
(Solutions). Table 4 shows that a unique joint solution was always found. Finally, we
determined the position of the LFSR1 component of this solution in the list of the initial
state candidates for LFSR1 ranked in order of decreasing normalized edit probabilities
(Rank).

Table 4. BSGG: Experimental results.

L n Threshold Candidates Solutions Rank

14 650 (325) 11,290 (75) 20 (51) 1 (1) 1 (1)
15 700 (350) 21,720 (109) 8 (72) 1 (1) 1 (5)
16 750 (375) 46,070 (145) 30 (171) 1 (1) 1 (1)
17 500 (400) 741 (180) 35 (139) 1 (1) 26 (29)



Edit Probability Correlation Attacks on Stop/Go Clocked Keystream Generators 63

As for the initial state candidates for LFSR1, we found that a candidate is very likely
obtainable from the correct LFSR1 initial state by a small positive or negative phase shift.

9. Correlation Attack on Alleged A5

The general lines of the correlation attack are described in Section 6. Here we specify
the details adapted to the alleged A5 generator and discuss the possibility of obtaining
the experimental results by computer simulations.

The correlation attack consists of two phases. The goal of the first phase is to recover
the initial states of the shortest two LFSRs, LFSR1 and LFSR2, by using the (normalized)
edit probability introduced in Section 5. It is assumed that the LFSRs are indexed in order
of increasing lengths. A number of candidates for the initial states of LFSR1 and LFSR2

are obtained in this way. Then, in the second phase, the correct initial states of all three
LFSRs are reconstructed. In view of the fact that the next-state function of the alleged
A5 is not one-to-one, it is argued in [3] and [5] that several different LFSR initial state
triples may give rise to the same output sequence, so that the solution for the LFSR
initial states may not be unique. In any case, the number of (equivalent) solutions is
small and all of them can be easily obtained from any one of them by the branching
method [3], [5].

9.1. Reducing Space and Time Complexities

In order to avoid slowing down the computations, the operating memory of a com-
puter system should be used to store the partial edit probabilities. In this regard, the
space complexity O(n3) is prohibitively high if the string length n is of the order of
thousands, as could be expected to be needed in a realistic correlation attack. We now
propose a method to reduce the space complexity for the edit probability computation
to O(n3/2).

As the 4-valued clock-control string is purely random if the input strings are inde-
pendent and purely random, wi j (Cs) is then a binomially distributed random variable
with the expected value µ(s) = s/4 and the standard deviation σ(s) = √

3s/4. Ac-
cordingly, for most input strings Xn+τ ′

1 and Y n+τ ′
2 , the most significant values of the

partial edit probability P(l1, l2, l3, s) are concentrated around the point (l1, l2, l3) ≈
((s + 1)/4, (s + 1)/4, (s + 1)/4), while the others are considerably smaller. So, the idea
is to compute only the significant values while the others are set to zero.

More precisely, P(l1, l2, l3, s) is computed only for (l1, l2, l3) ∈ Ls(M) defined as
follows. First compute r1(n) = �µ(n + 1) − 3σ(n + 1)� and M = �6σ(n + 1)� and
set r2(n) = r1(n) + M (for large n, [r1(n), r2(n)] ⊆ [0, n + 1]). Second, for any
1 ≤ s < n, compute r1(s) and r2(s) as follows. If s + 1 ≤ M , then r1(s) = 0 and
r2(s) = s + 1. If M < s + 1 ≤ 2M , then r1(s) = 0 and r2(s) = M . If s + 1 > 2M , then
r1(s) = �(s + 1)/4 − M/2� and r2(s) = r1(s) + M . Accordingly, for any 1 ≤ s ≤ n,
Ls(M) is defined as the set of all (l1, l2, l3) such that r1(s) ≤ l1, l2, l3 ≤ r2(s) and
l1 + l2 + l3 ≤ s + 1.

The same recursion (30) is used for the computation, with a difference that the involved
partial probability values for the preceding value of s that have not been computed are
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set to zero. The space complexity is then O(M3) = O(n3/2), and the time complexity
is reduced to O(n5/2).

9.2. Statistical Discrimination and Output String Length

The normalized edit probability P̄(Xn+τ ′
1 , Y n+τ ′

2; Zn) is computed for the output string
Zn and input strings Xn+τ ′

1 and Y n+τ ′
2 , where Zn is constituted by the first n bits of the

first derivative of the known keystream sequence and Xn+τ ′
1 and Y n+τ ′

2 are the first n + τ ′
1

and n + τ ′
2 output bits generated by the LFSR1 and LFSR2 recursions from assumed

initial states, respectively. The edit probability can be modified according to the space
reduction method.

The probability distribution of P̄(Xn+τ ′
1 , Y n+τ ′

2; Zn) is considered under the following
two hypotheses:

• H0 (correlated case): Xn+τ ′
1 , Y n+τ ′

2 , and U n+τ ′
3 are purely random and independent

and Zn = Ġn(Xn+τ ′
1 , Y n+τ ′

2 , U n+τ ′
3).

• H1 (independent case): Xn+τ ′
1 , Y n+τ ′

2 , and Zn are purely random and independent.

Alternatively, the correlated case can also be modeled by H′
0 where Xn+τ ′

1 , Y n+τ ′
2 , U n+2,

and Rn+1 are purely random and independent and Zn = Ġn(Xn+τ ′
1 , Y n+τ ′

2 , U n+2, Rn+1).
According to the available computational resources, we conducted systematic experi-

ments for the modified edit probability and produced histograms of the two distributions
for each n = 250, (250), 2000 on random samples generated from 100 random triples
(Xn+τ ′

1 , Y n+τ ′
2 , Zn) according to H′

0 (without essential difference, we chose τ ′
i to be

around 15) and H1, respectively. They show that the separation between the distributions
slowly increases with n. For pm = 0.1 and each n, we computed the threshold and the
false alarm probability, pf.

In view of the experimental results for the BSGG, we anticipate that for large n the
false alarm probability also exponentially decreases as abn , b < 1. However, in the range
of n considered, pf very slowly decreases with n, so that the estimates of pf obtained
did not enable us to produce reliable estimates of the parameters a and b. This means
that larger values of n have to be explored and that b is much closer to 1 than in the
case of the BSGG. According to (32), the required output string length for a successful
correlation attack is linear in r1 + r2, but the multiplicative constant is fairly large.

9.3. Final Reconstruction

In the first phase of the correlation attack, we obtain a relatively small number of can-
didate initial state pairs for LFSR1 and LFSR2 in time O(2r1+r2+2.5 log2(r1+r2)), where the
multiplicative constant is expected to be fairly large. They are then ranked and tested in
order of decreasing normalized edit probabilities. Namely, for each candidate initial state
pair, all possible initial states of LFSR3 are tested by generating the output sequence and
comparing it with the known keystream sequence. In this phase, all the solutions for the
correct LFSR initial states are thus found in time O(2r3).

If r3 > r1 + r2, then the time complexity of the final phase may be reduced by a
more sophisticated method based on an appropriate edit distance. This edit distance
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can be defined on the basis of the same edit transformation as the edit probability for
one independent binary clock-control string (modified to reduce the space complexity).
For each candidate initial state pair, compute this edit distance and discard the pair if
it differs from zero. (The zero value indicates that the pair is consistent with the given
output string in the underlying model.) Then recover all the strings U m+2 and Rm+1 that
are, together with the candidate input strings, consistent with the given output string of
length m, by backtracking through the array of the corresponding partial edit distances
following the minimum edit distance paths when decreasing s. By employing the fact
that Rm+1 can be derived from U m+τ3

τ3
by stop/go clocking, one can thus reconstruct the

segments composed of the last r3 effectively used bits of all the consistent strings U m+τ ′
3

(m ≥ 4r3/3). Since the number of such segments is (much) smaller than 2r3 , exhaustive
search over all the initial states of LFSR3 is thus avoided.

10. Conclusions

It is pointed out that the stop/go clocking in certain keystream generators based on
stop/go clocked LFSRs can be viewed as a random edit transformation of a number
of input strings into one output string. The keystream generators include the ASG, the
BSGG, and the alleged A5. The input strings correspond to the output sequences of a
number of LFSRs when regularly clocked and the output string corresponds to the first
derivative of the output sequence of the respective generator. The output sequences of the
remaining LFSRs are assumed to be purely random and independent. For the BSGG and
the alleged A5, some additional purely random strings are also introduced. The related
edit probabilities are defined and the recursive algorithms for their efficient computation
are derived.

It is shown how the edit probabilities can be used to mount statistically optimal
correlation attacks on a number of LFSRs in each of the schemes considered. The
correlation attacks require the computation of the corresponding edit probability for all
possible initial states of the LFSRs targeted by the attacks. In the final stage, the initial
states of all the LFSRs are reconstructed. A statistical hypothesis testing method for
estimating the known keystream sequence length needed for a successful correlation
attack is developed. The method requires experiments by computer simulations. It turns
out that this length is linear in the total length of the targeted LFSRs. A divide-and-
conquer effect is achievable if the total length of the remaining LFSRs is not relatively
small.

Systematic experiments including successful correlation attacks on relatively short
LFSRs are conducted for the ASG and the BSGG. The results demonstrate that in
order to prevent the correlation attacks the total length of the targeted LFSRs should be
sufficiently long.

In general, the methodology developed in this paper shows that the security against
correlation attacks of keystream generators involving clock-controlled shift registers
can be analyzed by using special edit probabilities adapted to the structure considered.
A challenging research field is investigating the possibility of the corresponding fast
correlation attacks which would not require the exhaustive search through the initial
states of the targeted LFSRs.
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Appendix A. Statistical Data for ASG

Table 1A. Statistics of P̄ on 10,000 independent pairs (Xn+2, Zn).

n Min Max Mean Median Std dev

100 6.059E-10 7.749E2 1.825E0 5.051E-2 1.406E1
200 5.613E-13 1.207E4 2.493E0 2.646E-3 1.227E2
300 2.514E-14 2.320E3 6.438E-1 1.696E-4 2.832E1
400 4.979E-19 9.943E2 4.923E-1 1.273E-5 1.646E1
500 2.066E-19 4.170E2 2.194E-1 1.121E-6 6.085E0
600 2.761E-20 7.503E1 2.898E-2 8.78E-8 9.7E-1
700 1.535E-23 5.366E1 1.477E-2 8.478E-9 6.352E-1
800 8.513E-24 2.454E1 4.59E-3 6.947E-10 2.645E-1

Table 2A. Statistics of P̄ on 10,000 correlated pairs (Xn+2, Zn).

n Min Max Mean Median Std dev

100 1.162E-3 1.024E6 9.378E2 4.773E1 1.246E4
200 3.717E-3 1.772E8 1.502E5 7.643E2 2.893E6
300 6.552E-3 1.4E11 3.625E7 1.092E4 1.532E9
400 1.648E-2 1.422E14 1.86E10 1.731E5 1.429E12
500 1.006E-3 7.071E15 1.697E12 2.483E6 9.125E13
600 3.388E-3 4.436E18 4.696E14 3.279E7 4.438E16
700 1.170E-3 2.514E20 2.542E16 5.479E8 2.514E18
800 2.401E-2 7.198E20 1.889E17 7.999E9 8.513E18

Table 3A. Estimation of thresholds and false alarm probabilities.

n P̄0.1
th P̄0.01

th P̄0.001
th p0.1

f p0.01
f p0.001

f

100 2.193E0 1.680E-1 2.005E-2 1.015E-1 3.491E-1 6.127E-1
200 1.038E1 3.098E-1 1.308E-2 1.61E-2 1.127E-1 3.459E-1
300 5.684E1 1.093E0 6.713E-2 1.0E-3 2.29E-2 9.48E-2
400 4.047E2 3.084E0 1.7E-1 3E-4 5.8E-3 2.65E-2
500 2.729E3 9.323E0 1.061E-1 0 2.9E-3 1.95E-2
600 2.295E4 4.723E1 5.289E-1 0 2E-4 4.2E-3
700 2.150E5 3.290E2 1.398E0 0 0 1.2E-3
800 1.19E6 1.009E3 5.684E0 0 0 2E-4
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Appendix B. Statistical Data for BSGG

Table 1B. Statistics of P̄ on 1000 independent pairs (Xn+L ′
, Zn).

n Min Max Mean Median Std dev

100 6.341E-9 3.339E2 2.314E0 1.43E-1 1.294E1
200 4.307E-15 3.952E2 2.121E0 1.597E-2 1.69E1
300 4.279E-15 2.774E2 1.632E0 2.674E-3 1.347E1
400 2.669E-14 6.531E2 1.2E0 4.36E-4 2.168E1
500 2.246E-14 7.893E1 2.456E-1 1.13E-4 2.82E0
600 6.1E-20 3.019E2 4.643E-1 2.023E-5 9.68E0
700 3.915E-18 1.598E4 1.613E1 3.771E-6 5.055E2
800 5.145E-19 7.301E1 1.669E-1 7.699E-7 2.848E0

Table 2B. Statistics of P̄ on 1000 correlated pairs (Xn+L ′
, Zn).

n Min Max Mean Median Std dev

100 7.637E-2 7.097E3 1.097E2 2.486E1 4.006E2
200 8.051E-2 1.703E6 6.538E3 2.033E2 7.162E4
300 5.31E-2 3.59E7 1.269E5 1.863E3 1.62E6
400 3E-1 2.658E8 1.759E6 1.056E4 1.438E7
500 3.053E0 7.872E10 1.213E8 1.108E5 2.573E9
600 8.349E-1 3.3E12 6.27E9 6.357E5 1.222E11
700 4.942E1 2.123E12 4.933E9 5.135E6 7.462E10
800 3.484E0 1.987E13 7.507E10 2.374E7 8.822E11

Table 3B. Estimation of thresholds and false alarm probabilities.

n P̄0.1
th P̄0.05

th p0.1
f p0.05

f

100 3.122E0 1.893E0 1.22E-1 1.67E-1
200 1.214E1 5.655E0 2.7E-2 4.8E-2
300 4.138E1 1.687E1 1.1E-2 1.9E-2
400 1.808E2 5.709E1 1E-3 3E-3
500 7.413E2 2.822E2 0 0
600 7.164E3 1.505E3 0 0
700 2.172E4 3.835E3 0 1E-3
800 7.587E4 1.891E4 0 0
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